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Advanced Counting Techniques

• Principle of Inclusion-Exclusion X

• Recurrences and its applications X

• Solving Recurrences
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Repeated Substitution Method : Learnings

• An elementary method to solve recurrences.
elementary does not mean simple, but a something that does not need background

• Need to observe a pattern. Do not oversimplify.

• Creativity and experience with summation of series help.

• However, the pattern has to be observed for each recurrence and there is
no generic rule. Are there some recurrences that can be solved by a formula?

Ex: Solve by repeated substitution

T (n) = 2 if n = 0

= 2
√

T (n − 1) otherwise

Sol: T (n) = 22− 1
2n

T (n) = 12 if n = 0

= 20 if n = 1

= 2T (n − 1)− T (n − 2) otherwise

Sol: T (n) = 8n + 12
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Linear recurrences

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = c1an−1 + c2an−2 + . . .+ ckan−k

1 ≤ i ≤ k, ci is a real number and ck 6= 0

• Linear because an−1, an−2 . . . appear in separate terms and to the first
power.

• Homogeneous because degree of every term is the same. There is no
constant term.

• Constant coefficients because c1, c2 . . . are reals which do not depend on n.

Examples:

• T (n) = 2T (n − 1) and T (0) = 1.

• T (n) = T (n − 1) + T (n − 2) and T (0) = 0,T (1) = 1.

Non Examples:

• T (n) = nT (n − 1) and T (0) = 1 does not have constant coefficients

• T (n) = T (n − 1) · T (n − 2) and T (0) = 0,T (1) = 1. not linear

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = c1an−1 + c2an−2 + . . .+ ckan−k

1 ≤ i ≤ k, ci is a real number and ck 6= 0

• Linear because an−1, an−2 . . . appear in separate terms and to the first
power.

• Homogeneous because degree of every term is the same. There is no
constant term.

• Constant coefficients because c1, c2 . . . are reals which do not depend on n.

Examples:

• T (n) = 2T (n − 1) and T (0) = 1.

• T (n) = T (n − 1) + T (n − 2) and T (0) = 0,T (1) = 1.

Non Examples:

• T (n) = nT (n − 1) and T (0) = 1 does not have constant coefficients

• T (n) = T (n − 1) · T (n − 2) and T (0) = 0,T (1) = 1. not linear

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = c1an−1 + c2an−2 + . . .+ ckan−k

1 ≤ i ≤ k, ci is a real number and ck 6= 0

• Linear because an−1, an−2 . . . appear in separate terms and to the first
power.

• Homogeneous because degree of every term is the same. There is no
constant term.

• Constant coefficients because c1, c2 . . . are reals which do not depend on n.

Examples:

• T (n) = 2T (n − 1) and T (0) = 1.

• T (n) = T (n − 1) + T (n − 2) and T (0) = 0,T (1) = 1.

Non Examples:

• T (n) = nT (n − 1) and T (0) = 1 does not have constant coefficients

• T (n) = T (n − 1) · T (n − 2) and T (0) = 0,T (1) = 1. not linear

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = c1an−1 + c2an−2 + . . .+ ckan−k

1 ≤ i ≤ k, ci is a real number and ck 6= 0

• Linear because an−1, an−2 . . . appear in separate terms and to the first
power.

• Homogeneous because degree of every term is the same. There is no
constant term.

• Constant coefficients because c1, c2 . . . are reals which do not depend on n.

Examples:

• T (n) = 2T (n − 1) and T (0) = 1.

• T (n) = T (n − 1) + T (n − 2) and T (0) = 0,T (1) = 1.

Non Examples:

• T (n) = nT (n − 1) and T (0) = 1 does not have constant coefficients

• T (n) = T (n − 1) · T (n − 2) and T (0) = 0,T (1) = 1. not linear

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = c1an−1 + c2an−2 + . . .+ ckan−k

1 ≤ i ≤ k, ci is a real number and ck 6= 0

• Linear because an−1, an−2 . . . appear in separate terms and to the first
power.

• Homogeneous because degree of every term is the same. There is no
constant term.

• Constant coefficients because c1, c2 . . . are reals which do not depend on n.

Examples:

• T (n) = 2T (n − 1) and T (0) = 1.

• T (n) = T (n − 1) + T (n − 2) and T (0) = 0,T (1) = 1.

Non Examples:

• T (n) = nT (n − 1) and T (0) = 1 does not have constant coefficients

• T (n) = T (n − 1) · T (n − 2) and T (0) = 0,T (1) = 1. not linear

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = c1an−1 + c2an−2 + . . .+ ckan−k

1 ≤ i ≤ k, ci is a real number and ck 6= 0

• Linear because an−1, an−2 . . . appear in separate terms and to the first
power.

• Homogeneous because degree of every term is the same. There is no
constant term.

• Constant coefficients because c1, c2 . . . are reals which do not depend on n.

Examples:

• T (n) = 2T (n − 1) and T (0) = 1.

• T (n) = T (n − 1) + T (n − 2) and T (0) = 0,T (1) = 1.

