Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 24, 2020

Structured Sets

- Relational Structures
 - Properties and closures √
 - Equivalence Relations √
 - Partially Ordered Sets (Posets) and Lattices √
- Algebraic Structures
 - Groups and Rings

Set A with a binary operator \ast

Set A with a binary operator *

• If * is closed and associative, then (A, *) is a semi-group.

Set A with a binary operator *

- If * is closed and associative, then (A, *) is a semi-group.
- If * is closed and associative, and an identity element e exists, then (A, *) is a monoid.

Set A with a binary operator *

- If * is closed and associative, then (A, *) is a semi-group.
- If * is closed and associative, and an identity element e exists, then (A,*) is a monoid.
- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.

Set A with a binary operator *

- If * is closed and associative, then (A, *) is a semi-group.
- If * is closed and associative, and an identity element e exists, then (A,*) is a monoid.
- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.

Example: For any positive integer n, let $Z_n = \{0, 1, 2, ..., n-1\}$. Let \bigoplus_n be the binary operator as follows.

$$a \oplus_n b = a + b$$
 if $a + b < n$
= $a + b - n$ otherwise

Set A with a binary operator *

- If * is closed and associative, then (A, *) is a semi-group.
- If * is closed and associative, and an identity element e exists, then (A,*) is a monoid.
- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.

Example: For any positive integer n, let $Z_n = \{0, 1, 2, ..., n-1\}$. Let \bigoplus_n be the binary operator as follows.

$$a \oplus_n b = a + b$$
 if $a + b < n$
= $a + b - n$ otherwise

Verify that (Z_n, \oplus_n) is a group for any n. This is called the group of integers modulo n.

Set A with a binary operator *

- If * is closed and associative, then (A, *) is a semi-group.
- If * is closed and associative, and an identity element e exists, then (A,*) is a monoid.
- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.

Example: For any positive integer n, let $Z_n = \{0, 1, 2, ..., n-1\}$. Let \bigoplus_n be the binary operator as follows.

$$a \oplus_n b = a + b$$
 if $a + b < n$
= $a + b - n$ otherwise

Verify that (Z_n, \oplus_n) is a group for any n. This is called the group of integers modulo n.

If (A,*) is a group and * is commutative, then (A,*) is called a commutative or Abelian group.

Set A with a binary operator *

- If * is closed and associative, then (A, *) is a semi-group.
- If * is closed and associative, and an identity element e exists, then (A, *) is a monoid.
- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.

Example: For any positive integer n, let $Z_n = \{0, 1, 2, ..., n-1\}$. Let \bigoplus_n be the binary operator as follows.

$$a \oplus_n b = a + b$$
 if $a + b < n$
= $a + b - n$ otherwise

Verify that (Z_n, \oplus_n) is a group for any n. This is called the group of integers modulo n.

If (A,*) is a group and * is commutative, then (A,*) is called a commutative or Abelian group. (Z_n, \oplus_n) is a commutative group.

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 $(Z, +)$ is a group.

$$Z = \{\dots, -2, -1, 0, 1, 2, \dots\}$$
 (Z, +) is a group.

• Consider $E = \{..., -4, -2, 0, 2, 4, ...\}$. Is (E, +) a group?

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 (Z, +) is a group.

• Consider $E = \{..., -4, -2, 0, 2, 4, ...\}$. Is (E, +) a group? verify that (E, +) satisfies the four conditions of a group.

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 (Z, +) is a group.

- Consider E = {..., -4, -2, 0, 2, 4, ...}. Is (E, +) a group?
 verify that (E, +) satisfies the four conditions of a group.
- What about (O, +), where $O = \{\dots, -3, -1, 1, 3, \dots\}$? identity element is not present, hence not a group.

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 (Z, +) is a group.

- Consider E = {..., -4, -2, 0, 2, 4, ...}. Is (E, +) a group?
 verify that (E, +) satisfies the four conditions of a group.
- What about (O, +), where $O = \{\dots, -3, -1, 1, 3, \dots\}$? identity element is not present, hence not a group.

Let (A, *) be a group and B be a subset of A.

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 (Z, +) is a group.

- Consider E = {..., -4, -2, 0, 2, 4, ...}. Is (E, +) a group?
 verify that (E, +) satisfies the four conditions of a group.
- What about (O, +), where $O = \{..., -3, -1, 1, 3, ...\}$? identity element is not present, hence not a group.

Let (A, *) be a group and B be a subset of A. Then, (B, *) is called a subgroup of A if (B, *) is a group by itself.

$$Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 (Z, +) is a group.

- Consider E = {..., -4, -2, 0, 2, 4, ...}. Is (E, +) a group?
 verify that (E, +) satisfies the four conditions of a group.
- What about (O, +), where $O = \{..., -3, -1, 1, 3, ...\}$? identity element is not present, hence not a group.

