Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 21, 2020

Structured Sets

- Relational Structures
- Properties and closures \checkmark
- Equivalence Relations \checkmark
- Partially Ordered Sets (Posets) and Lattices
- Algebraic Structures
- Groups and Rings

Partially Ordered Sets

- S_{1} - all words in English dictionary.
- Relation R_{1} on S_{1} :
- $\left(w_{1}, w_{2}\right) \in R_{1}$ if $w_{1}=w_{2}$ or w_{1} appears before w_{2} in dictionary.
- S_{2} - all subsets of $\{a, b, c\}$.
- Relation R_{2} on S_{2} :
- $(X, Y) \in R_{2}$ if $X \subseteq Y$.

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.
$a \preceq b$ is used to denote $(a, b) \in R$ when R is reflexive, anti-symmetric and transitive.

Examples:

- "divides" on a set $\{1,2,3,6,9,12,15,24\}$.
- x is older than y on a set of people.
- \leq on the set Z^{+}.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}
$$

$R=\left\{\left(c_{i}, c_{j}\right) \quad \mid \quad\left(c_{i}=c_{j}\right)\right.$ or c_{i} is a pre-requisite for $\left.c_{j}\right\}$

- Comparable elements.

Example: Course pre-requisite structure

List of courses to be completed to graduate.

$$
\begin{gathered}
S=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\} \\
R=\left\{\left(c_{i}, c_{j}\right) \mid\left(c_{i}=c_{j}\right) \text { or } c_{i} \text { is a pre-requisite for } c_{j}\right\}
\end{gathered}
$$

- Qn: Is there a total order on the courses "compatible" with the given partial order? An ordering: Disc. Maths, Prob. Th., PDS, Adv. Prob., Adv. DS, Algo, RP, Adv. Algo
- Is this order unique? No. Write down another order.

Total ordering of a partial order

For a poset (S, \preceq), the relation \preceq_{t} is said to be a total order on S if $a \preceq b$ implies $a \preceq_{t} b$. Note: it is not an iff statement.
A total order is also called as a linearization of the partial order.

Prob. Th. \preceq_{t} Disc. Maths \preceq_{t} PDS \preceq_{t} Adv. Prob. \preceq_{t} Adv. DS \preceq_{t} Algo \preceq_{t} Adv. Algo \preceq_{t} RP \checkmark Prob. Th. \preceq_{t} Disc. Maths \preceq_{t} Algo \preceq_{t} Adv. Prob. \preceq_{t} Adv. DS \preceq_{t} PDS \preceq_{t} Adv. Algo \preceq_{t} RP \times

Total ordering of a partial order

For a poset (S, \preceq), the relation \preceq_{t} is said to be a total order on S if $a \preceq b$ implies $a \preceq_{t} b$. Note: it is not an iff statement.
A total order is also called as a linearization of the partial order.
Qn: How to construct the total order?
Topological sorting of a partial order.
Claim: Every finite poset (S, \preceq) has at least one minimal element.
Proof: Consider any element $a_{i} \in S$. If a_{i} is a minimal element we are done, else there exists an $a_{j} \in S$ such that $a_{j} \prec a_{i}$. Continue the argument with a_{j}. We must stop eventually since the poset is finite.

Topological Sort of a finite poset (S, \preceq) :

- $k=1$
- while there are elements in S
- Let a_{i} be a minimal element in S w.r.t. \preceq
- $b_{k}=a_{i} \quad$ (assign the a_{i} as the k-th element in the order.)
- $S=S \backslash\left\{a_{i}\right\}$
- Output $b_{1}, b_{2}, \ldots, b_{n}$ as the total order.

Back to Chains and Anti-chains

$$
\text { A poset }(S, \preceq)
$$

Chain: A subset $S^{\prime} \subseteq S$ such that every pair of elements in S^{\prime} is comparable.
Maximal chain: A chain that is not a subset of any chain of the poset.
Longest chain: A chain S^{\prime} s.t. no other chain has more elements than $\left|S^{\prime}\right|$.

- $S^{\prime}=\{$ Disc.Maths, Adv.DS $\}$ a valid chain, but not maximal.
- $S^{\prime}=\{$ Prob.Th., Algo, Adv.Algo $\}$ a maximal chain but not longest.
- Find the longest chain S^{\prime} in the example. $\left|S^{\prime}\right|=4$.

Back to Chains and Anti-chains

A poset (S, \preceq)
Anti-chain: A subset $S^{\prime} \subseteq S$ such that every pair of elements in S^{\prime} is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.
Longest anti-chain: An anti-chain S^{\prime} s.t. no other anti-chain has more elements than $\left|S^{\prime}\right|$.

- $S^{\prime}=\{$ Disc.Maths, Adv. Prob $\}$. Is it an anti-chain? Is it maximal? But not longest.
- $S^{\prime}=\{$ Adv.DS, Algo, Adv.Prob. $\}$ is the longest anti-chain.

Relation between Chains and Anti-chain

A finite poset (S, \preceq) and let k be the length of the longest anti-chain.

Claim: The set S can be partitioned as k chains.

- The longest anti-chain is size 3.
- The blue, green and black (three of them) partition S.
- Is it true for every poset?

Ex: Attempt a proof.

An application

We are given a group of $m n+1$ people. Show that there is:

- either a list of $m+1$ people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of $n+1$ people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of $m n+1$ people. Define $a \preceq b$ if either $a=b$ or a is descendant of b. Argue that (S, \preceq) is a poset.

Let set $S^{\prime} \subseteq S$ of people be such that for every pair a, b in S^{\prime}, neither is a descendant of the other. Furthermore S^{\prime} be the largest such set.

If $\left|S^{\prime}\right|=n+1$, we are done. Else let $\left|S^{\prime}\right|=k \leq n$. By claim earlier, S can be partitioned into $k \leq n$ chains.

By pigeonhole principle, we must have at least one chain containing $m+1$ people. This chain is the desired list.

This completes the proof.

Posets with additional Properties

$$
\text { A poset }(S, \preceq) \text { and let } S^{\prime} \subseteq S \text {. }
$$

Upper bound of S^{\prime} : An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S^{\prime}$.

Least upper bound (lub) of S^{\prime} : An upper bound u which is less than every other upper bound of S^{\prime}.

Similar definitions for lower bound and greatest lower bound (glb) of a set S^{\prime}.

$S^{\prime}=\{$ Disc.Maths, Prob.Th., Algo $\}$.

- Adv. Algo is an upper bound for S^{\prime} but not least upper bound.
- Algo is an lub for S^{\prime}.
- The set S^{\prime} has no lower bound and hence no glb.

Lattice: Poset with additional Properties

A poset (S, \preceq) such that every pair of elements has a both an lub and glb is called a lattice.

Examples:

$S=\{1,2,3,4,5\},(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair $(2,3)$, we see that 1 is a glb, but the pair has no upper bounds and hence no lub.
- Hence (S, R) is a poset but not a lattice.

Let X be any set and $S=\mathcal{P}(X)$. Let $(A, B) \in R$ if $A \subseteq B$.

- Verify that (S, R) is a poset.
- For any $A, B \in \mathcal{P}(S)$, we have $A \cap B$ is glb and $A \cup B$ is lub.
- Hence (S, R) is a poset that is a lattice.

Ex: Read Example 25 in Section $9.6[\mathrm{KR}]$ for application of lattices.

Summary

- Posets and properties.
- Chains and Anti-chains and useful relations between size of longest one and "covers" by the other.
- Posets with additional properties : Lattices.
- Reference: Section 9.6 [KR]

