Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 20, 2020

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Structured Sets

- Relational Structures
 - Properties and closures \checkmark
 - Equivalence Relations
 - Partially Ordered Sets (Posets) and Lattices
- Algebraic Structures
 - Groups and Rings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

A binary relation R on a set S is a subset of the Cartesian product $S \times S$.

Properties of Binary Relations

- Reflexive: If for every $a \in S$, $(a, a) \in R$.
 - \leq on Z^+ , \geq on Z^+ .
- Symmetric: If $(a, b) \in R \rightarrow (b, a) \in R$, for all $a, b \in S$
 - = on Z^+
 - "is a cousin of" on the set of people.
- Antisymmetric: If $((a, b) \in R \text{ and } (b, a) \in R) \rightarrow a = b$, for all $a, b \in S$.
 - \leq on Z^+ , \geq on Z^+ .
- Transitive: If for all $a, b, c \in S$, $((a, b) \in R \text{ and } (b, c) \in R) \rightarrow (a, c) \in R$.

• "is an ancestor of" on the set of people.

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□ → < @ → < Ξ → < Ξ → ○ < ⊙ < ⊙</p>

If R on set S is

- reflexive, and
- symmetric, and
- transitive,

R is an equivalence relation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If R on set S is

- reflexive, and
- symmetric, and
- transitive,

R is an equivalence relation.

• (*a*, *b*) ∈ *R* implies *a* and *b* are equivalent.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- If R on set S is
 - reflexive, and
 - symmetric, and
 - transitive,
- R is an equivalence relation.

Examples:

- "=" on *Z*⁺
- $(a, b) \in R$ if 3 divides (a b).
- A : binary strings; (s₁, s₂) ∈ R if first 10 bits of s₁ match with s₂.

(a, b) ∈ R implies a and b are equivalent.

- If R on set S is
 - reflexive, and
 - symmetric, and
 - transitive,
- R is an equivalence relation.

Examples:

- "=" on *Z*⁺
- $(a, b) \in R$ if 3 divides (a b).
- A : binary strings; (s₁, s₂) ∈ R if first 10 bits of s₁ match with s₂.

• (*a*, *b*) ∈ *R* implies *a* and *b* are equivalent.

Not equivalence relation:

- \leq on Z^+ .
- "divides" on Z⁺.

$$Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

• $R = \{ (a, b) \mid 3 \text{ divides } (a - b) \}.$

$Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$

- $R = \{ (a, b) \mid 3 \text{ divides } (a b) \}.$
- [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.
- $[0] = \{ a \in Z \mid 3 \text{ divides } (a 0) \}.$

$Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$

- $R = \{ (a, b) | 3 \text{ divides } (a b) \}.$
- [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.
- $[0] = \{ a \in Z \mid 3 \text{ divides } (a 0) \}.$
- $[0] = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$

(日) (日) (日) (日) (日) (日) (日) (日)

$Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$

•
$$R = \{ (a, b) \mid 3 \text{ divides } (a - b) \}.$$

• [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.

•
$$[0] = \{ a \in Z \mid 3 \text{ divides } (a - 0) \}.$$

•
$$[0] = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$$

- $[1] = \{\ldots, -8, -5, -2, 1, 4, 7, 10, \ldots\}$
- $[2] = \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\}$

(日) (日) (日) (日) (日) (日) (日) (日)

$$Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

•
$$R = \{ (a, b) \mid 3 \text{ divides } (a - b) \}.$$

• [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.

•
$$[0] = \{ a \in Z \mid 3 \text{ divides } (a - 0) \}.$$

•
$$[0] = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$$

•
$$[1] = \{\ldots, -8, -5, -2, 1, 4, 7, 10, \ldots\}$$

•
$$[2] = \{\ldots, -7, -4, -1, 2, 5, 8, 11, \ldots\}$$

Any equivalence relation R on S partitions the set S

A partition of a set S is a disjoint collection of subsets A_1, A_2, \ldots, A_k such that

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

CS1200, CSE IIT Madras Meghana Nasre Structured Sets

A partition of a set S is a disjoint collection of subsets A_1, A_2, \ldots, A_k such that

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

•
$$A_j \cap A_j = \phi$$
 for $i \neq j$.

