Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 20, 2020

Structured Sets

- Relational Structures
- Properties and closures \checkmark
- Equivalence Relations
- Partially Ordered Sets (Posets) and Lattices
- Algebraic Structures
- Groups and Rings

Recap: Binary relations and properties

A binary relation R on a set S is a subset of the Cartesian product $S \times S$.
Properties of Binary Relations

- Reflexive: If for every $a \in S,(a, a) \in R$.
- \leq on Z^{+}, \geqon Z^{+}.
- Symmetric: If $(a, b) \in R \rightarrow(b, a) \in R$, for all $a, b \in S$
- = on Z^{+}
- "is a cousin of" on the set of people.
- Antisymmetric: If $((a, b) \in R$ and $(b, a) \in R) \rightarrow a=b$, for all $a, b \in S$.
- \leq on Z^{+}, \geqon Z^{+}.
- Transitive: If for all $a, b, c \in S,((a, b) \in R$ and $(b, c) \in R) \rightarrow(a, c) \in R$.
- "is an ancestor of" on the set of people.

Equivalence Relations

Equivalence Relations

If R on set S is

- reflexive, and
- symmetric, and
- transitive,
R is an equivalence relation.

Equivalence Relations

If R on set S is

- reflexive, and
- symmetric, and
- transitive,
R is an equivalence relation.
- $(a, b) \in R$ implies a and b are equivalent.

Equivalence Relations

If R on set S is

- reflexive, and
- symmetric, and
- transitive,

Examples:

- " $=$ " on Z^{+}
- $(a, b) \in R$ if 3 divides $(a-b)$.
- A : binary strings; $\left(s_{1}, s_{2}\right) \in R$ if first 10 bits of s_{1} match with s_{2}.
- $(a, b) \in R$ implies a and b are equivalent.

Equivalence Relations

If R on set S is

- reflexive, and
- symmetric, and
- transitive,
R is an equivalence relation.

Examples:

- " $=$ " on Z^{+}
- $(a, b) \in R$ if 3 divides $(a-b)$.
- A : binary strings; $\left(s_{1}, s_{2}\right) \in R$ if first 10 bits of s_{1} match with s_{2}.
- $(a, b) \in R$ implies a and b are equivalent.

Not equivalence relation:

- \leq on Z^{+}.
- "divides" on Z^{+}.

Equivalence relations

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

- $R=\{(a, b) \mid 3$ divides $(a-b)\}$.

Equivalence relations

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

- $R=\{(a, b) \mid 3$ divides $(a-b)\}$.
- [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.
- $[0]=\{a \in Z \mid 3$ divides $(a-0)\}$.

Equivalence relations

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

- $R=\{(a, b) \mid 3$ divides $(a-b)\}$.
- [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.
- $[0]=\{a \in Z \mid 3$ divides $(a-0)\}$.
- $[0]=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$

Equivalence relations

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

- $R=\{(a, b) \mid 3$ divides $(a-b)\}$.
- [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.
- $[0]=\{a \in Z \mid 3$ divides $(a-0)\}$.
- $[0]=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$
- $[1]=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$
- $[2]=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}$

Equivalence relations

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

- $R=\{(a, b) \mid 3$ divides $(a-b)\}$.
- [a] denotes the set of elements $b \in S$ (in this case Z) such that $(a, b) \in R$.
- $[0]=\{a \in Z \mid 3$ divides $(a-0)\}$.
- $[0]=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$
- $[1]=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}$
- $[2]=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}$

Partition of a set S

A partition of a set S is a disjoint collection of subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that

Partition of a set S

A partition of a set S is a disjoint collection of subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that

- $A_{j} \cap A_{j}=\phi$ for $i \neq j$.
- $\cup_{i=1}^{k} A_{i}=S$.

Partition of a set S

A partition of a set S is a disjoint collection of subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that

- $A_{j} \cap A_{j}=\phi$ for $i \neq j$.
- $\cup_{i=1}^{k} A_{i}=S$.

