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Advanced Counting Techniques

e Principle of Inclusion-Exclusion v/
e Recurrences and its applications v/

e Solving Recurrences
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Recap: Solving recurrences

We have seen
e Method of Repeated Substitution.
e Linear Homogeneous recurrence relations with constant coefficients.

e Use of characteristic equation to solve these recurrences.

Today:
e Non-homogeneous case.

e Comparing functions (a short detour).
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Example 1

ahn=3-n-2"—a,1

e This is a non-homogeneous linear recurrence with constant coefficients.
The presence of the term F(n) = 3 - n- 2" makes it non-homogeneous.

e The recurrence a, = —a,—1 is the “associated homogeneous recurrence”.
We know the general form for the solution : call this solution {ag,h)}.
For the example it is a1 - (—1)".

e Suppose there is a solution to the non-homogeneous recurrence
that we somehow guess!, lets call it {aE,P)}. Note that this may still not
satisfy base cases.
In the example, the formula (2n + %) - 2" satisfies the given recurrence.

Then the solution to the given recurrence is of the form
{an} = {3} +{a}

= <2n+ %) 22"+ ag(—1)"

If base case is a1 = 1 we get oy = % Check out the formula works!
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Example 1 continued

an=3-n-2"—a,_1

e This is a non-homogeneous linear recurrence with constant coefficients.
The presence of the term F(n) = 3 - n- 2" makes it non-homogeneous.

e The recurrence a, = —a,—1 is the “associated homogeneous recurrence”.
We know the general form for the solution : call this solution {aS,h)}.
For the example it is a1 - (—1)".

e Suppose there is a solution to the non-homogeneous recurrence
that we somehow guess!, lets call it {al”’}. Note that this may still not
satisfy base cases.
In the example, the formula (2n + %) - 2" satisfies the given recurrence.

Some unanswered questions:
e Why can we add the two solutions? That is, why is {a,} = {ag,p)} + {as,h)}?
e How did we guess (2n+ ) -2"?
e Does it depend on the function F(n)?
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Non-Homogeneous Case

Why can we add the two solutions? That is, why is {a,} = {af,p)} + {ag,h)}?

ap = C1ap-1+ Qag—2 + ... + ckan—k + F(n)

o Let {a”} be some (guessed!) solution to the recurrence (not necessarily
satisfying base cases).

o Let {bn} be another solution to the recurrence.

e The difference {b,} — {aE,p)} is a solution to the associated homogeneous

recurrence relation.
short justification: the term F(n) cancels out in the difference.

See Theorem 5 and its proof in Section 8.2[KR].
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Non-Homogeneous Case

ap = Clap—1+ Qan—2+ ...+ ckan—k + F(n)

e Let F(n) = q(n)-s" where g(n) is a polynomial of degree t and s is a
constant.
Note that this is a specific type of F(n) that we are dealing with.
e Solve the associated homogeneous part to get a general form.
Do not fix the constants ag, g, . . ..
Let r, r, ..., rx be the roots of the charac. equation for the homogeneous part.

Two possibilities

Case 2: s is one of the roots with
multiplicity m

Case 1: s is not one of the roots

Guess {aﬁ,")} = "
(Bo+ Bin+ ...+ Ben') 5" Guess {a)'} = t
(Bo+pBin+ ...+ Ben') -n"s"
Obtain the values for these fi, we Qptain the values for these i, we show
show next how. next how.
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Back to Example 1

an=3-n-2"—ap1
e The associated homogeneous recurrence a, = —a,—1 has a solution
n = —1.
e F(n)=3-n-2", thus, g(n) =3nand s = 2.
o Guess {2} = (Bo + fin) - 2"

Since {a,(qp)} is a “guess” for the recurrence, we substitute it in the given

recurrence.

an+an-1 = 3-n-2"
(Bo+ Bin) - 2"+ (Bo+ Bu(n—1))- 2"} = 3.n.2"
3 n 1 3 n n
§ﬂ1n2 + <—§ﬁ1+§ﬁo> 2" = 3.n-2
3 1 3
— 5/8]_ = 3 and <—§ﬂ1+§ﬂ0) :O
— ﬁl = 2 and BOZ%
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Example 2

an = ap—1+an—2+3n+1
ao = 2; a) = 3

e The associated homogeneous recurrence is familiar fibonacci sequence.
(h) 1+ \@ g 1-— \/g "
a,’ =m 5 + a2 5

e F(n)=3n+1=(3n+1)-1". Thus g(n) =(3n+1) and s = 1.
e Hence we fall in Case 1 and guess a,(,p) = (Bo + Bin) - 1".
(Bo+pin)-1" = (Bo+Buln—1))- 1"+ (o + fr(n—2)) - 1"* +3n+1
0 = @B+p)n+(Bo—36+1)
e This gives us fo = —10 and 8; = —3.
Thus,

a,=-3n—104+ a1 1+v5 + a2 1- V5
2 2
Use base cases to get a; = 6+ 2v/5 and ay = 6 — 25
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Example 3

an = 4ap_1—4an—2+(n+1)-2"

a = 2 a1 =3

The associated homogeneous recurrence is a, = 4a,_1 + 4a,—2 whose
characteristic equation has a single root r; = 2 of multiplicity 2.

a’ =a1-2"+az-n-2"

F(n)=(n+1)-2", thus g(n) =(n+1) and s = 2.
Hence we fall in Case 2 and guess AP = (Bo + Bin) - n*-2".

Substitute it in the recurrence to obtain 8o = 1 and 51 = .

Ex: Use base cases to compute a; and «a.
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Solving Recurrences: Summary

Repeated substitution method (applicable in general).

A special case of recurrence relations: Linear recurrences with constant
coefficients.
homogeneous and non-homogeneous cases.

For the non-homogeneous case: dealt with restricted case of F(n).

Other methods: Master method (to deal with recurrences in divide and
conquer algorithms), generating functions.

Reference : Section 8.2 [KR]
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