•
$$\cup_{i=1}^k A_i = S.$$

A partition of a set S is a disjoint collection of subsets A_1, A_2, \ldots, A_k such that

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

•
$$A_j \cap A_j = \phi$$
 for $i \neq j$.

•
$$\cup_{i=1}^k A_i = S.$$

For an equivalence relation R on a set S, the following are equivalent.

(i)
$$(a, b) \in R$$

A partition of a set S is a disjoint collection of subsets A_1, A_2, \ldots, A_k such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- $A_j \cap A_j = \phi$ for $i \neq j$.
- $\cup_{i=1}^k A_i = S.$

For an equivalence relation R on a set S, the following are equivalent.

- (i) $(a, b) \in R$
- (ii) [a] = [b];

A partition of a set S is a disjoint collection of subsets A_1, A_2, \ldots, A_k such that

(日) (日) (日) (日) (日) (日) (日) (日)

- $A_j \cap A_j = \phi$ for $i \neq j$.
- $\cup_{i=1}^k A_i = S.$

For an equivalence relation R on a set S, the following are equivalent.

- (i) $(a, b) \in R$
- (ii) [a] = [b]; [a] denotes the class of [a]

A partition of a set S is a disjoint collection of subsets A_1, A_2, \ldots, A_k such that

- $A_j \cap A_j = \phi$ for $i \neq j$.
- $\cup_{i=1}^k A_i = S.$

For an equivalence relation R on a set S, the following are equivalent.

(i)
$$(a, b) \in R$$

(ii) $[a] = [b]$; $[a]$ denotes the class of $[a]$
(iii) $[a] \cap [b] \neq \emptyset$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

(i) $(a, b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

(i) $(a, b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$ Proof: To show that (i) \rightarrow (ii). • Let $c \in [a]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

• Let *c* ∈ [*a*]. This implies (*a*, *c*) ∈ *R* (by definition of [*a*]).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(i) $(a, b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

 Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

 Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b].

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

(i) $(a, b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

To show that (ii) \rightarrow (iii).

(i) $(a, b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in [a]$. Thus, $a \in [a] \cap [b]$.

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in [a]$. Thus, $a \in [a] \cap [b]$.

To show that (iii) \rightarrow (i).

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in [a]$. Thus, $a \in [a] \cap [b]$.

To show that (iii) \rightarrow (i).

• Since $[a] \cap [b]$ is non-empty, we know that some $c \in [a]$ and $c \in [b]$.

(日) (日) (日) (日) (日) (日) (日) (日)

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in [a]$. Thus, $a \in [a] \cap [b]$.

To show that (iii) \rightarrow (i).

• Since $[a] \cap [b]$ is non-empty, we know that some $c \in [a]$ and $c \in [b]$. Thus, $(a, c) \in R$ and $(b, c) \in R$. By symmetry, $(c, b) \in R$.

(日) (日) (日) (日) (日) (日) (日) (日)

(i) $(a,b) \in R$ (ii) [a] = [b] (iii) $[a] \cap [b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Let c ∈ [a]. This implies (a, c) ∈ R (by definition of [a]). Further (c, a) ∈ R, (by symmetry of R). Thus, (c, b) ∈ R (by transitivity of R). Again applying symmetry (b, c) ∈ R. Thus c ∈ [b]. This concludes that [a] ⊆ [b]. A similar argument can be used to show [b] ⊆ [a].

To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in [a]$. Thus, $a \in [a] \cap [b]$.

To show that (iii) \rightarrow (i).

 Since [a] ∩ [b] is non-empty, we know that some c ∈ [a] and c ∈ [b]. Thus, (a, c) ∈ R and (b, c) ∈ R. By symmetry, (c, b) ∈ R. Together with transitivity of R, we have (a, b) ∈ R.

Observe how all three properties (reflexive, symmetry and transitivity) are used in the proof.

- Every equivalence relation partitions the set.
- Every partition of the set defines an equivalence relation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Every equivalence relation partitions the set.
- Every partition of the set defines an equivalence relation.

Useful abstraction when we are interested in properties of the "classes" rather than individual elements.

• Set Z, $[0] = \{x \in Z \mid x \mod 3 = 0\}$, [1] and [2] defined appropriately.