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$

Partition of a set S

A partition of a set S is a disjoint collection of subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that

- $A_{j} \cap A_{j}=\phi$ for $i \neq j$.
- $\cup_{i=1}^{k} A_{i}=S$.

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$;

Partition of a set S

A partition of a set S is a disjoint collection of subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that

- $A_{j} \cap A_{j}=\phi$ for $i \neq j$.
- $\cup_{i=1}^{k} A_{i}=S$.

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$; [a] denotes the class of [a]

Partition of a set S

A partition of a set S is a disjoint collection of subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that

- $A_{j} \cap A_{j}=\phi$ for $i \neq j$.
- $\cup_{i=1}^{k} A_{i}=S$.

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$; [a] denotes the class of $[a]$
(iii) $[a] \cap[b] \neq \emptyset$

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

- Let $c \in[a]$.

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]).

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that (i) \rightarrow (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R).

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$.

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.
To show that (ii) \rightarrow (iii).

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow(\mathrm{ii})$.

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.
To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in[a]$. Thus, $a \in[a] \cap[b]$.

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.
To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in[a]$. Thus, $a \in[a] \cap[b]$.

To show that (iii) \rightarrow (i).

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.
To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in[a]$. Thus, $a \in[a] \cap[b]$.

To show that (iii) \rightarrow (i).

- Since $[a] \cap[b]$ is non-empty, we know that some $c \in[a]$ and $c \in[b]$.

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow(\mathrm{ii})$.

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.
To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in[a]$. Thus, $a \in[a] \cap[b]$.

To show that (iii) \rightarrow (i).

- Since $[a] \cap[b]$ is non-empty, we know that some $c \in[a]$ and $c \in[b]$. Thus, $(a, c) \in R$ and $(b, c) \in R$. By symmetry, $(c, b) \in R$.

Partition of a set S

For an equivalence relation R on a set S, the following are equivalent.
(i) $(a, b) \in R$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: To show that $(\mathrm{i}) \rightarrow$ (ii).

- Let $c \in[a]$. This implies $(a, c) \in R$ (by definition of [a]). Further $(c, a) \in R$, (by symmetry of R). Thus, $(c, b) \in R$ (by transitivity of R). Again applying symmetry $(b, c) \in R$. Thus $c \in[b]$. This concludes that $[a] \subseteq[b]$. A similar argument can be used to show $[b] \subseteq[a]$.
To show that (ii) \rightarrow (iii). This holds because of reflexive property. We know $a \in[a]$. Thus, $a \in[a] \cap[b]$.

To show that (iii) \rightarrow (i).

- Since $[a] \cap[b]$ is non-empty, we know that some $c \in[a]$ and $c \in[b]$. Thus, $(a, c) \in R$ and $(b, c) \in R$. By symmetry, $(c, b) \in R$. Together with transitivity of R, we have $(a, b) \in R$.
Observe how all three properties (reflexive, symmetry and transitivity) are used in the proof.

Equivalence relations

- Every equivalence relation partitions the set.
- Every partition of the set defines an equivalence relation.

Equivalence relations

- Every equivalence relation partitions the set.
- Every partition of the set defines an equivalence relation.

Useful abstraction when we are interested in properties of the "classes" rather than individual elements.

- Set $Z,[0]=\{x \in Z \mid x \bmod 3=0\}$, [1] and [2] defined appropriately.

Back to relations with properties

- S_{1} - all words in English dictionary.
- Relation R_{1} on S_{1} :
- $\left(w_{1}, w_{2}\right) \in R_{1}$ if $w_{1}=w_{2}$ or w_{1} appears before w_{2} in dictionary.