Non Examples:

• T (n) = nT (n − 1) and T (0) = 1 does not have constant coefficients

• T (n) = T (n − 1) · T (n − 2) and T (0) = 0,T (1) = 1. not linear

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 1

an = an−1 + 2an−2

• Is this a well defined recurrence? No! base cases are missing.

• 1, 2, 22, 23, . . . is a possible solution; closed form 2n.

• 1,−1, 1,−1, . . . is another possible solution; closed form (−1)n.

• None of the above are solutions.

Qn: Is it possible to make use of “some” solutions (not necessarily satisfying
base cases) to get a valid solution?

Ans: Yes it is possible.
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Linear Homogeneous Recurrences of degree two with constant coefficients

an = c1an−1 + c2an−2

• Degree two (or second order) says that an depends on two previous terms.

• We will deal with degree two recurrences initially.

Claim: If r0, r1, r2, . . . , and s0, s1, s2, . . . satisfy the same second order linear
homogeneous recurrence with constant coefficients, then for any constants α1

and α2, and for all n ≥ 0, we have an = α1rn + α2sn, also satisfies the same
recurrence.

What does it mean for our example earlier?

an = an−1 + 2an−2

we do have base cases yet!

• 2n and (−1)n are solutions we have seen this earlier.

• 4 · 2n + 5 · (−1)n is also a solution! So is 2n + (−3) · (−1)n.

• In fact, for any constants α1 and α2,
α1 · 2n + α2 · (−1)n is a solution.
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and α2, and for all n ≥ 0, we have an = α1rn + α2sn, also satisfies the same
recurrence.

What does it mean for our example earlier?

an = an−1 + 2an−2

we do have base cases yet!

• 2n and (−1)n are solutions we have seen this earlier.

• 4 · 2n + 5 · (−1)n is also a solution! So is 2n + (−3) · (−1)n.

• In fact, for any constants α1 and α2,
α1 · 2n + α2 · (−1)n is a solution.
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Back to Example 1

an = an−1 + 2an−2

a0 = 1, a1 = 8

• 2n and (−1)n are solutions (not satisfying base cases).

• Goal: Obtain a closed form for the recurrence including base cases.

We know that α1 · 2n + α2 · (−1)n is a solution, for any constants α1, α2.

We use base cases to get values of α1 and α2.

a0 = 1 = α1 · 20 + α2 · (−1)0 = α1 + α2

a1 = 8 = α1 · 21 + α2 · (−1)1 = 2 · α1 − α2

Solving this for α1, α2 gives us : α1 = 3 and α2 = −2.

Verify that 3 · 2n + (−2) · (−1)n is a solution to the recurrence.
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Characteristic equation

Let the recurrence be as follows where c1 and c2 are constants and c2 6= 0.

an = c1an−1 + c2an−2

Claim: The above recurrence is satisfied by the sequence

1, t, t2, t3, . . . , tn, . . .

where t is a non-zero real number iff t satisfies

t2 − c1t − c2 = 0

Ex: Write down the proof for the above. Note that the proof has two parts.

t2 − c1t − c2 = 0

is called as the characteristic equation of the recurrence relation.

• The characteristic equation for Example 1 is t2 − t − 2 = 0.

• 2 and (−1) are indeed solutions of the above equation.
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Linear Homogeneous Recurrences of degree two with constant coefficients

Input:

an = c1an−1 + c2an−2

a0 = x a1 = y

Goal: To obtain a closed form satisfying base cases.

• Write down characteristic equation t2 − c1t − c2 = 0.

• Solve the characteristic equation to get roots.
two possibilities – two distinct roots or a single root with multiplicity two

Distinct Roots case: If two distinct roots, r1 and r2, then by previous claim, we
know that following sequence also satisfies the recurrence

an = α1r
n
1 + α2r

n
2

Use base cases a0 = x and a1 = y to compute values for α1 and α2.

Single Roots case: Coming up.
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Distinct Roots case: If two distinct roots, r1 and r2, then by previous claim, we
know that following sequence also satisfies the recurrence

an = α1r
n
1 + α2r

n
2

Use base cases a0 = x and a1 = y to compute values for α1 and α2.

Single Roots case: Coming up.
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Example 2: Distinct roots case

Fibonacci Sequence

fn = fn−1 + fn−2

f0 = 1 f1 = 1

We can obtain a closed form using the above technique.

• Characteristic equation: t2 − t − 1 = 0.

• Roots of the characteristic equation are:

r1 =
1 +
√

5

2
r2 =

1−
√

5

2

• Solve α1r
0
1 + α2r

0
2 = 1 and α1r

1
1 + α2r

1
2 = 1 to obtain α1 and α2.

• Final solution is

fn = α1 ·
(

1 +
√

5

2

)n

+ α2 ·
(

1−
√

5

2

)n

Ex:

• Find values of α1 and α2.

• Change the base cases to say f0 = 2 and f1 = 3 and observe how the
solution changes. Check for another choice of base cases.
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Summary

• Special types of recurrences: Linear homogeneous recurrence relations of
degree two with constant coefficients.

• Characteristic equation.

• Closed form when the characteristic equation has distinct roots.

• Upcoming: Single roots case and the non-homogeneous case.

• References: Section 8.2 [KR]
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