Back to relations with properties

- S_1 all words in English dictionary.
- Relation R₁ on S₁:
 - (w₁, w₂) ∈ R₁ if w₁ = w₂ or w₁ appears before w₂ in dictionary.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Back to relations with properties

- S_1 all words in English dictionary.
- Relation R_1 on S_1 :
 - (w₁, w₂) ∈ R₁ if w₁ = w₂ or w₁ appears before w₂ in dictionary.
- *S*₂ all subsets of {*a*, *b*, *c*}.
- Relation R_2 on S_2 :

•
$$(X, Y) \in R_2$$
 if $X \subseteq Y$.

• What properties do R_1 and R_2 satisfy?

Back to relations with properties

- S_1 all words in English dictionary.
- Relation R_1 on S_1 :
 - (w₁, w₂) ∈ R₁ if w₁ = w₂ or w₁ appears before w₂ in dictionary.
- *S*₂ all subsets of {*a*, *b*, *c*}.
- Relation R_2 on S_2 :
 - $(X, Y) \in R_2$ if $X \subseteq Y$.

• What properties do R_1 and R_2 satisfy?

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.

Back to relations with properties

- S₁ all words in English dictionary.
- Relation R_1 on S_1 :
 - (w₁, w₂) ∈ R₁ if w₁ = w₂ or w₁ appears before w₂ in dictionary.
- *S*₂ all subsets of {*a*, *b*, *c*}.
- Relation R_2 on S_2 :
 - $(X, Y) \in R_2$ if $X \subseteq Y$.

• What properties do R_1 and R_2 satisfy?

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.

 $a \leq b$ is used to denote $(a, b) \in R$ when R is reflexive, anti-symmetric and transitive.

Back to relations with properties

- S_1 all words in English dictionary.
- Relation R_1 on S_1 :
 - (w₁, w₂) ∈ R₁ if w₁ = w₂ or w₁ appears before w₂ in dictionary.
- *S*₂ all subsets of {*a*, *b*, *c*}.
- Relation R_2 on S_2 :

•
$$(X, Y) \in R_2$$
 if $X \subseteq Y$

• What properties do R_1 and R_2 satisfy?

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.

 $a \leq b$ is used to denote $(a, b) \in R$ when R is reflexive, anti-symmetric and transitive.

Examples:

- "divides" on a set {1, 2, 3, 6, 9, 12, 15, 24}.
- x is older than y on a set of people.
- \leq on the set Z^+ .

$$\begin{split} & \pmb{S} = \{\pmb{c}_1, \pmb{c}_2, \pmb{c}_3, \dots, \pmb{c}_n\}.\\ & R = \{ \begin{array}{l} (c_i, c_j) & | \end{array} (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \end{array} \} \end{split}$$

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

• Write down the relation R.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

- Write down the relation R.
- Note that every (*a*, *a*) should be in *R*. ex: (PDS, PDS).

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

- Write down the relation R.
- Note that every (*a*, *a*) should be in *R*. ex: (PDS, PDS).
- What about (Disc. Maths, Adv. Algo)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

- Write down the relation R.
- Note that every (*a*, *a*) should be in *R*. ex: (PDS, PDS).
- What about (Disc. Maths, Adv. Algo)? , yes it belongs to *R*.

Comparable elements.

 a and b are said to be comparable iff
 a ≤ b or b ≤ a.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

- Write down the relation R.
- Note that every (*a*, *a*) should be in *R*. ex: (PDS, PDS).
- What about (Disc. Maths, Adv. Algo)? , yes it belongs to *R*.

Comparable elements.

- a and b are said to be comparable iff
 a ≤ b or b ≤ a.
- Ex: Disc. Maths \leq RP.

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Minimal Elements

 An element "a" such that for no b ∈ S, b ≺ a.
 Disc. Maths, Prob. Th.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Minimal Elements

- An element "a" such that for no b ∈ S, b ≺ a.
 Disc. Maths, Prob. Th.
- Course that does not have a pre-req.

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Minimal Elements

- An element "a" such that for no b ∈ S, b ≺ a.
 Disc. Maths, Prob. Th.
- Course that does not have a pre-req.

