Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 24, 2020

Structured Sets

- Relational Structures
- Properties and closures \checkmark
- Equivalence Relations \checkmark
- Partially Ordered Sets (Posets) and Lattices \checkmark
- Algebraic Structures
- Groups and Rings

Algebraic Structures: Recap

Set A with a binary operator $*$

- If $*$ is closed and associative, then $(A, *)$ is a semi-group.
- If $*$ is closed and associative, and an identity element e exists, then $(A, *)$ is a monoid.
- If $*$ is closed and associative, and an identity element e exists, and every element $b \in A$ has an inverse then $(A, *)$ is a group.

Example: For any positive integer n, let $Z_{n}=\{0,1,2, \ldots, n-1\}$. Let \oplus_{n} be the binary operator as follows.

$$
\begin{aligned}
a \oplus_{n} b & =a+b & & \text { if } a+b<n \\
& =a+b-n & & \text { otherwise }
\end{aligned}
$$

Verify that $\left(Z_{n}, \oplus_{n}\right)$ is a group for any n. This is called the group of integers modulo n.

If $(A, *)$ is a group and $*$ is commutative, then $(A, *)$ is called a commutative or Abelian group. $\left(Z_{n}, \oplus_{n}\right)$ is a commutative group.

Subgroups

$$
Z=\{\ldots,-2,-1,0,1,2, \ldots\} \quad(Z,+) \text { is a group. }
$$

- Consider $E=\{\ldots,-4,-2,0,2,4, \ldots\}$. Is $(E,+)$ a group? verify that $(E,+)$ satisfies the four conditions of a group.
- What about $(O,+)$, where $O=\{\ldots,-3,-1,1,3, \ldots\}$? identity element is not present, hence not a group.

Let $(A, *)$ be a group and B be a subset of A. Then, $(B, *)$ is called a subgroup of A if $(B, *)$ is a group by itself.

To verify that $(B, *)$ is a subgroup, ensure that all four properties of a group are satisfied and $B \subseteq A$.

Subgroups

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

We would like to list subgroups of Z_{6} (if any).
Observations: Let $B \subseteq Z_{6}$ such that $\left(B, \oplus_{6}\right)$ is a subgroup.

1. The element 0 must belong to B else identity will be missing.
2. \oplus_{6} must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.

- Let $B_{1}=\{0\}$. Verify that $\left(B_{1}, \oplus_{6}\right)$ is indeed a subgroup.
- Let $B_{2}=\{0,1\} . \oplus_{6}$ is closed for B_{2}. However, inverse for 1 which is 5 does not exist. Hence $\left(B_{2}, \oplus_{6}\right)$ is not a group.
- Let $B_{3}=\{0,1,5\}$. Now we have fixed the issue of inverse. So is $\left(B_{3}, \oplus_{6}\right)$ a group? No! Since $1 \oplus_{6} 1=2$ and $2 \notin B_{3}$. Similarly, $5 \oplus_{6} 5=4 \notin B_{3}$. (recall that $5 \oplus_{6} 5=5+5-6=4$)
Verify that $\left(\{0\}, \oplus_{6}\right),\left(\{0,3\}, \oplus_{6}\right),\left(\{0,2,4\}, \oplus_{6}\right)$ and $\left(Z_{6}, \oplus_{6}\right)$ are the only subgroups of $\left(Z_{6}, \oplus_{6}\right)$.
Ex: List non-trivial subgroups of $\left(Z_{5}, \oplus_{5}\right)$ (trivial ones are $\left(\{0\}, \oplus_{5}\right)$ and $\left(Z_{5}, \oplus_{5}\right)$).

Subgroup and properties

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the following:

- $1 \oplus_{6} 1=2$; we write this as $1^{2}=2$ (in this context).
- $1 \oplus_{6} 1 \oplus_{6} 1=3$; we write this as $1^{3}=3$.
- $1 \oplus_{6} 1 \oplus_{6} 1 \oplus_{6} 1=4$; we write this as $1^{4}=4 ; 1^{5}=5$ and $1^{6}=0$.

What is special about 1 in the context of $\left(Z_{6}, \oplus_{6}\right)$? It can "generate" every element in Z_{6}. Such an element is called a generator.

Ex: Are there other generators of Z_{6} ? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list some elements that cannot be generated using 3 alone.

Generators and cyclic groups

Let $(A, *)$ be any group. Let $b \in A$ be some element.
We write $b * b=b^{2}$. In general $b^{i}=b * b * \ldots * b \quad i$ times.
Let $b^{0}=e \quad$ identity element of the group.
Let b^{-1} denote the inverse of b in $(A, *)$. Analogously define $b^{-2}=b^{-1} * b^{-1}$.

$$
\langle b\rangle=\left\{\ldots, b^{-3}, b^{-2}, b^{-1}, e, b, b^{2}, b^{3}, \ldots\right\}=\left\{b^{n} \mid n \in Z\right\}
$$

Note that all the powers of b need not be distinct.

A group $(A, *)$ is cyclic if there exists some $b \in A$ such that $\langle b\rangle=A$.
Examples: $\left(Z_{6}, \oplus_{6}\right)$ is a cyclic group, with generator $\langle 1\rangle$. Similarly $(Z,+)$ is a cyclic group with generator $\langle 1\rangle$.
Are all groups cyclic? Not necessarily. Construct example.

Powers and subgroups

Let $(A, *)$ be any group. Let $b \in A$ be some element.

$$
\langle b\rangle=\left\{\ldots, b^{-3}, b^{-2}, b^{-1}, e, b, b^{2}, b^{3}, \ldots\right\}=\left\{b^{n} \mid n \in Z\right\}
$$

Claim: The system $(\langle b\rangle, *)$ forms a group and hence a subgroup of $(A, *)$.
Proof: Need to show that $(\langle b\rangle, *)$ satisfies all properties of a group.

- Associativity: Follows since $*$ is associative.
- Closure: By construction of $\langle b\rangle$.
- Identity: We know that $b^{0}=e \in\langle b\rangle$.
- Inverse: Let $x=b^{i}$ then b^{-i} is the inverse of x since $b^{i} * b^{-i}=b^{0}=e$. Hence every element has an inverse in $\langle b\rangle$.

Groups and Finite subsets

Let $(A, *)$ be any group. Let $B \subseteq A$.
Claim: If B is finite and $*$ is closed on B, then $(B, *)$ is a subgroup of $(A, *)$.
$\left(Z_{6}, \oplus_{6}\right)$ is a group. Consider $B=\{0,3\}$. Observe that \oplus_{6} is closed under B. Verify that $\left(B, \oplus_{6}\right)$ is a group.

Proof: By assumption $*$ is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because $*$ is closed on B, for any $c \in B$, we have c, c^{2}, c^{3}, \ldots, belong to B. Since B is finite, it must be the case that $c^{i}=c^{j}$ for some $i<j$. Thus, $c^{i}=c^{i} * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Inverse for any element c exists: If $j-i>1$, then $c^{j-i}=c * c^{j-i-1}$, then since $c^{j-i}=e$, we conclude that c^{j-i-1} is the inverse of c. If $j-i=1$, then $c^{i}=c^{i} * c$. Thus, c must be the identity and its own inverse.
Ex: Make sure you work out the proof on the example above by taking $c=3$ and $c=0$ and observe how you fall in the two cases.

Order of group for finite groups

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Order of a group: For a finite group $(A, *)$ we say that $|A|$ is the order of the group.

- Order of $\left(Z_{6}, \oplus_{6}\right)$ is 6 .
- Recall that $\left(\{0\}, \oplus_{6}\right),\left(\{0,3\}, \oplus_{6}\right),\left(\{0,2,4\}, \oplus_{6}\right)$ and $\left(Z_{6}, \oplus_{6}\right)$ are the only subgroups of $\left(Z_{6}, \oplus_{6}\right)$ respectively of order 1,2 and 3.

Qn: Is there any relation between the order of a finite group and the order of its subgroups?

Lagrange's Theorem: The order of any subgroup of a finite group divides the order of the group.

Corollary: For any prime p, the group $\left(Z_{p}, \oplus_{p}\right)$ does not have any non-trivial sub-group.

Summary

- Subgroups: definition, examples.
- Generator of a group and cyclic groups.
- Finite subsets and subgroups.
- Order of a group.
- References: Section 11.3, 11.4 of Elements of Discrete Maths, C.L. Liu.

