Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 14, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion √
- Recurrences and its applications √
- Solving Recurrences

Recap: Solving recurrences

We have seen

- Method of Repeated Substitution.
- Linear Homogeneous recurrence relations of degree two with constant coefficients.
- Use of characteristic equation to solve these recurrences.

Today:

- · What if roots are not distinct?
- How does this generalize beyond degree two?
- Beyond degree two with repeated roots.

Revisiting Distinct Roots case

Claim: Let c_1 and c_2 be constants and let the equation $t^2 - c_1t - c_2 = 0$ have two distinct roots r_1 and r_2 . The sequence a_0, a_1, a_2, \ldots is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ iff for constants α_1 and α_2 , we have

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

- We used this claim to solve these special recurrences.
- We did not prove the claim. (see Theorem 1 Section 8.2 [KR])
- Check out where the theorem does not hold for the single roots case.

$$a_n = 4a_{n-1} - 4a_{n-2}$$

 $a_0 = 1; a_1 = 3$

- The characteristic equation is $t^2 4t + 4 = 0$ with a single root r = 2.
- Observe that 1,2,2²,2³,..., is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.
- We observe that 0, 2, 8, 24, 64, ..., is also a sequence that satisfies the recurrence, again not the base cases.
 In fact the above sequence is 0 · 2⁰, 1 · 2¹, 2 · 2², ..., i · 2ⁱ, ...,
- Now that we have two sequences 2ⁿ and n · 2ⁿ satisfying the recurrence relation (without base cases), we use our earlier idea.
 That is, α₁2ⁿ + α₂n · 2ⁿ satisfies the recurrence.
- Finally we use base cases to determine, $\alpha_1=1$ and $\alpha_2=\frac{1}{2}.$

Qn: Does it hold in general?

Single Roots case

Claim: Let c_1 and c_2 be constants and the equation $t^2-c_1t-c_2=0$ have single root r. The sequence a_0,a_1,a_2,\ldots is a solution to the recurrence relation $a_n=c_1a_{n-1}+c_2a_{n-2}$ iff for constants α_1 and α_2 , we have

$$a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot n \cdot r^n$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_1 and α_2 be constants.

To prove: The sequence given by $a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot n \cdot r^n$ satisfies the recurrence $a_n = c_1 a_{n-1} + c_2 a_{n-2}$.

Since r is a root of $t^2 - c_1t - c_2 = 0$, we have $r^2 = c_1r + c_2$. Consider

$$c_{1}a_{n-1} + c_{2}a_{n-2} = c_{1}\left(\alpha_{1}r^{n-1} + \alpha_{2}(n-1)r^{n-1}\right) + c_{2}\left(\alpha_{1}r^{n-2} + \alpha_{2}(n-2)r^{n-2}\right)$$

$$= \alpha_{1}\left(c_{1}r^{n-1} + c_{2}r^{n-2}\right) + \alpha_{2}\left(c_{1}(n-1)r^{n-1} + c_{2}(n-2)r^{n-2}\right)$$

$$= \alpha_{1}r^{n-2}\left(c_{1}r + c_{2}\right) + \alpha_{2}r^{n-2}\left(c_{1}r(n-1) + c_{2}(n-2)\right)$$

$$= \alpha_{1}r^{n-2}\left(c_{1}r + c_{2}\right) + \alpha_{2}r^{n-2}\left(c_{1}rn + c_{2}n - (c_{1}r + 2c_{2})\right)$$

Single Roots case

Claim: Let c_1 and c_2 be constants and the equation $t^2 - c_1 t - c_2 = 0$ have single root r. The sequence a_0, a_1, a_2, \ldots is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ iff for constants α_1 and α_2 , we have

$$a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot n \cdot r^n$$

Proof (Part 1 continued): Consider

$$c_{1}a_{n-1} + c_{2}a_{n-2} = c_{1}\left(\alpha_{1}r^{n-1} + \alpha_{2}(n-1)r^{n-1}\right) + c_{2}\left(\alpha_{1}r^{n-2} + \alpha_{2}(n-2)r^{n-2}\right)$$

$$= \alpha_{1}r^{n-2}\left(c_{1}r + c_{2}\right) + \alpha_{2}r^{n-2}\left(c_{1}rn + c_{2}n - (c_{1}r + 2c_{2})\right)$$

$$= \alpha_{1}r^{n-2}\left(c_{1}r + c_{2}\right) + \alpha_{2}r^{n-2}\left(c_{1}rn + c_{2}n\right)$$

$$= \alpha_{1}r^{n-2} \cdot r^{2} + \alpha_{2}r^{n-2} \cdot n \cdot r^{2} = \alpha_{1}r^{n} + \alpha_{2} \cdot n \cdot r^{n} = a_{2}$$

Hence proved

Recall we are in the single roots case. Therefore,

$$c_1^2 + 4 \cdot c_2 = 0$$
 and $r = \frac{c_1}{2}$

Use the fact that we are in the single roots case to show $c_1r + 2c_2 = 0$.

Single Roots case

Claim: Let c_1 and c_2 be constants and the equation $t^2 - c_1 t - c_2 = 0$ have single root r. The sequence a_0, a_1, a_2, \ldots is a solution to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ iff for constants α_1 and α_2 , we have

$$a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot r \cdot r^n$$

Proof (Part 2): We now prove that for every solution a_0, a_1, \ldots to the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ with base cases as $a_0 = x$ and $a_1 = y$, there exists constants α_1 and α_2 such that $a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot n \cdot r^n$.

Using the base cases, we note that

$$x = \alpha_1 r^0 + \alpha_2 \cdot 0 \cdot r^0 \implies \alpha_1 = x$$

$$y = \alpha_1 r^1 + \alpha_2 \cdot 1 \cdot r^1 \implies \alpha_2 = \frac{y - x \cdot r}{r}$$

Clearly, for this choice of constants $\alpha_1 r^n + \alpha_2 n r^n$ satisfies the base cases.

Now, we note that a_0, a_1, a_2, \ldots is a solution to the recurrence (by assumption). Further, note that for a linear homogeneous recurrence relation of degree two with two base cases, has a unique solution.

We have already shown (in Part 1) that for some constants α_1 and α_2 the formula $\alpha_1 r^n + \alpha_2 n r^n$ satisfies the recurrence. Thus, the two sequences are the same and hence $a_n = c_1 a_{n-1} + c_2 a_{n-2} = \alpha_1 r^n + \alpha_2 n r^n$ for all $n \ge 0$.

Ex: Consider the following finite recursive sequence containing M+1 terms.

$$a_n = 2a_{n-1} - a_{n-2}$$

 $a_0 = 1; a_M = 0$

- Note that the two values given are first and the last terms.
- Can you compute a closed form expression for the *n*-th term where $0 \le n \le M$?

Beyond Degree Two

Two natural questions

- What if degree is more than 2?
- What if multiple roots of different multiplicities?

Claim: Let c_1, c_2, \ldots, c_k be constants. Suppose the characteristic equation $t^k - c_1 t^{k-1} - \ldots c_k = 0$ has k distinct roots, namely r_1, r_2, \ldots, r_k . Then the sequence a_0, a_1, a_2, \ldots is a solution to the recurrence

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

iff for n = 0, 1, 2, we have the following, where α_i s are constants.

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \ldots + \alpha_k r_k^n$$

We show the claim applied to an example.

$$a_n = 4a_{n-2} + 4a_{n-3} - a_{n-1}$$

 $a_0 = 8$ $a_1 = 6$ $a_2 = 26$

Ex: Apply the above claim and get the closed form expression.

Sol:

- Characteristic equation is: $t^3 + t^2 4t 4 = 0$.
- Roots are $r_1 = -1, r_2 = -2, r_3 = 2$.
- Thus, $a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3(2)^n$.
- Use bases cases to get $\alpha_1 = 2$, $\alpha_2 = 1$ and $\alpha_3 = 5$.

Beyond Degree Two with repeated roots

Claim: Let c_1, c_2, \ldots, c_k be constants. Suppose the characteristic equation $t^k - c_1 t^{k-1} - \ldots - c_k = 0$ has ℓ distinct roots r_1, r_2, \ldots, r_ℓ with multiplicities m_1, m_2, \ldots, m_ℓ respectively. Then the sequence a_0, a_1, a_2, \ldots is a solution to the recurrence

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

iff for n = 0, 1, 2, we have the following, where $\alpha_{i,j}$ are constants.

$$a_{n} = (\alpha_{1,0} + \alpha_{1,1} \cdot n + \dots + \alpha_{1,m_{1}-1} n^{m_{1}-1}) \cdot r_{1}^{n} + (\alpha_{2,0} + \alpha_{2,1} \cdot n + \dots + \alpha_{2,m_{2}-1} n^{m_{2}-1}) \cdot r_{2}^{n} + \dots + (\alpha_{\ell,0} + \alpha_{\ell,1} \cdot n + \dots + \alpha_{\ell,m_{\ell}-1} n^{m_{\ell}-1}) \cdot r_{\ell}^{n}$$

- Note how the degree two repeated case is a special case of the above.
- Next, we show the claim applied to an example.

$$a_n = 8a_{n-2} - 16a_{n-4}$$
 for $n \ge 4$
 $a_0 = 1$ $a_1 = 4$ $a_2 = 28$ $a_3 = 32$

Ex: Apply the above claim and get the closed form expression.

Sol:

- Characteristic equation is: $t^4 8t^2 + 16 = 0$.
- Roots are $r_1 = 2$ with $m_1 = 2$ and $r_2 = -2$ with $m_2 = 2$.
- Thus, $a_n = \alpha_1(2)^n + \alpha_2 n(2)^n + \alpha_3 (-2)^n + \alpha_4 n(-2)^n$.
- Use bases cases to get $\alpha_1=1$, $\alpha_2=2$ and $\alpha_3=0$ and $\alpha_4=1$.

Summary

- Linear Homogeneous Recurrence Relations with constant coefficients.
- Degree two with repeated roots.
- Beyond Degree two and with repeated roots.
- Upcoming: Non-homogeneous case and use of Generating Functions.
- References: Section 8.2 [KR]