Counting

CS1200, CSE IIT Madras

Meghana Nasre

April 2, 2020

Counting (without counting)

- Basic Counting Techniques \checkmark
- Pigeon Hole Principle (revisited) \checkmark
- Permutations and Combinations \checkmark
- Combinatorial Identities \checkmark
- Permutations and Combinations (revisited)

Permutations and Combinations with repetitions

Study the following questions.

- What is the number of length 10 strings formed using the upper case English alphabet?
- In how many ways can we order the letters of the word MISSISSIPPI to obtain distinguishable orderings?
- How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer.
- How many triples (i, j, k) can be formed where $1 \leq i \leq j \leq k \leq n$ where n is a positive integer?

Permutations and Combinations with repetitions

Study the following questions.

- What is the number of length 10 strings formed using the upper case English alphabet?
- In how many ways can we order the letters of the word MISSISSIPPI to obtain distinguishable orderings?
- How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer.
- How many triples (i, j, k) can be formed where $1 \leq i \leq j \leq k \leq n$ where n is a positive integer?

The above examples have repetitions. However, techniques seen earlier do not take care of repetitions.

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Case 2: Input: n distinct objects

Permutations revisited

We consider three different scenarios.

Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Case 2: Input: n distinct objects Number of r perm. with repetitions: n^{r}

Permutations revisited

We consider three different scenarios.

Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Case 2: Input: n distinct objects Number of r perm. with repetitions: n^{r}
Now note that for the input A, B, C, D the 3-permutation $A A C$ is valid.

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Case 2: Input: n distinct objects Number of r perm. with repetitions: n^{r}
Now note that for the input A, B, C, D the 3 -permutation $A A C$ is valid.

Case 3: Input: n objects (not necessarily distinct) containing:

- n_{1} indistinguishable obj. of type-1
- n_{2} indistinguishable obj. of type-2
- n_{k} indistinguishable obj. of type- k.

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Case 2: Input: n distinct objects Number of r perm. with repetitions: n^{r}
Now note that for the input A, B, C, D the 3 -permutation $A A C$ is valid.

Case 3: Input: n objects (not necessarily distinct) containing:

- n_{1} indistinguishable obj. of type-1 Ex: MISSISSIPPI
- n_{2} indistinguishable obj. of type-2

Goal: Obtain distinguishable permutations

- n_{k} indistinguishable obj. of type- k.

Permutations revisited

We consider three different scenarios.
Case 1: Input: n distinct objects Number of r perm.: $P(n, r)$
Note that it is implicit that we do not repeat the input object in the permutation. For instance, if A, B, C, D is the input, the 3-permutation $A A C$ is not valid (unless explicitly specified).

Case 2: Input: n distinct objects Number of r perm. with repetitions: n^{r}
Now note that for the input A, B, C, D the 3 -permutation $A A C$ is valid.

Case 3: Input: n objects (not necessarily distinct) containing:

- n_{1} indistinguishable obj. of type-1 Ex: MISSISSIPPI
- n_{2} indistinguishable obj. of type-2

Goal: Obtain distinguishable permutations IISSIISSPMP and PIMISSSSIIP

- n_{k} indistinguishable obj. of type- k. are distinct.

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways.

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways. This leaves $n-n_{1}$ locations for the remaining objects.

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways. This leaves $n-n_{1}$ locations for the remaining objects.

Now, n_{2} objects can be placed in $n-n_{1}$ locations in $\binom{n-n_{1}}{n_{2}}$ ways.

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways. This leaves $n-n_{1}$ locations for the remaining objects.

Now, n_{2} objects can be placed in $n-n_{1}$ locations in $\binom{n-n_{1}}{n_{2}}$ ways.
Finally, n_{k} objects can be placed in $n-n_{1}-n_{2}-\cdots-n_{k-1}$ locations in $\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}}$ ways.

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways. This leaves $n-n_{1}$ locations for the remaining objects.

Now, n_{2} objects can be placed in $n-n_{1}$ locations in $\binom{n-n_{1}}{n_{2}}$ ways.
Finally, n_{k} objects can be placed in $n-n_{1}-n_{2}-\cdots-n_{k-1}$ locations in $\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}}$ ways.

Thus total number of distinct permutations is

$$
=\binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}}
$$

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type- $1, n_{2}$ indistinguishable obj. of type-2, .., n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways. This leaves $n-n_{1}$ locations for the remaining objects.

Now, n_{2} objects can be placed in $n-n_{1}$ locations in $\binom{n-n_{1}}{n_{2}}$ ways.
Finally, n_{k} objects can be placed in $n-n_{1}-n_{2}-\cdots-n_{k-1}$ locations in $\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}}$ ways.

Thus total number of distinct permutations is

$$
\begin{aligned}
& =\binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
\end{aligned}
$$

Permutations revisited

Case 3: Input: n objects (not necessarily distinct) containing n_{1} indistinguishable obj. of type-1, n_{2} indistinguishable obj. of type-2, \ldots, n_{k} indistinguishable obj. of type- k.
Goal: Count the number of distinguishable permutations

First note that n_{1} objects can be placed in n locations in $\binom{n}{n_{1}}$ ways. This leaves $n-n_{1}$ locations for the remaining objects.

Now, n_{2} objects can be placed in $n-n_{1}$ locations in $\binom{n-n_{1}}{n_{2}}$ ways.
Finally, n_{k} objects can be placed in $n-n_{1}-n_{2}-\cdots-n_{k-1}$ locations in $\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}}$ ways.
Thus total number of distinct permutations is

$$
\begin{aligned}
& =\binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
\end{aligned}
$$

Qn: Does it matter how we order the types? Check out!

Revisiting the questions posed

- What is the number of length 10 strings formed using the upper case English alphabets? Ans: 26^{10} (Case 2)
- In how many ways can we order the letters of the word MISSISSIPPI to obtain distinguishable orderings?
Ans: $\frac{11!}{4!\cdot 4!\cdot 2!\cdot 1!}$ (Case 3)

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter!

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter!
Goal: Count number of such 3-sized sets.

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter!
Goal: Count number of such 3 -sized sets.
Ex: Try explicit enumeration and write down the answer.

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter!
Goal: Count number of such 3 -sized sets.
Ex: Try explicit enumeration and write down the answer.

We convert this into counting certain patterns.

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter!
Goal: Count number of such 3 -sized sets.
Ex: Try explicit enumeration and write down the answer.

We convert this into counting certain patterns.

- We have four categories to select from. We use 3 vertical bars to represent these categories.

Combinations with repetitions

We know that the number of 3 -sized subsets of $\{1,2,3,4\}$ are exactly 4 .
Now our goal is to count 3 sized sets with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter!
Goal: Count number of such 3 -sized sets.
Ex: Try explicit enumeration and write down the answer.

We convert this into counting certain patterns.

- We have four categories to select from. We use 3 vertical bars to represent these categories.

- To select one item from that category we use \times symbol in that category.
- We represent $[1,1,2]$ as:

Combinations with repetitions

Our goal is to count 3 sized sets of $\{1,2,3,4\}$ with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice [1, 2, 1].

That is, (as earlier) order does not matter!
We convert this into counting certain patterns.

- We represent $[1,1,2]$ as:

Combinations with repetitions

Our goal is to count 3 sized sets of $\{1,2,3,4\}$ with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice [1, 2, 1].

That is, (as earlier) order does not matter!
We convert this into counting certain patterns.

- We represent $[1,1,2]$ as:
- We represent $[4,4,4]$ as:

$$
|1| \times \times \times
$$

Combinations with repetitions

Our goal is to count 3 sized sets of $\{1,2,3,4\}$ with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice [1, 2, 1].

That is, (as earlier) order does not matter!
We convert this into counting certain patterns.

- We represent $[1,1,2]$ as:
- We represent $[4,4,4]$ as:

$$
|\mid \times \times \times
$$

- What does this represent?

Combinations with repetitions

Our goal is to count 3 sized sets of $\{1,2,3,4\}$ with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice [1, 2, 1].

That is, (as earlier) order does not matter!
We convert this into counting certain patterns.

- We represent $[1,1,2]$ as:
- We represent $[4,4,4]$ as:

$$
|\quad| \times \times \times
$$

- What does this represent?

Thus, every valid 3 sized set with repetition corresponds to a string of three vertical bars and three cross symbols!

Combinations with repetitions

Our goal is to count 3 sized sets of $\{1,2,3,4\}$ with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice $[1,2,1]$.

That is, (as earlier) order does not matter! We convert this into counting certain patterns.

Every valid 3 sized set with repetition corresponds to a string of three vertical bars and three cross symbols!

Combinations with repetitions

Our goal is to count 3 sized sets of $\{1,2,3,4\}$ with repetitions allowed. That is, we allow a choice $[1,1,2]$. However, this choice is the same as the choice [1, 2, 1].

That is, (as earlier) order does not matter! We convert this into counting certain patterns.

Every valid 3 sized set with repetition corresponds to a string of three vertical bars and three cross symbols!

Thus the total number of ways is to select three positions out of six (since once we select the position of the vertical bars out of the six positions, the position of the cross symbols is fixed!)

This is exactly equal to $\binom{6}{3}$.

Combinations with repetitions

Input: A set containing n distinct elements.
Goal: Number of r combinations with repetitions allowed.
Equivalent to number of ways of selecting r elements from n categories with repetitions allowed.

Combinations with repetitions

Input: A set containing n distinct elements.
Goal: Number of r combinations with repetitions allowed.
Equivalent to number of ways of selecting r elements from n categories with repetitions allowed.

- Have $n-1$ vertical bars to represent categories.
- Have r cross marks to represent the elements.
- Number of selections is equal to selecting r cross marks from $n-1+r$ positions.

Combinations with repetitions

Input: A set containing n distinct elements.
Goal: Number of r combinations with repetitions allowed.
Equivalent to number of ways of selecting r elements from n categories with repetitions allowed.

- Have $n-1$ vertical bars to represent categories.
- Have r cross marks to represent the elements.
- Number of selections is equal to selecting r cross marks from $n-1+r$ positions.
That is, $\binom{n-1+r}{r}=\binom{n-1+r}{n-1}$.

Example: Selecting items with repetition from fixed categories

Qn: In a party, Sameer wants to set out 15 assorted juice packs. He has to select from 5 different flavours.

- How many different selections of 15 juice packs can Sameer set up?
- If he decides that his selection must contain at least 6 mango juice packs, how many different selections can he make?

Example: Selecting items with repetition from fixed categories

Qn: In a party, Sameer wants to set out 15 assorted juice packs. He has to select from 5 different flavours.

- How many different selections of 15 juice packs can Sameer set up?
- If he decides that his selection must contain at least 6 mango juice packs, how many different selections can he make?

Work out your answer before looking at the solution

Example: Selecting items with repetition from fixed categories

Qn: In a party, Sameer wants to set out 15 assorted juice packs. He has to select from 5 different flavours.

- How many different selections of 15 juice packs can Sameer set up?
- If he decides that his selection must contain at least 6 mango juice packs, how many different selections can he make?

Work out your answer before looking at the solution
Ans:

- The first one is an application of the formula we have seen before. We let 4 vertical bars denote the categories and 15 cross marks denote the juice packs. Thus Sameer has $\binom{4+15}{15}$ ways to select the assortment.

Example: Selecting items with repetition from fixed categories

Qn: In a party, Sameer wants to set out 15 assorted juice packs. He has to select from 5 different flavours.

- How many different selections of 15 juice packs can Sameer set up?
- If he decides that his selection must contain at least 6 mango juice packs, how many different selections can he make?

Work out your answer before looking at the solution
Ans:

- The first one is an application of the formula we have seen before. We let 4 vertical bars denote the categories and 15 cross marks denote the juice packs. Thus Sameer has $\binom{4+15}{15}$ ways to select the assortment.
- Since 6 juice packs are already fixed, the goal is now to select only 9 packs.