Back to relations with properties

- S_{1} - all words in English dictionary.
- Relation R_{1} on S_{1} :
- $\left(w_{1}, w_{2}\right) \in R_{1}$ if $w_{1}=w_{2}$ or w_{1} appears before w_{2} in dictionary.
- S_{2} - all subsets of $\{a, b, c\}$.
- Relation R_{2} on S_{2} :
- $(X, Y) \in R_{2}$ if $X \subseteq Y$.
- What properties do R_{1} and R_{2} satisfy?

Back to relations with properties

- S_{1} - all words in English dictionary.
- Relation R_{1} on S_{1} :
- $\left(w_{1}, w_{2}\right) \in R_{1}$ if $w_{1}=w_{2}$ or w_{1} appears before w_{2} in dictionary.
- S_{2} - all subsets of $\{a, b, c\}$.
- Relation R_{2} on S_{2} :
- $(X, Y) \in R_{2}$ if $X \subseteq Y$.
- What properties do R_{1} and R_{2} satisfy?

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.

Back to relations with properties

- S_{1} - all words in English dictionary.
- Relation R_{1} on S_{1} :
- $\left(w_{1}, w_{2}\right) \in R_{1}$ if $w_{1}=w_{2}$ or w_{1} appears before w_{2} in dictionary.
- S_{2} - all subsets of $\{a, b, c\}$.
- Relation R_{2} on S_{2} :
- $(X, Y) \in R_{2}$ if $X \subseteq Y$.
- What properties do R_{1} and R_{2} satisfy?

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.
$a \preceq b$ is used to denote $(a, b) \in R$ when R is reflexive, anti-symmetric and transitive.

Back to relations with properties

- S_{1} - all words in English dictionary.
- Relation R_{1} on S_{1} :
- $\left(w_{1}, w_{2}\right) \in R_{1}$ if $w_{1}=w_{2}$ or w_{1} appears before w_{2} in dictionary.
- S_{2} - all subsets of $\{a, b, c\}$.
- Relation R_{2} on S_{2} :
- $(X, Y) \in R_{2}$ if $X \subseteq Y$.
- What properties do R_{1} and R_{2} satisfy?

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.
$a \preceq b$ is used to denote $(a, b) \in R$ when R is reflexive, anti-symmetric and transitive.

Examples:

- "divides" on a set $\{1,2,3,6,9,12,15,24\}$.
- x is older than y on a set of people.
- \leq on the set Z^{+}.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} .
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$$
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
$$

- Write down the relation R.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

- Write down the relation R.

- Note that every (a, a) should be in R. ex: (PDS, PDS).

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

- Write down the relation R.

- Note that every (a, a) should be in R. ex: (PDS, PDS).
- What about
(Disc. Maths, Adv. Algo)?

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

- Write down the relation R.

- Note that every (a, a) should be in R. ex: (PDS, PDS).
- What about
(Disc. Maths, Adv. Algo)? , yes it belongs to R.

Comparable elements.

- a and b are said to be comparable iff $a \preceq b$ or $b \preceq a$.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

- Write down the relation R.

- Note that every (a, a) should be in R. ex: (PDS, PDS).
- What about
(Disc. Maths, Adv. Algo)? , yes it belongs to R.

Comparable elements.

- a and b are said to be comparable iff $a \preceq b$ or $b \preceq a$.
- Ex: Disc. Maths $\preceq R P$.
- Non-Ex: Prob. Th. ŁPDS.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Minimal Elements

- An element "a" such that for no $b \in S, b \prec a$.
Disc. Maths, Prob. Th.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Minimal Elements

- An element "a" such that for no $b \in S, b \prec a$. Disc. Maths, Prob. Th.
- Course that does not have a pre-req.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Minimal Elements

- An element "a" such that for no $b \in S, b \prec a$. Disc. Maths, Prob. Th.
- Course that does not have a pre-req.

Maximal Elements

- An element "a" such that for no $b \in S, a \prec b$.
Adv. Algo, R.P.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Minimal Elements

- An element "a" such that for no $b \in S, b \prec a$.
Disc. Maths, Prob. Th.
- Course that does not have a pre-req.

