Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 17, 2020

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

Structured Sets

- Relational Structures
 - Properties and closures
 - Equivalence Relations
 - Partially Ordered Sets (Posets) and Lattices
- Algebraic Structures
 - Groups and Rings

A binary relation R on a set A is a subset of the Cartesian product $A \times A$.

Properties of Binary Relations

- Reflexive: If for every a ∈ A, (a, a) ∈ R.
 < on Z⁺, > on Z⁺.
- Symmetric: If $(a, b) \in R \rightarrow (b, a) \in R$, for all $a, b \in A$
 - = on Z^+
 - "is a cousin of" on the set of people.
- Antisymmetric: If $((a, b) \in R \text{ and } (b, a) \in R) \rightarrow a = b$, for all $a, b \in A$.
 - \leq on Z^+ , \geq on Z^+ .
- Transitive: If for all $a, b, c \in A$, $((a, b) \in R \text{ and } (b, c) \in R) \rightarrow (a, c) \in R$.
 - "is an ancestor of" on the set of people.

Recall representation of relation using matrices.

Let R be a relation on set A and let \mathcal{P} be some property. Think of \mathcal{P} as one of reflexive, transitive and so on

Note that R may or may not posses \mathcal{P} .

Closure w.r.t. \mathcal{P} : If there exists a relation *S* (on *A*) with the property \mathcal{P} containing *R* such that *S* is a subset of **every relation** with property \mathcal{P} **containing** *R*, then *S* is called the closure of *R* w.r.t. \mathcal{P} .

Note that:

- S must contain R.
- S may not exist. Ex: Think of a property for which this happens.

Example: \mathcal{P} is reflexivity.

$$A = \{1, 2, 3\} \qquad R = \{(1, 1), (1, 2), (1, 3)\}.$$

- Clearly R is not reflexive.
- $S_1 = \{(1,1), (2,2), (3,3), (1,3)\}$ is not a closure $(S_1 \text{ does not contain } R)$.
- $S_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3)\}$ is a closure of R.
- $S_3 = \{(1,1), (2,2), (3,3), (1,2), (1,3), (3,1)\}$ is not a closure.

(S_3 is not a subset of S_2 which satisfies reflexivity and contains R.)

Let *R* be a relation on set *A* and let \mathcal{P} be some property.

<u>Closure w.r.t.</u> \mathcal{P} : If there exists a relation *S* (on *A*) with the property \mathcal{P} such that *S* is a subset of **every relation** with property \mathcal{P} **containing** *R*, then *S* is called the closure of *R* w.r.t. \mathcal{P} .

Reflexive closure: Add to R all the "diagonal elements". That is,

$$S = R \cup \{(a, a) \mid a \in A\}$$

Symmetric closure: Add to R the "inverse relation". That is,

$$S = R \cup \{(b, a) \mid (a, b) \in R\}$$

- Make sure that in both cases it is indeed the closure.
- What about transitive closure? coming up.

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

Matrix Representation: Entry [a, b] = 1 iff $(a, b) \in R$.

	Х	У	Ζ	W
x	/0	1	0	0\
y	0	0	1	0
z	0	0	0	1
w	/0	0	0	0/

Graph Representation:

A node / vertex for every element $a \in A$. An edge from a to b iff $(a, b) \in R$.

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

Graph Representation:

A node / vertex for every element $a \in A$. An edge from a to b iff $(a, b) \in R$.

Path in a graph: Sequence of edges $(x_0, x_1), (x_1, x_2), \ldots, (x_{k-1}, x_k)$

Here k is the number of edges in the path, which is equal to the length of the path.

Recall Goal: To compute transitive closure.

Transitive Closure: First attempt

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

Algo-1:

- If R is transitive, we are done, return S = R.
- Else S = R and for every a, b, c ∈ A, if (a, b) and (b, c) belong to R then add (a, c) to S.

In our example, it implies $S = R \cup \{(x, z), (y, w)\}$.

However S is not transitive! (x, z) and (z, w) is present but (x, w) is absent!

Apply Algo-1 on S? Does it give a transitive relation? How long do we do this?

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

Algo-1:

- If R is transitive, we are done, return S = R.
- Else S = R and for every a, b, $c \in A$, if (a, b) and (b, c) belong to R then add (a, c) to S.

The above is equivalent to $S = R \cup R^2$.

		X	У	Ζ	W			X	У	Ζ	W
$M^2 =$	x	/0	0	1	0\	Х		/0	1	1	0\
	у	0	0	0	1	$M \vee M^2 - Y$	· (0	0	1	1
	z	0	0	0	0	<i>™ ∨ ™ =</i> Z		0	0	0	1
	W	\o	0	0	0/	и	, \	0	0	0	0/

- We know S is not transitive.
- What does M² represent in terms of paths? What does M ∨ M² represent?
 R² is the set of pairs (a, b) such that (a, c) ∈ R and (c, b) ∈ R, equivalently, there is a two length path from a to b in the graph.

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

- R^2 is the set of pairs (a, b) such that $(a, c) \in R$ and $(c, b) \in R$.
- R^3 is the set of pairs (a, b) such that $(a, c) \in R$ and $(c, d) \in R$ and $(d, b) \in R$. Note that we do not claim that a, b, c, d are distinct!
- R^n is the set of pairs (a, b) such that there exists x_1, \ldots, x_{n-1} where $(a, x_1) \in R$ and $(x_2, x_2) \in R$ and \ldots and $(x_{n-1}, b) \in R$.

$$R^* = R \cup R^2 \cup \ldots \cup R^n$$

Thus R^* denotes pairs (a, b) such that either

- there is a direct path from a to b, or
- there is a path from a to c and then c to b, or, ...
- there is a path from a to x_1 and x_1 to x_2 and $\ldots x_{n-1}$ to b.

This captures only n length paths. What if there are longer paths?

Claim: Let A be a set on n elements and R be a relation on A. If the graph contains a path of length at least one from a to b then there is also a path of length at most n from a to b.

Proof Sketch: If there is "long" path exceeding n edges from a to b, consider the shortest path from a to b.

If the shortest path contains at most n edges, we are done, else we will show a "shorter path" than the shortest path.

By pigeon hole principle, there will a vertex that repeats itself on the shortest path, thus creating a loop.

We can "short circuit" the loop and create a shorter path, a contradiction.

We can therefore consider only paths of length at most n.

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

- R^2 is the set of pairs (a, b) such that $(a, c) \in R$ and $(c, b) \in R$.
- R^3 is the set of pairs (a, b) such that $(a, c) \in R$ and $(c, d) \in R$ and $(d, b) \in R$. Note that we do not claim that a, b, c, d are distinct!
- R^n is the set of pairs (a, b) such that there exists x_1, \ldots, x_{n-1} where $(a, x_1) \in R$ and $(x_2, x_2) \in R$ and \ldots and $(x_{n-1}, b) \in R$.

$$R^* = R \cup R^2 \cup \ldots \cup R^n$$

 $R^* = \{(a, b) | \text{ there is a path from } a \text{ to } b \text{ in the graph corr. to } R \}$

Claim: R^* is the transitive closure of R.

Need to prove:

- R^* contains R \checkmark (the way R^* is constructed.)
- R^{*} is transitive.
- *R*^{*} is a subset of any transitive relation *S* which contains *R*.

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

$$R^* = R \cup R^2 \cup \ldots \cup R^n$$

$$R^* = \{(a, b) | \text{ there is a path from } a \text{ to } b \text{ in the graph corr. to } R \}$$

Sub-Claim: R^* is transitive.

Proof: Let (a, b) and (b, c) belong to R^* .

- Since (a, b) ∈ R* there is a path (of some length) from a to b in the graph corr. to R.
- Same holds for *b* to *c*.
- Combining the two paths we get a path from a to c in the graph corr. R. Thus, $(a, c) \in R^*$.

Hence R^* is transitive.

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

$$R^* = R \cup R^2 \cup \ldots \cup R^n$$

 $R^* = \{(a, b) | \text{ there is a path from } a \text{ to } b \text{ in the graph corr. to } R \}$

Sub-Claim: R^* is a subset of every transitive relation S containing R.

Proof: Let S be some transitive relation containing R.

- Fact, to be verified: If S is any transitive relation, then $S^i \subseteq S$, for i = 2, 3, ..., n.
- Thus $S^* = S \cup S^2 \cup \ldots \cup S^n \subseteq S$.
- Finally, since R ⊆ S, we can claim that R^{*} ⊆ S^{*} (because a path present in graph corr. to R is also present in S).
- Thus, R^* is contained in S^* which is contained in S.

This completes the proof.

Computing the transitive closure

$$A = \{x, y, z, w\}$$
 and $R = \{(x, y), (y, z), (z, w)\}$

$$R^* = R \cup R^2 \cup \ldots \cup R^n$$

 $R^* = \{(a, b) | \text{ there is a path from } a \text{ to } b \text{ in the graph corr. to } R \}$

$$M^* = M \lor M^2 \lor \ldots \lor M^n$$

$$M^* = \{M^*[a, b] = 1 | \text{ there is a path from } a \text{ to } b \text{ in the graph corr. to } R \}$$

Algo-2:

- Initialize: currM = M, outM = M
- For *i* = 2 to *n*
 - currM = currM $\cdot M$
 - $outM = outM \lor currM$
- Return outM // this is the matrix for R*

Summary

- Defined closure of w.r.t. a property of a relation.
- An algorithm to find transitive closure.
- Ex: Find out how many operations (multiplications and additions) are needed to compute transitive closure for a relation *R* on a set with *n* elements.
- Can we improve this?
- Reference: Section 9.4[KR]