Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 21, 2020

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Structured Sets

- Relational Structures
 - Properties and closures \checkmark
 - Equivalence Relations \checkmark
 - Partially Ordered Sets (Posets) and Lattices
- Algebraic Structures
 - Groups and Rings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- S_1 all words in English dictionary.
- Relation R₁ on S₁:
 - (w₁, w₂) ∈ R₁ if w₁ = w₂ or w₁ appears before w₂ in dictionary.
- *S*₂ all subsets of {*a*, *b*, *c*}.
- Relation R₂ on S₂:
 - $(X, Y) \in R_2$ if $X \subseteq Y$.

Defn: If R on set S is reflexive, and anti-symmetric, and transitive, then R is a partial ordering on set S. Set S along with R is known as a partially ordered set or poset.

 $a \leq b$ is used to denote $(a, b) \in R$ when R is reflexive, anti-symmetric and transitive.

Examples:

- "divides" on a set $\{1, 2, 3, 6, 9, 12, 15, 24\}$.
- x is older than y on a set of people.
- \leq on the set Z^+ .

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

- Comparable elements.
- Minimal elements.
- Least element (if exists).

• Chain and Anti-chain.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

- Comparable elements.
- Minimal elements.
- Least element (if exists).
- Chain and Anti-chain.
- Length of Longest Chain: Minimum number of semesters needed to complete the course work.

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \dots, c_n\}.$ $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

- Comparable elements.
- Minimal elements.
- Least element (if exists).
- Chain and Anti-chain.
- Length of Longest Chain: Minimum number of semesters needed to complete the course work.

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

• Qn: Is there a total order on the courses "compatible" with the given partial order?

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

 Qn: Is there a total order on the courses "compatible" with the given partial order? An ordering: Disc. Maths, Prob. Th., PDS, Adv. Prob., Adv. DS, Algo, RP, Adv. Algo

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

 Qn: Is there a total order on the courses "compatible" with the given partial order? An ordering: Disc. Maths, Prob. Th., PDS, Adv. Prob., Adv. DS, Algo, RP, Adv. Algo

Is this order unique?

CS1200, CSE IIT Madras Meghana Nasre

 $S = \{c_1, c_2, c_3, \ldots, c_n\}.$

 $R = \{ (c_i, c_j) \mid (c_i = c_j) \text{ or } c_i \text{ is a pre-requisite for } c_j \}$

- Qn: Is there a total order on the courses "compatible" with the given partial order? An ordering: Disc. Maths, Prob. Th., PDS, Adv. Prob., Adv. DS, Algo, RP, Adv. Algo
- Is this order unique? No. Write down another order.

CS1200, CSE IIT Madras Meghana Nasre

For a poset (S, \preceq) , the relation \preceq_t is said to be a total order on S if $a \preceq b$ implies $a \preceq_t b$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

 $\mathsf{Prob.} \ \mathsf{Th.} \ \preceq_t \mathsf{Disc.} \ \mathsf{Maths} \ \preceq_t \mathsf{PDS} \ \preceq_t \mathsf{Adv.} \ \mathsf{Prob.} \ \preceq_t \mathsf{Adv}. \ \mathsf{DS} \ \preceq_t \mathsf{Algo} \ \preceq_t \mathsf{Adv}. \ \mathsf{Algo} \ \preceq_t \mathsf{RP}$

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Prob. Th. \leq_t Disc. Maths \leq_t PDS \leq_t Adv. Prob. \leq_t Adv. DS \leq_t Algo \leq_t Adv. Algo \leq_t RP \checkmark Prob. Th. \leq_t Disc. Maths \leq_t Algo \leq_t Adv. Prob. \leq_t Adv. DS \leq_t PDS \leq_t Adv. Algo \leq_t RP

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Prob. Th. \leq_t Disc. Maths \leq_t PDS \leq_t Adv. Prob. \leq_t Adv. DS \leq_t Algo \leq_t Adv. Algo \leq_t RP \checkmark Prob. Th. \leq_t Disc. Maths \leq_t Algo \leq_t Adv. Prob. \leq_t Adv. DS \leq_t PDS \leq_t Adv. Algo \leq_t RP \times

For a poset (S, \preceq) , the relation \preceq_t is said to be a total order on S if $a \preceq b$ implies $a \preceq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a poset (S, \preceq) , the relation \preceq_t is said to be a total order on S if $a \preceq b$ implies $a \preceq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done,

For a poset (S, \preceq) , the relation \preceq_t is said to be a total order on S if $a \preceq b$ implies $a \preceq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$.

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j .

For a poset (S, \preceq) , the relation \preceq_t is said to be a total order on S if $a \preceq b$ implies $a \preceq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j . We must stop eventually since the poset is finite.

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j . We must stop eventually since the poset is finite.

(日) (日) (日) (日) (日) (日) (日) (日)

Topological Sort of a finite poset (S, \preceq) :

- *k* = 1
- while there are elements in S

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j . We must stop eventually since the poset is finite.

Topological Sort of a finite poset (S, \preceq) :

- *k* = 1
- while there are elements in S
 - Let a_i be a minimal element in S w.r.t. \preceq

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j . We must stop eventually since the poset is finite.

Topological Sort of a finite poset (S, \preceq) :

- *k* = 1
- while there are elements in S
 - Let a_i be a minimal element in S w.r.t. \preceq
 - $b_k = a_i$ (assign the a_i as the k-th element in the order.)

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j . We must stop eventually since the poset is finite.

Topological Sort of a finite poset (S, \preceq) :

- *k* = 1
- while there are elements in S
 - Let a_i be a minimal element in S w.r.t. \preceq
 - $b_k = a_i$ (assign the a_i as the k-th element in the order.)
 - $S = S \setminus \{a_i\}$

For a poset (S, \leq) , the relation \leq_t is said to be a total order on S if $a \leq b$ implies $a \leq_t b$. Note: it is not an iff statement.

A total order is also called as a linearization of the partial order.

Qn: How to construct the total order?

Topological sorting of a partial order.

Claim: Every finite poset (S, \preceq) has at least one minimal element.

Proof: Consider any element $a_i \in S$. If a_i is a minimal element we are done, else there exists an $a_j \in S$ such that $a_j \prec a_i$. Continue the argument with a_j . We must stop eventually since the poset is finite.

Topological Sort of a finite poset (S, \preceq) :

- *k* = 1
- while there are elements in S
 - Let a_i be a minimal element in S w.r.t. \preceq
 - $b_k = a_i$ (assign the a_i as the k-th element in the order.)

•
$$S = S \setminus \{a_i\}$$

• Output b_1, b_2, \ldots, b_n as the total order.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ のへぐ

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

Maximal chain: A chain that is not a subset of any chain of the poset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable. Maximal chain: A chain that is not a subset of any chain of the poset. Longest chain: A chain S' s.t. no other chain has more elements than |S'|.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

Maximal chain: A chain that is not a subset of any chain of the poset.

Longest chain: A chain S' s.t. no other chain has more elements than |S'|.

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

Maximal chain: A chain that is not a subset of any chain of the poset.

• S' = {Disc.Maths, Adv.DS} a valid chain, but not maximal.
Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

Maximal chain: A chain that is not a subset of any chain of the poset.

Longest chain: A chain S' s.t. no other chain has more elements than |S'|.

- $S' = \{Disc.Maths, Adv.DS\}$ a valid chain, but not maximal.
- S' = {*Prob.Th., Algo, Adv.Algo*} a maximal chain but not longest.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

Maximal chain: A chain that is not a subset of any chain of the poset.

Longest chain: A chain S' s.t. no other chain has more elements than |S'|.

- S' = {Disc.Maths, Adv.DS} a valid chain, but not maximal.
- S' = {*Prob.Th., Algo, Adv.Algo*} a maximal chain but not longest.
- Find the longest chain S' in the example.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

Chain: A subset $S' \subseteq S$ such that every pair of elements in S' is comparable.

Maximal chain: A chain that is not a subset of any chain of the poset.

Longest chain: A chain S' s.t. no other chain has more elements than |S'|.

- $S' = \{Disc.Maths, Adv.DS\}$ a valid chain, but not maximal.
- S' = {*Prob.Th., Algo, Adv.Algo*} a maximal chain but not longest.
- Find the longest chain S' in the example. |S'| = 4.

- 日本 - 4 日本 - 4 日本 - 日本

CS1200, CSE IIT Madras Meghana Nasre

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Longest anti-chain: An anti-chain S' s.t. no other anti-chain has more elements than |S'|.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Longest anti-chain: An anti-chain S' s.t. no other anti-chain has more elements than |S'|.

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Longest anti-chain: An anti-chain S' s.t. no other anti-chain has more elements than |S'|.

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Longest anti-chain: An anti-chain S' s.t. no other anti-chain has more elements than |S'|.

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Longest anti-chain: An anti-chain S' s.t. no other anti-chain has more elements than |S'|.

 S' = {Disc.Maths, Adv.Prob}. Is it an anti-chain? Is it maximal? But not longest.

Anti-chain: A subset $S' \subseteq S$ such that every pair of elements in S' is incomparable.

Maximal anti-chain: An anti-chain that is not a subset of any anti-chain of the poset.

Longest anti-chain: An anti-chain S' s.t. no other anti-chain has more elements than |S'|.

- S' = {Disc.Maths, Adv.Prob}. Is it an anti-chain? Is it maximal? But not longest.
- $S' = \{Adv.DS, Algo, Adv.Prob.\}$ is the longest anti-chain.

Structured Sets

Relation between Chains and Anti-chain

A finite poset (S, \leq) and let k be the length of the longest anti-chain.

Claim: The set S can be partitioned as k chains.

Claim: The set S can be partitioned as k chains.

• The longest anti-chain is size 3.

Claim: The set S can be partitioned as k chains.

- The longest anti-chain is size 3.
- The blue, green and black (three of them) partition *S*.

Claim: The set S can be partitioned as k chains.

- The longest anti-chain is size 3.
- The blue, green and black (three of them) partition *S*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Is it true for every poset?

Claim: The set S can be partitioned as k chains.

- The longest anti-chain is size 3.
- The blue, green and black (three of them) partition *S*.

• Is it true for every poset? Ex: Attempt a proof.

• either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let *S* be the set of mn + 1 people.

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of mn + 1 people. Define $a \leq b$ if either a = b or a is descendant of b.

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of mn + 1 people. Define $a \leq b$ if either a = b or a is descendant of b. Argue that (S, \leq) is a poset.

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of mn + 1 people. Define $a \leq b$ if either a = b or a is descendant of b. Argue that (S, \leq) is a poset.

(日) (日) (日) (日) (日) (日) (日) (日)

Let set $S' \subseteq S$ of people be such that for every pair a, b in S', neither is a descendant of the other. Furthermore S' be the largest such set.

If |S'| = n + 1, we are done. Else let $|S'| = k \le n$.

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of mn + 1 people. Define $a \leq b$ if either a = b or a is descendant of b. Argue that (S, \leq) is a poset.

Let set $S' \subseteq S$ of people be such that for every pair a, b in S', neither is a descendant of the other. Furthermore S' be the largest such set.

If |S'| = n + 1, we are done. Else let $|S'| = k \le n$. By claim earlier, S can be partitioned into $k \le n$ chains.

(日) (日) (日) (日) (日) (日) (日) (日)

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of mn + 1 people. Define $a \leq b$ if either a = b or a is descendant of b. Argue that (S, \leq) is a poset.

Let set $S' \subseteq S$ of people be such that for every pair a, b in S', neither is a descendant of the other. Furthermore S' be the largest such set.

If |S'| = n + 1, we are done. Else let $|S'| = k \le n$. By claim earlier, S can be partitioned into $k \le n$ chains.

By pigeonhole principle, we must have at least one chain containing m+1 people. This chain is the desired list.

(日) (日) (日) (日) (日) (日) (日) (日)

- either a list of m + 1 people such that every person in the list (except the first one) is a descendant of the previous person in the list, or
- there is a set of n + 1 people such that there is no pair in this set where one person is a descendant of the other.

Proof: Let S be the set of mn + 1 people. Define $a \leq b$ if either a = b or a is descendant of b. Argue that (S, \leq) is a poset.

Let set $S' \subseteq S$ of people be such that for every pair a, b in S', neither is a descendant of the other. Furthermore S' be the largest such set.

If |S'| = n + 1, we are done. Else let $|S'| = k \le n$. By claim earlier, S can be partitioned into $k \le n$ chains.

By pigeonhole principle, we must have at least one chain containing m+1 people. This chain is the desired list.

(日) (日) (日) (日) (日) (日) (日) (日)

This completes the proof.

Posets with additional Properties

A poset (S, \preceq) and let $S' \subseteq S$.

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

Upper bound of S': An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S'$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Upper bound of S': An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Upper bound of S': An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

(日) (日) (日) (日) (日) (日) (日) (日)

Upper bound of S': An element $u \in S$ (if it exists) such that $a \leq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

Upper bound of S': An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

Upper bound of S': An element $u \in S$ (if it exists) such that $a \leq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

Upper bound of S': An element $u \in S$ (if it exists) such that $a \leq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

 $S' = \{ Disc. Maths, Prob. Th., Algo \}.$

• Adv. Algo is an upper bound for S' but not least upper bound.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Upper bound of S': An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

 $S' = \{ Disc. Maths, Prob. Th., Algo \}.$

• Adv. Algo is an upper bound for S' but not least upper bound.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

• Algo is an lub for S'.

Structured Sets
A poset (S, \preceq) and let $S' \subseteq S$.

Upper bound of S': An element $u \in S$ (if it exists) such that $a \preceq u$ for every $a \in S'$.

Least upper bound (lub) of S': An upper bound u which is less than every other upper bound of S'.

Similar definitions for lower bound and greatest lower bound (glb) of a set S'.

 $S' = \{ Disc. Maths, Prob. Th., Algo \}.$

- Adv. Algo is an upper bound for S' but not least upper bound.
- Algo is an lub for S'.

Structured Sets

• The set S' has no lower bound and hence no glb.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Lattice: Poset with additional Properties

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Lattice: Poset with additional Properties

A poset (S, \preceq) such that every pair of elements has a both an lub and glb is called a lattice.

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

Lattice: Poset with additional Properties

A poset (S, \preceq) such that every pair of elements has a both an lub and glb is called a lattice.

Examples:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Examples:

- $S = \{1, 2, 3, 4, 5\}, (a, b) \in R$ if a divides b.
 - Verify that (S, R) is a poset.

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.
- Hence (S, R) is a poset but not a lattice.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ のへぐ

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.

• Hence (S, R) is a poset but not a lattice.

Let X be any set and $S = \mathcal{P}(X)$. Let $(A, B) \in R$ if $A \subseteq B$.

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.

• Hence (S, R) is a poset but not a lattice.

Let X be any set and $S = \mathcal{P}(X)$. Let $(A, B) \in R$ if $A \subseteq B$.

• Verify that (S, R) is a poset.

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.
- Hence (S, R) is a poset but not a lattice.

Let X be any set and $S = \mathcal{P}(X)$. Let $(A, B) \in R$ if $A \subseteq B$.

- Verify that (S, R) is a poset.
- For any $A, B \in \mathcal{P}(S)$, we have $A \cap B$ is glb and $A \cup B$ is lub.

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.
- Hence (S, R) is a poset but not a lattice.

Let X be any set and $S = \mathcal{P}(X)$. Let $(A, B) \in R$ if $A \subseteq B$.

- Verify that (S, R) is a poset.
- For any $A, B \in \mathcal{P}(S)$, we have $A \cap B$ is glb and $A \cup B$ is lub.
- Hence (S, R) is a poset that is a lattice.

Examples:

 $S = \{1, 2, 3, 4, 5\}$, $(a, b) \in R$ if a divides b.

- Verify that (S, R) is a poset.
- For the pair (2, 3), we see that 1 is a glb, but the pair has no upper bounds and hence no lub.
- Hence (S, R) is a poset but not a lattice.

Let X be any set and $S = \mathcal{P}(X)$. Let $(A, B) \in R$ if $A \subseteq B$.

- Verify that (S, R) is a poset.
- For any $A, B \in \mathcal{P}(S)$, we have $A \cap B$ is glb and $A \cup B$ is lub.
- Hence (S, R) is a poset that is a lattice.

Ex: Read Example 25 in Section 9.6[KR] for application of lattices.

Summary

- Posets and properties.
- Chains and Anti-chains and useful relations between size of longest one and "covers" by the other.
- Posets with additional properties : Lattices.
- Reference: Section 9.6 [KR]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@