Maximal Elements

- An element "a" such that for no $b \in S, a \prec b$. Adv. Algo, R.P.
- Course that is not a pre-req. for any course.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$$
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
$$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Least Element

- An element "a" such that for all $b \in S, a \preceq b$.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Least Element

- An element "a" such that for all $b \in S, a \preceq b$.
- Least element is unique if it exists.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Least Element

- An element "a" such that for all $b \in S, a \preceq b$.
- Least element is unique if it exists.

Greatest Elements

- An element "a" such that for all $b \in S, b \preceq a$.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} . \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Least Element

- An element "a" such that for all $b \in S, a \preceq b$.
- Least element is unique if it exists.

Greatest Elements

- An element "a" such that for all $b \in S, b \preceq a$.
- Greatest element is unique if it exists.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$$
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
$$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Hasse Diagram for a poset

- A node for every element.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Hasse Diagram for a poset

- A node for every element.
- An edge from c_{i} to c_{j} if $\left(c_{i}, c_{j}\right) \in R$.
- Omit reflexive edges.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} . \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Hasse Diagram for a poset

- A node for every element.
- An edge from c_{i} to c_{j} if $\left(c_{i}, c_{j}\right) \in R$.
- Omit reflexive edges.
- Omit transitive edges.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} . \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Hasse Diagram for a poset

- A node for every element.
- An edge from c_{i} to c_{j} if $\left(c_{i}, c_{j}\right) \in R$.
- Omit reflexive edges.
- Omit transitive edges.
- Finally, remove the arrows (all edges go "upwards").

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} .
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Chain

- A subset of S such that every pair in this subset is comparable.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Chain

- A subset of S such that every pair in this subset is comparable.
- \{ Disc. Maths, PDS, Algo, R.P.\}

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Chain

- A subset of S such that every pair in this subset is comparable.
- \{ Disc. Maths, PDS, Algo, R.P.\} \{Disc. Maths, Adv. DS \}

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Chain

- A subset of S such that every pair in this subset is comparable.
- \{ Disc. Maths, PDS, Algo, R.P.\} \{Disc. Maths, Adv. DS \}
- Not a chain:
\{ Disc. Maths, Algo, Adv. DS\}

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} .
$$

$$
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
$$

Chain

- A subset of S such that every pair in this subset is comparable.
- \{ Disc. Maths, PDS, Algo, R.P.\} \{Disc. Maths, Adv. DS \}
- Not a chain:
\{ Disc. Maths, Algo, Adv. DS \}
Qn: What does the length of the longest chain signify?

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Anti-Chain

- A subset of S such that every pair in this subset is incomparable.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Anti-Chain

- A subset of S such that every pair in this subset is incomparable.
- \{ Disc. Maths, Adv. Prob.\}

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Anti-Chain

- A subset of S such that every pair in this subset is incomparable.
- \{ Disc. Maths, Adv. Prob.\} \{Adv. DS, Algo, Adv. Prob. \}

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

Anti-Chain

- A subset of S such that every pair in this subset is incomparable.
- \{ Disc. Maths, Adv. Prob.\} \{Adv. DS, Algo, Adv. Prob. \}
- Neither a chain nor an anti-chain:
\{ Disc. Maths, Algo, Adv. DS \}

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

Anti-Chain

- A subset of S such that every pair in this subset is incomparable.
- \{ Disc. Maths, Adv. Prob.\} \{Adv. DS, Algo, Adv. Prob. \}
- Neither a chain nor an anti-chain:
\{ Disc. Maths, Algo, Adv. DS \}
Qn: What does the length of the longest anti-chain signify?

Summary

- Equivalence Relations and Properties.
- Partial Order and Hasse Diagrams.
- Chains and Antichains.
- Partial Order useful to model various real-world examples.
- References : Section 9.5, 9.6 [KR]

