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Structured Sets

• Relational Structures
• Properties and closures X
• Equivalence Relations X
• Partially Ordered Sets (Posets) and Lattices X

• Algebraic Structures
• Groups and Rings
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Algebraic Structures: Recap

Set A with a binary operator ∗

• If ∗ is closed and associative, then (A, ∗) is a semi-group.

• If ∗ is closed and associative, and an identity element e exists, then (A, ∗)
is a monoid.

• If ∗ is closed and associative, and an identity element e exists, and every
element b ∈ A has an inverse then (A, ∗) is a group.

Example: For any positive integer n, let Zn = {0, 1, 2, . . . , n − 1}. Let ⊕n be
the binary operator as follows.

a⊕n b = a + b if a + b < n

= a + b − n otherwise

Verify that (Zn,⊕n) is a group for any n. This is called the group of integers
modulo n.

If (A, ∗) is a group and ∗ is commutative, then (A, ∗) is called a commutative or

Abelian group. (Zn,⊕n) is a commutative group.
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Subgroups

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

(Z ,+) is a group.

• Consider E = {. . . ,−4,−2, 0, 2, 4, . . .}. Is (E ,+) a group?
verify that (E ,+) satisfies the four conditions of a group.

• What about (O,+), where O = {. . . ,−3,−1, 1, 3, . . .}? identity element is

not present, hence not a group.

Let (A, ∗) be a group and B be a subset of A. Then, (B, ∗) is called a
subgroup of A if (B, ∗) is a group by itself.

To verify that (B, ∗) is a subgroup, ensure that all four properties of a group
are satisfied and B ⊆ A.
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Subgroups

Z6 = {0, 1, 2, 3, 4, 5}

(Z6,⊕6) is a group.

We would like to list subgroups of Z6 (if any).

Observations: Let B ⊆ Z6 such that (B,⊕6) is a subgroup.

1. The element 0 must belong to B else identity will be missing.

2. ⊕6 must be closed on B, hence if 2 ∈ B and 3 ∈ B, it implies that 5 ∈ B.

• Let B1 = {0}. Verify that (B1,⊕6) is indeed a subgroup.

• Let B2 = {0, 1}. ⊕6 is closed for B2. However, inverse for 1 which is 5
does not exist. Hence (B2,⊕6) is not a group.

• Let B3 = {0, 1, 5}. Now we have fixed the issue of inverse. So is (B3,⊕6)
a group? No! Since 1⊕6 1 = 2 and 2 /∈ B3. Similarly, 5⊕6 5 = 4 /∈ B3.
(recall that 5⊕6 5 = 5 + 5− 6 = 4)

Verify that ({0},⊕6), ({0, 3},⊕6), ({0, 2, 4},⊕6) and (Z6,⊕6) are the only
subgroups of (Z6,⊕6).

Ex: List non-trivial subgroups of (Z5,⊕5) (trivial ones are ({0},⊕5) and
(Z5,⊕5)).
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Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5}

(Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2;

we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3;

we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4;

15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)?

It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6.

Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?

Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this.

The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Subgroup and properties

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the following:

• 1⊕6 1 = 2; we write this as 12 = 2 (in this context).

• 1⊕6 1⊕6 1 = 3; we write this as 13 = 3.

• 1⊕6 1⊕6 1⊕6 1 = 4; we write this as 14 = 4; 15 = 5 and 16 = 0.

What is special about 1 in the context of (Z6,⊕6)? It can “generate” every
element in Z6. Such an element is called a generator.

Ex: Are there other generators of Z6? How about 3?
Ans: 5 is another generator, verify this. The element 3 is not a generator; list
some elements that cannot be generated using 3 alone.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Generators and cyclic groups

Let (A, ∗) be any group. Let b ∈ A be some element.

We write b ∗ b = b2. In general bi = b ∗ b ∗ . . . ∗ b i times.

Let b0 = e identity element of the group.

Let b−1 denote the inverse of b in (A, ∗). Analogously define b−2 = b−1 ∗ b−1.

〈b〉 = {. . . , b−3, b−2, b−1, e, b, b2, b3, . . .} = {bn | n ∈ Z}

Note that all the powers of b need not be distinct.

A group (A, ∗) is cyclic if there exists some b ∈ A such that 〈b〉 = A.

Examples: (Z6,⊕6) is a cyclic group, with generator 〈1〉. Similarly (Z ,+) is a cyclic

group with generator 〈1〉.
Are all groups cyclic? Not necessarily. Construct example.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Generators and cyclic groups

Let (A, ∗) be any group. Let b ∈ A be some element.