Example: Selecting items with repetition from fixed categories

Qn: In a party, Sameer wants to set out 15 assorted juice packs. He has to select from 5 different flavours.

- How many different selections of 15 juice packs can Sameer set up?
- If he decides that his selection must contain at least 6 mango juice packs, how many different selections can he make?

Work out your answer before looking at the solution
Ans:

- The first one is an application of the formula we have seen before. We let 4 vertical bars denote the categories and 15 cross marks denote the juice packs. Thus Sameer has $\binom{4+15}{15}$ ways to select the assortment.
- Since 6 juice packs are already fixed, the goal is now to select only 9 packs. Note however, that we are allowed to select further mango juice packs, hence the number of categories still remains 5 .

Example: Selecting items with repetition from fixed categories

Qn: In a party, Sameer wants to set out 15 assorted juice packs. He has to select from 5 different flavours.

- How many different selections of 15 juice packs can Sameer set up?
- If he decides that his selection must contain at least 6 mango juice packs, how many different selections can he make?

Work out your answer before looking at the solution
Ans:

- The first one is an application of the formula we have seen before. We let 4 vertical bars denote the categories and 15 cross marks denote the juice packs. Thus Sameer has $\binom{4+15}{15}$ ways to select the assortment.
- Since 6 juice packs are already fixed, the goal is now to select only 9 packs. Note however, that we are allowed to select further mango juice packs, hence the number of categories still remains 5 . Thus the number of ways possible for Sameer are $\binom{4+9}{9}$.

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer?

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer? Work out your answer before looking at the solution

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer? Work out your answer before looking at the solution

Ans: What are the categories? How many elements do we select?

- We consider dividing 10 as 1 unit each and selecting one unit from each of the 4 categories $x_{1}, \ldots x_{4}$.

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer? Work out your answer before looking at the solution

Ans: What are the categories? How many elements do we select?

- We consider dividing 10 as 1 unit each and selecting one unit from each of the 4 categories $x_{1}, \ldots x_{4}$.
- For example, a solution like $x_{1}=2, x_{2}=5, x_{3}=0$ and $x_{4}=3$ can be represented as

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer? Work out your answer before looking at the solution

Ans: What are the categories? How many elements do we select?

- We consider dividing 10 as 1 unit each and selecting one unit from each of the 4 categories $x_{1}, \ldots x_{4}$.
- For example, a solution like $x_{1}=2, x_{2}=5, x_{3}=0$ and $x_{4}=3$ can be represented as

Thus the number solutions for the above equation are $\binom{3+10}{10}$.
What if there was an additional constraint that all $x_{i} s$ are at least 1 ?

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer? Work out your answer before looking at the solution

Ans: What are the categories? How many elements do we select?

- We consider dividing 10 as 1 unit each and selecting one unit from each of the 4 categories $x_{1}, \ldots x_{4}$.
- For example, a solution like $x_{1}=2, x_{2}=5, x_{3}=0$ and $x_{4}=3$ can be represented as

Thus the number solutions for the above equation are $\binom{3+10}{10}$.
What if there was an additional constraint that all x_{i} s are at least 1 ?
Replace variables such that new variables are required to be only non-negative. However, the equation will change.

What if there were constraints of the form $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 4$ and so on?

Example: Number of integral solutions of an equation

Qn: How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=10$ if each x_{i} is a non-negative integer? Work out your answer before looking at the solution

Ans: What are the categories? How many elements do we select?

- We consider dividing 10 as 1 unit each and selecting one unit from each of the 4 categories $x_{1}, \ldots x_{4}$.
- For example, a solution like $x_{1}=2, x_{2}=5, x_{3}=0$ and $x_{4}=3$ can be represented as

Thus the number solutions for the above equation are $\binom{3+10}{10}$.
What if there was an additional constraint that all x_{i} s are at least 1 ?
Replace variables such that new variables are required to be only non-negative. However, the equation will change.

What if there were constraints of the form $0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 4$ and so on? Can you use the replacement idea above?

Summary

- Permutations with repetitions.
- Input with repetitions and counting distinct permutations.
- Combinations with repetitions.
- References: Section 6.5 [KR]