Maximal Elements

 An element "a" such that for no b ∈ S, a ≺ b. Adv. Algo, R.P.

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Minimal Elements

- An element "a" such that for no b ∈ S, b ≺ a.
 Disc. Maths, Prob. Th.
- Course that does not have a pre-req.

Maximal Elements

- An element "a" such that for no b ∈ S, a ≺ b. Adv. Algo, R.P.
- Course that is not a pre-req.
 for any course.

TOP any COUI Structured Sets

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_i) \mid (c_i = c_i) \text{ or } c_i \text{ is a pre-requisite for } c_i \}$

Least Element

- An element "a" such that for all $b \in S$, $a \prec b$.
- Least element is unique if it

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_i) \mid (c_i = c_i) \text{ or } c_i \text{ is a pre-requisite for } c_i \}$

Least Element

- An element "a" such that for all $b \in S$, $a \prec b$.
- Least element is unique if it

Greatest Elements

• An element "a" such that for all $b \in S$, $b \preceq a$.

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Least Element

- An element "a" such that for all $b \in S$, $a \leq b$.
- Least element is unique if it exists.

Greatest Elements

- An element "a" such that for all $b \in S$, $b \leq a$.
- Greatest element is unique if it exists.

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Hasse Diagram for a poset

• A node for every element.

- An edge from c_i to c_j if $(c_i, c_j) \in R$.
- Omit reflexive edges.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Hasse Diagram for a poset

- A node for every element.
- An edge from c_i to c_j if $(c_i, c_j) \in R$.
- Omit reflexive edges.
- Omit transitive edges.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Hasse Diagram for a poset

- A node for every element.
- An edge from c_i to c_j if $(c_i, c_j) \in R$.
- Omit reflexive edges.
- Omit transitive edges.
- Finally, remove the arrows (all edges go "upwards").

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre Struct

Structured Sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Chain

• A subset of *S* such that every pair in this subset is comparable.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Chain

- A subset of *S* such that every pair in this subset is comparable.
- { Disc. Maths, PDS, Algo, R.P.}

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Chain

- A subset of *S* such that every pair in this subset is comparable.
- { Disc. Maths, PDS, Algo, R.P.} {Disc. Maths, Adv. DS }

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

CS1200, CSE IIT Madras Meghana Nasre Structured Sets

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Chain

- A subset of *S* such that every pair in this subset is comparable.
- { Disc. Maths, PDS, Algo, R.P.} {Disc. Maths, Adv. DS }
- Not a chain: { Disc. Maths, Algo, Adv. DS}

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Chain

- A subset of *S* such that every pair in this subset is comparable.
- { Disc. Maths, PDS, Algo, R.P.} {Disc. Maths, Adv. DS }
- Not a chain: { Disc. Maths, Algo, Adv. DS}
 - Qn: What does the length of the longest chain signify?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

CS1200, CSE IIT Madras Meghana Nasre

$$S = \{c_1, c_2, c_3, \dots, c_n\}.$$

$$R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Anti-Chain

• A subset of *S* such that every pair in this subset is incomparable.

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Anti-Chain

• A subset of *S* such that every pair in this subset is incomparable.

^{• {} Disc. Maths, Adv. Prob.}

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Anti-Chain

- A subset of *S* such that every pair in this subset is incomparable.
- { Disc. Maths, Adv. Prob.} {Adv. DS, Algo, Adv. Prob. }

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Anti-Chain

- A subset of *S* such that every pair in this subset is incomparable.
- { Disc. Maths, Adv. Prob.} {Adv. DS, Algo, Adv. Prob. }
- Neither a chain nor an anti-chain: { Disc. Maths, Algo, Adv. DS}

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

Anti-Chain

- A subset of S such that every pair in this subset is incomparable.
- { Disc. Maths, Adv. Prob.} {Adv. DS, Algo, Adv. Prob. }
- Neither a chain nor an anti-chain: { Disc. Maths, Algo, Adv. DS}
 Qn: What does the length of the longest anti-chain signify?

Summary

- Equivalence Relations and Properties.
- Partial Order and Hasse Diagrams.
- Chains and Antichains.
- Partial Order useful to model various real-world examples.
- References : Section 9.5, 9.6 [KR]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで