Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 14, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion \checkmark
- Recurrences and its applications \checkmark
- Solving Recurrences

Recap: Solving recurrences

We have seen

- Method of Repeated Substitution.
- Linear Homogeneous recurrence relations of degree two with constant coefficients.
- Use of characteristic equation to solve these recurrences.

Recap: Solving recurrences

We have seen

- Method of Repeated Substitution.
- Linear Homogeneous recurrence relations of degree two with constant coefficients.
- Use of characteristic equation to solve these recurrences.

Today:

- What if roots are not distinct?
- How does this generalize beyond degree two?
- Beyond degree two with repeated roots.

Revisiting Distinct Roots case

Revisiting Distinct Roots case

Claim: Let c_{1} and c_{2} be constants and let the equation $t^{2}-c_{1} t-c_{2}=0$ have two distinct roots r_{1} and r_{2}. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

Revisiting Distinct Roots case

Claim: Let c_{1} and c_{2} be constants and let the equation $t^{2}-c_{1} t-c_{2}=0$ have two distinct roots r_{1} and r_{2}. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

- We used this claim to solve these special recurrences.
- We did not prove the claim.

Revisiting Distinct Roots case

Claim: Let c_{1} and c_{2} be constants and let the equation $t^{2}-c_{1} t-c_{2}=0$ have two distinct roots r_{1} and r_{2}. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

- We used this claim to solve these special recurrences.
- We did not prove the claim. (see Theorem 1 Section $8.2[K R]$)

Revisiting Distinct Roots case

Claim: Let c_{1} and c_{2} be constants and let the equation $t^{2}-c_{1} t-c_{2}=0$ have two distinct roots r_{1} and r_{2}. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

- We used this claim to solve these special recurrences.
- We did not prove the claim. (see Theorem 1 Section 8.2 [KR])
- Check out where the theorem does not hold for the single roots case.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence,

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.
- We observe that $0,2,8,24,64, \ldots$, is also a sequence that satisfies the recurrence, again not the base cases.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.
- We observe that $0,2,8,24,64, \ldots$, is also a sequence that satisfies the recurrence, again not the base cases.
In fact the above sequence is $0 \cdot 2^{0}, 1 \cdot 2^{1}, 2 \cdot 2^{2}, \ldots, i \cdot 2^{i}, \ldots$,

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.
- We observe that $0,2,8,24,64, \ldots$, is also a sequence that satisfies the recurrence, again not the base cases.
In fact the above sequence is $0 \cdot 2^{0}, 1 \cdot 2^{1}, 2 \cdot 2^{2}, \ldots, i \cdot 2^{i}, \ldots$,
- Now that we have two sequences 2^{n} and $n \cdot 2^{n}$ satisfying the recurrence relation (without base cases), we use our earlier idea.
That is, $\alpha_{1} 2^{n}+\alpha_{2} n \cdot 2^{n}$ satisfies the recurrence.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.
- We observe that $0,2,8,24,64, \ldots$, is also a sequence that satisfies the recurrence, again not the base cases.
In fact the above sequence is $0 \cdot 2^{0}, 1 \cdot 2^{1}, 2 \cdot 2^{2}, \ldots, i \cdot 2^{i}, \ldots$,
- Now that we have two sequences 2^{n} and $n \cdot 2^{n}$ satisfying the recurrence relation (without base cases), we use our earlier idea. That is, $\alpha_{1} 2^{n}+\alpha_{2} n \cdot 2^{n}$ satisfies the recurrence.
- Finally we use base cases to determine, $\alpha_{1}=1$ and $\alpha_{2}=\frac{1}{2}$.

Example 1

$$
\begin{aligned}
& a_{n}=4 a_{n-1}-4 a_{n-2} \\
& a_{0}=1 ; \quad a_{1}=3
\end{aligned}
$$

- The characteristic equation is $t^{2}-4 t+4=0$ with a single root $r=2$.
- Observe that $1,2,2^{2}, 2^{3}, \ldots$, is a sequence that satisfies the recurrence, but not the base cases.
- However, we need one more solution (even if it does not satisfy the base cases) to obtain the final solution.
- We observe that $0,2,8,24,64, \ldots$, is also a sequence that satisfies the recurrence, again not the base cases.
In fact the above sequence is $0 \cdot 2^{0}, 1 \cdot 2^{1}, 2 \cdot 2^{2}, \ldots, i \cdot 2^{i}, \ldots$,
- Now that we have two sequences 2^{n} and $n \cdot 2^{n}$ satisfying the recurrence relation (without base cases), we use our earlier idea. That is, $\alpha_{1} 2^{n}+\alpha_{2} n \cdot 2^{n}$ satisfies the recurrence.
- Finally we use base cases to determine, $\alpha_{1}=1$ and $\alpha_{2}=\frac{1}{2}$.

Qn: Does it hold in general?

Single Roots case

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.
Since r is a root of $t^{2}-c_{1} t-c_{2}=0$, we have $r^{2}=c_{1} r+c_{2}$.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.
Since r is a root of $t^{2}-c_{1} t-c_{2}=0$, we have $r^{2}=c_{1} r+c_{2}$. Consider
$c_{1} a_{n-1}+c_{2} a_{n-2}$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.
Since r is a root of $t^{2}-c_{1} t-c_{2}=0$, we have $r^{2}=c_{1} r+c_{2}$. Consider
$c_{1} a_{n-1}+c_{2} a_{n-2}=c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right)$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.
Since r is a root of $t^{2}-c_{1} t-c_{2}=0$, we have $r^{2}=c_{1} r+c_{2}$. Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& =\alpha_{1}\left(c_{1} r^{n-1}+c_{2} r^{n-2}\right)+\alpha_{2}\left(c_{1}(n-1) r^{n-1}+c_{2}(n-2) r^{n-2}\right)
\end{aligned}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.
Since r is a root of $t^{2}-c_{1} t-c_{2}=0$, we have $r^{2}=c_{1} r+c_{2}$. Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& =\alpha_{1}\left(c_{1} r^{n-1}+c_{2} r^{n-2}\right)+\alpha_{2}\left(c_{1}(n-1) r^{n-1}+c_{2}(n-2) r^{n-2}\right) \\
& =\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r(n-1)+c_{2}(n-2)\right)
\end{aligned}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1): Assume r is a single root of the characteristic equation. Let α_{1} and α_{2} be constants.
To prove: The sequence given by $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$.
Since r is a root of $t^{2}-c_{1} t-c_{2}=0$, we have $r^{2}=c_{1} r+c_{2}$. Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& =\alpha_{1}\left(c_{1} r^{n-1}+c_{2} r^{n-2}\right)+\alpha_{2}\left(c_{1}(n-1) r^{n-1}+c_{2}(n-2) r^{n-2}\right) \\
& =\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r(n-1)+c_{2}(n-2)\right) \\
& \left.=\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n-\left(c_{1} r+2 c_{2}\right)\right)\right)
\end{aligned}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1 continued): Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& \left.=\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n-\left(c_{1} r+2 c_{2}\right)\right)\right)
\end{aligned}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1 continued): Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& \left.=\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n-\left(c_{1} r+2 c_{2}\right)\right)\right)
\end{aligned}
$$

Recall we are in the single roots case. Therefore,

$$
c_{1}^{2}+4 \cdot c_{2}=0 \quad \text { and } \quad r=\frac{c_{1}}{2}
$$

Use the fact that we are in the single roots case to show $c_{1} r_{-}+2 c_{2}=0$.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1 continued): Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& \left.=\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n-\left(c_{1} r+2 c_{2}\right)\right)\right) \\
& =\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n\right)
\end{aligned}
$$

Recall we are in the single roots case. Therefore,

$$
c_{1}^{2}+4 \cdot c_{2}=0 \quad \text { and } \quad r=\frac{c_{1}}{2}
$$

Use the fact that we are in the single roots case to show $c_{1} r_{-}+2 c_{2}=0$.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1 continued): Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& \left.=\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n-\left(c_{1} r+2 c_{2}\right)\right)\right) \\
& =\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n\right) \\
& =\alpha_{1} r^{n-2} \cdot r^{2}+\alpha_{2} r^{n-2} \cdot n \cdot r^{2}=\alpha_{1} r^{n}+\alpha_{2} \cdot n \cdot r^{n}=a_{n}
\end{aligned}
$$

Recall we are in the single roots case. Therefore,

$$
c_{1}^{2}+4 \cdot c_{2}=0 \quad \text { and } \quad r=\frac{c_{1}}{2}
$$

Use the fact that we are in the single roots case to show $c_{1} r_{5}+2 c_{2}=0$.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 1 continued): Consider

$$
\begin{aligned}
c_{1} a_{n-1}+c_{2} a_{n-2} & =c_{1}\left(\alpha_{1} r^{n-1}+\alpha_{2}(n-1) r^{n-1}\right)+c_{2}\left(\alpha_{1} r^{n-2}+\alpha_{2}(n-2) r^{n-2}\right) \\
& \left.=\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n-\left(c_{1} r+2 c_{2}\right)\right)\right) \\
& =\alpha_{1} r^{n-2}\left(c_{1} r+c_{2}\right)+\alpha_{2} r^{n-2}\left(c_{1} r n+c_{2} n\right) \\
& =\alpha_{1} r^{n-2} \cdot r^{2}+\alpha_{2} r^{n-2} \cdot n \cdot r^{2}=\alpha_{1} r^{n}+\alpha_{2} \cdot n \cdot r^{n}=a_{n}
\end{aligned}
$$