We write b ∗ b = b2. In general bi = b ∗ b ∗ . . . ∗ b

i times.

Let b0 = e identity element of the group.

Let b−1 denote the inverse of b in (A, ∗). Analogously define b−2 = b−1 ∗ b−1.

〈b〉 = {. . . , b−3, b−2, b−1, e, b, b2, b3, . . .} = {bn | n ∈ Z}

Note that all the powers of b need not be distinct.

A group (A, ∗) is cyclic if there exists some b ∈ A such that 〈b〉 = A.

Examples: (Z6,⊕6) is a cyclic group, with generator 〈1〉. Similarly (Z ,+) is a cyclic

group with generator 〈1〉.
Are all groups cyclic? Not necessarily. Construct example.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Generators and cyclic groups

Let (A, ∗) be any group. Let b ∈ A be some element.

We write b ∗ b = b2. In general bi = b ∗ b ∗ . . . ∗ b i times.

Let b0 = e identity element of the group.

Let b−1 denote the inverse of b in (A, ∗). Analogously define b−2 = b−1 ∗ b−1.

〈b〉 = {. . . , b−3, b−2, b−1, e, b, b2, b3, . . .} = {bn | n ∈ Z}

Note that all the powers of b need not be distinct.

A group (A, ∗) is cyclic if there exists some b ∈ A such that 〈b〉 = A.

Examples: (Z6,⊕6) is a cyclic group, with generator 〈1〉. Similarly (Z ,+) is a cyclic

group with generator 〈1〉.
Are all groups cyclic? Not necessarily. Construct example.
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Powers and subgroups

Let (A, ∗) be any group. Let b ∈ A be some element.

〈b〉 = {. . . , b−3, b−2, b−1, e, b, b2, b3, . . .} = {bn | n ∈ Z}

Claim: The system (〈b〉, ∗) forms a group and hence a subgroup of (A, ∗).

Proof: Need to show that (〈b〉, ∗) satisfies all properties of a group.

• Associativity: Follows since ∗ is associative.

• Closure: By construction of 〈b〉.
• Identity: We know that b0 = e ∈ 〈b〉.
• Inverse: Let x = bi then b−i is the inverse of x since bi ∗ b−i = b0 = e.

Hence every element has an inverse in 〈b〉.
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Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B.

We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present:

Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists:

If j − i > 1, then c j−i = c ∗ c j−i−1, then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Groups and Finite subsets

Let (A, ∗) be any group. Let B ⊆ A.

Claim: If B is finite and ∗ is closed on B, then (B, ∗) is a subgroup of (A, ∗).

(Z6,⊕6) is a group. Consider B = {0, 3}. Observe that ⊕6 is closed under B. Verify

that (B,⊕6) is a group.

Proof: By assumption ∗ is closed on B. We need to only show that every
element has its inverse in B and identity element belongs to B.

Identity is present: Because ∗ is closed on B, for any c ∈ B, we have
c, c2, c3, . . . , belong to B. Since B is finite, it must be the case that c i = c j

for some i < j . Thus, c i = c i ∗ c j−i . Thus c j−i is the identity element and is
included in B.

Inverse for any element c exists: If j − i > 1, then c j−i = c ∗ c j−i−1,

then since
c j−i = e, we conclude that c j−i−1 is the inverse of c. If j − i = 1, then
c i = c i ∗ c. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c = 3
and c = 0 and observe how you fall in the two cases.
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Order of group for finite groups

Z6 = {0, 1, 2, 3, 4, 5}

(Z6,⊕6) is a group.

Order of a group: For a finite group (A, ∗) we say that |A| is the order of the
group.

• Order of (Z6,⊕6) is 6.

• Recall that ({0},⊕6), ({0, 3},⊕6), ({0, 2, 4},⊕6) and (Z6,⊕6) are the
only subgroups of (Z6,⊕6) respectively of order 1, 2 and 3.

Qn: Is there any relation between the order of a finite group and the order of
its subgroups?

Lagrange’s Theorem: The order of any subgroup of a finite group divides the
order of the group.

Corollary: For any prime p, the group (Zp,⊕p) does not have any non-trivial
sub-group.
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Summary

• Subgroups: definition, examples.

• Generator of a group and cyclic groups.

• Finite subsets and subgroups.

• Order of a group.

• References: Section 11.3, 11.4 of Elements of Discrete Maths, C.L. Liu.
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