Hence proved

Recall we are in the single roots case. Therefore,

$$
c_{1}^{2}+4 \cdot c_{2}=0 \quad \text { and } \quad r=\frac{c_{1}}{2}
$$

Use the fact that we are in the single roots case to show $c_{1} r_{5}+2 c_{2}=0$.

Single Roots case

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
x=\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
x=\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0} \Longrightarrow \alpha_{1}=x
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
\begin{aligned}
x & =\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0} \Longrightarrow \alpha_{1}=x \\
y & =\alpha_{1} r^{1}+\alpha_{2} \cdot 1 \cdot r^{1}
\end{aligned}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
\begin{aligned}
& x=\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0} \Longrightarrow \alpha_{1}=x \\
& y=\alpha_{1} r^{1}+\alpha_{2} \cdot 1 \cdot r^{1} \Longrightarrow \alpha_{2}=\frac{y-x \cdot r}{r}
\end{aligned}
$$

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
\begin{aligned}
& x=\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0} \Longrightarrow \alpha_{1}=x \\
& y=\alpha_{1} r^{1}+\alpha_{2} \cdot 1 \cdot r^{1} \Longrightarrow \alpha_{2}=\frac{y-x \cdot r}{r}
\end{aligned}
$$

Clearly, for this choice of constants $\alpha_{1} r^{n}+\alpha_{2} n r^{n}$ satisfies the base cases.

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
\begin{aligned}
& x=\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0} \Longrightarrow \alpha_{1}=x \\
& y=\alpha_{1} r^{1}+\alpha_{2} \cdot 1 \cdot r^{1} \Longrightarrow \alpha_{2}=\frac{y-x \cdot r}{r}
\end{aligned}
$$

Clearly, for this choice of constants $\alpha_{1} r^{n}+\alpha_{2} n r^{n}$ satisfies the base cases.
Now, we note that $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence (by assumption).

Single Roots case

Claim: Let c_{1} and c_{2} be constants and the equation $t^{2}-c_{1} t-c_{2}=0$ have single root r. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ iff for constants α_{1} and α_{2}, we have

$$
a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}
$$

Proof (Part 2): We now prove that for every solution a_{0}, a_{1}, \ldots to the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ with base cases as $a_{0}=x$ and $a_{1}=y$, there exists constants α_{1} and α_{2} such that $a_{n}=\alpha_{1} \cdot r^{n}+\alpha_{2} \cdot n \cdot r^{n}$.
Using the base cases, we note that

$$
\begin{aligned}
& x=\alpha_{1} r^{0}+\alpha_{2} \cdot 0 \cdot r^{0} \Longrightarrow \alpha_{1}=x \\
& y=\alpha_{1} r^{1}+\alpha_{2} \cdot 1 \cdot r^{1} \Longrightarrow \alpha_{2}=\frac{y-x \cdot r}{r}
\end{aligned}
$$

Clearly, for this choice of constants $\alpha_{1} r^{n}+\alpha_{2} n r^{n}$ satisfies the base cases.
Now, we note that $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence (by assumption). Further, note that for a linear homogeneous recurrence relation of degree two with two base cases, has a unique solution.
We have already shown (in Part 1) that for some constants α_{1} and α_{2} the formula $\alpha_{1} r^{n}+\alpha_{2} n r^{n}$ satisfies the recurrence. Thus, the two sequences are the same and hence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}=\alpha_{1} r^{n}+\alpha_{2} n r^{n}$ for alb $n \geq 0$.

Example 2

Ex: Consider the following finite recursive sequence containing $M+1$ terms.

$$
\begin{aligned}
a_{n} & =2 a_{n-1}-a_{n-2} \\
a_{0} & =1 ; \quad a_{M}=0
\end{aligned}
$$

Example 2

Ex: Consider the following finite recursive sequence containing $M+1$ terms.

$$
\begin{aligned}
a_{n} & =2 a_{n-1}-a_{n-2} \\
a_{0} & =1 ; \quad a_{M}=0
\end{aligned}
$$

- Note that the two values given are first and the last terms.
- Can you compute a closed form expression for the n-th term where $0 \leq n \leq M$?

Beyond Degree Two

Two natural questions

Beyond Degree Two

Two natural questions

- What if degree is more than 2 ?

Beyond Degree Two

Two natural questions

- What if degree is more than 2 ?
- What if multiple roots of different multiplicities?

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots c_{k}=0$ has k distinct roots, namely $r_{1}, r_{2}, \ldots, r_{k}$.

Beyond Degree Two

Two natural questions

- What if degree is more than 2 ?
- What if multiple roots of different multiplicities?

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots c_{k}=0$ has k distinct roots, namely $r_{1}, r_{2}, \ldots, r_{k}$. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Beyond Degree Two

Two natural questions

- What if degree is more than 2 ?
- What if multiple roots of different multiplicities?

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots c_{k}=0$ has k distinct roots, namely $r_{1}, r_{2}, \ldots, r_{k}$. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

iff for $n=0,1,2$, we have the following, where α_{i} s are constants.

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}
$$

Beyond Degree Two

Two natural questions

- What if degree is more than 2 ?
- What if multiple roots of different multiplicities?

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots c_{k}=0$ has k distinct roots, namely $r_{1}, r_{2}, \ldots, r_{k}$. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

iff for $n=0,1,2$, we have the following, where α_{i} s are constants.

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}
$$

We show the claim applied to an example.

Example 3

$$
\begin{aligned}
& a_{n}=4 a_{n-2}+4 a_{n-3}-a_{n-1} \\
& a_{0}=8 \quad a_{1}=6 \quad a_{2}=26
\end{aligned}
$$

Ex: Apply the above claim and get the closed form expression.

Example 3

$$
\begin{aligned}
& a_{n}=4 a_{n-2}+4 a_{n-3}-a_{n-1} \\
& a_{0}=8 \quad a_{1}=6 \quad a_{2}=26
\end{aligned}
$$

Ex: Apply the above claim and get the closed form expression.
Sol:

- Characteristic equation is: $t^{3}+t^{2}-4 t-4=0$.
- Roots are $r_{1}=-1, r_{2}=-2, r_{3}=2$.
- Thus, $a_{n}=\alpha_{1}(-1)^{n}+\alpha_{2}(-2)^{n}+\alpha_{3}(2)^{n}$.

Example 3

$$
\begin{aligned}
& a_{n}=4 a_{n-2}+4 a_{n-3}-a_{n-1} \\
& a_{0}=8 \quad a_{1}=6 \quad a_{2}=26
\end{aligned}
$$

Ex: Apply the above claim and get the closed form expression.
Sol:

- Characteristic equation is: $t^{3}+t^{2}-4 t-4=0$.
- Roots are $r_{1}=-1, r_{2}=-2, r_{3}=2$.
- Thus, $a_{n}=\alpha_{1}(-1)^{n}+\alpha_{2}(-2)^{n}+\alpha_{3}(2)^{n}$.
- Use bases cases to get $\alpha_{1}=2, \alpha_{2}=1$ and $\alpha_{3}=5$.

Beyond Degree Two with repeated roots

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots-c_{k}=0$ has ℓ distinct roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$ respectively.

Beyond Degree Two with repeated roots

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots-c_{k}=0$ has ℓ distinct roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$ respectively. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

Beyond Degree Two with repeated roots

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots-c_{k}=0$ has ℓ distinct roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$ respectively. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

iff for $n=0,1,2$, we have the following, where $\alpha_{i, j}$ are constants.

$$
a_{n}=\quad\left(\alpha_{1,0}+\alpha_{1,1} \cdot n+\ldots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) \cdot r_{1}^{n}
$$

Beyond Degree Two with repeated roots

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots-c_{k}=0$ has ℓ distinct roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$ respectively. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

iff for $n=0,1,2$, we have the following, where $\alpha_{i, j}$ are constants.

$$
\begin{aligned}
a_{n}=\quad & \left(\alpha_{1,0}+\alpha_{1,1} \cdot n+\ldots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) \cdot r_{1}^{n} \\
+\quad & \left(\alpha_{2,0}+\alpha_{2,1} \cdot n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) \cdot r_{2}^{n}
\end{aligned}
$$

Beyond Degree Two with repeated roots

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots-c_{k}=0$ has ℓ distinct roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$ respectively. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

iff for $n=0,1,2$, we have the following, where $\alpha_{i, j}$ are constants.

$$
\begin{aligned}
a_{n}=\quad & \\
& +\quad\left(\alpha_{1,0}+\alpha_{1,1} \cdot n+\ldots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) \cdot r_{1}^{n} \\
& \left(\alpha_{2,0}+\alpha_{2,1} \cdot n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) \cdot r_{2}^{n} \\
+\ldots+ & \left(\alpha_{\ell, 0}+\alpha_{\ell, 1} \cdot n+\ldots+\alpha_{\ell, m_{\ell}-1} n^{m_{\ell}-1}\right) \cdot r_{n}^{\ell}
\end{aligned}
$$

Beyond Degree Two with repeated roots

Claim: Let $c_{1}, c_{2}, \ldots, c_{k}$ be constants. Suppose the characteristic equation $t^{k}-c_{1} t^{k-1}-\ldots-c_{k}=0$ has ℓ distinct roots $r_{1}, r_{2}, \ldots, r_{\ell}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{\ell}$ respectively. Then the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is a solution to the recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

iff for $n=0,1,2$, we have the following, where $\alpha_{i, j}$ are constants.

$$
\begin{aligned}
a_{n}=\quad & \left(\alpha_{1,0}+\alpha_{1,1} \cdot n+\ldots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) \cdot r_{1}^{n} \\
& +\quad\left(\alpha_{2,0}+\alpha_{2,1} \cdot n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) \cdot r_{2}^{n} \\
+\ldots+ & \left(\alpha_{\ell, 0}+\alpha_{\ell, 1} \cdot n+\ldots+\alpha_{\ell, m_{\ell}-1} n^{m_{\ell}-1}\right) \cdot r_{n}^{\ell}
\end{aligned}
$$

- Note how the degree two repeated case is a special case of the above.
- Next, we show the claim applied to an example.

Example 4

$$
\begin{aligned}
& a_{n}=8 a_{n-2}-16 a_{n-4} \quad \text { for } n \geq 4 \\
& a_{0}=1 \quad a_{1}=4 \quad a_{2}=28 \quad a_{3}=32
\end{aligned}
$$

Ex: Apply the above claim and get the closed form expression.

Example 4

$$
\begin{aligned}
& a_{n}=8 a_{n-2}-16 a_{n-4} \quad \text { for } n \geq 4 \\
& a_{0}=1 \quad a_{1}=4 \quad a_{2}=28 \quad a_{3}=32
\end{aligned}
$$

Ex: Apply the above claim and get the closed form expression.
Sol:

- Characteristic equation is: $t^{4}-8 t^{2}+16=0$.
- Roots are $r_{1}=2$ with $m_{1}=2$ and $r_{2}=-2$ with $m_{2}=2$.
- Thus, $a_{n}=\alpha_{1}(2)^{n}+\alpha_{2} n(2)^{n}+\alpha_{3}(-2)^{n}+\alpha_{4} n(-2)^{n}$.

Example 4

$$
\begin{aligned}
& a_{n}=8 a_{n-2}-16 a_{n-4} \quad \text { for } n \geq 4 \\
& a_{0}=1 \quad a_{1}=4 \quad a_{2}=28 \quad a_{3}=32
\end{aligned}
$$

Ex: Apply the above claim and get the closed form expression.
Sol:

- Characteristic equation is: $t^{4}-8 t^{2}+16=0$.
- Roots are $r_{1}=2$ with $m_{1}=2$ and $r_{2}=-2$ with $m_{2}=2$.
- Thus, $a_{n}=\alpha_{1}(2)^{n}+\alpha_{2} n(2)^{n}+\alpha_{3}(-2)^{n}+\alpha_{4} n(-2)^{n}$.
- Use bases cases to get $\alpha_{1}=1, \alpha_{2}=2$ and $\alpha_{3}=0$ and $\alpha_{4}=1$.

Summary

- Linear Homogeneous Recurrence Relations with constant coefficients.

Summary

- Linear Homogeneous Recurrence Relations with constant coefficients.
- Degree two with repeated roots.

Summary

- Linear Homogeneous Recurrence Relations with constant coefficients.
- Degree two with repeated roots.
- Beyond Degree two and with repeated roots.

Summary

- Linear Homogeneous Recurrence Relations with constant coefficients.
- Degree two with repeated roots.
- Beyond Degree two and with repeated roots.
- Upcoming: Non-homogeneous case and use of Generating Functions.

Summary

- Linear Homogeneous Recurrence Relations with constant coefficients.
- Degree two with repeated roots.
- Beyond Degree two and with repeated roots.
- Upcoming: Non-homogeneous case and use of Generating Functions.
- References: Section 8.2 [KR]