Let (A,*) be a group and B be a subset of A. Then, (B,*) is called a subgroup of A if (B,*) is a group by itself.

To verify that (B,*) is a subgroup, ensure that all four properties of a group are satisfied and $B\subseteq A$.

$$\textit{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

$$\label{eq:Z6} \textit{Z}_6 = \{0, 1, 2, 3, 4, 5\} \hspace{0.5cm} (\textit{Z}_6, \oplus_6) \text{ is a group.}$$

We would like to list subgroups of Z_6 (if any).

$$\label{eq:Z6} \textit{Z}_6 = \{0, 1, 2, 3, 4, 5\} \hspace{0.5cm} (\textit{Z}_6, \oplus_6) \text{ is a group.}$$

We would like to list subgroups of Z_6 (if any).

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

Observations: Let $B \subseteq Z_6$ such that (B, \oplus_6) is a subgroup.

1. The element 0 must belong to B

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

We would like to list subgroups of Z_6 (if any).

Observations: Let $B \subseteq Z_6$ such that (B, \oplus_6) is a subgroup.

1. The element 0 must belong to B else identity will be missing.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
- Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
- Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
- Let $B_2 = \{0, 1\}$.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
- Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
- Let $B_2 = \{0, 1\}$. \oplus_6 is closed for B_2 .

$$\label{eq:Z6} \textit{Z}_6 = \{0, 1, 2, 3, 4, 5\} \hspace{0.5cm} (\textit{Z}_6, \oplus_6) \text{ is a group}.$$

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
- Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
- Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂, ⊕₆) is not a group.

$$\label{eq:Z6} \textit{Z}_6 = \{0, 1, 2, 3, 4, 5\} \hspace{0.5cm} (\textit{Z}_6, \oplus_6) \text{ is a group}.$$

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let $B_3 = \{0, 1, 5\}$. Now we have fixed the issue of inverse.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let B₃ = {0,1,5}. Now we have fixed the issue of inverse. So is (B₃,⊕₆) a group?

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to *B* else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let $B_3 = \{0, 1, 5\}$. Now we have fixed the issue of inverse. So is (B_3, \oplus_6) a group? No!

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let $B_3 = \{0, 1, 5\}$. Now we have fixed the issue of inverse. So is (B_3, \oplus_6) a group? No! Since $1 \oplus_6 1 = 2$ and $2 \notin B_3$. Similarly, $5 \oplus_6 5 = 4 \notin B_3$.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

- 1. The element 0 must belong to B else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let $B_3=\{0,1,5\}$. Now we have fixed the issue of inverse. So is (B_3,\oplus_6) a group? No! Since $1\oplus_6 1=2$ and $2\notin B_3$. Similarly, $5\oplus_6 5=4\notin B_3$. (recall that $5\oplus_6 5=5+5-6=4$)

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

Observations: Let $B \subseteq Z_6$ such that (B, \oplus_6) is a subgroup.

- 1. The element 0 must belong to *B* else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let $B_3=\{0,1,5\}$. Now we have fixed the issue of inverse. So is (B_3,\oplus_6) a group? No! Since $1\oplus_6 1=2$ and $2\notin B_3$. Similarly, $5\oplus_6 5=4\notin B_3$. (recall that $5\oplus_6 5=5+5-6=4$)

Verify that $(\{0\}, \oplus_6)$, $(\{0,3\}, \oplus_6)$, $(\{0,2,4\}, \oplus_6)$ and (Z_6, \oplus_6) are the only subgroups of (Z_6, \oplus_6) .

Subgroups

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

We would like to list subgroups of Z_6 (if any).

Observations: Let $B \subseteq Z_6$ such that (B, \oplus_6) is a subgroup.

- 1. The element 0 must belong to *B* else identity will be missing.
- 2. \oplus_6 must be closed on B, hence if $2 \in B$ and $3 \in B$, it implies that $5 \in B$.
 - Let $B_1 = \{0\}$. Verify that (B_1, \oplus_6) is indeed a subgroup.
 - Let B₂ = {0,1}. ⊕₆ is closed for B₂. However, inverse for 1 which is 5 does not exist. Hence (B₂,⊕₆) is not a group.
 - Let $B_3=\{0,1,5\}$. Now we have fixed the issue of inverse. So is (B_3,\oplus_6) a group? No! Since $1\oplus_6 1=2$ and $2\notin B_3$. Similarly, $5\oplus_6 5=4\notin B_3$. (recall that $5\oplus_6 5=5+5-6=4$)

Verify that $(\{0\}, \oplus_6)$, $(\{0,3\}, \oplus_6)$, $(\{0,2,4\}, \oplus_6)$ and (Z_6, \oplus_6) are the only subgroups of (Z_6, \oplus_6) .

Ex: List non-trivial subgroups of (Z_5, \oplus_5) (trivial ones are $(\{0\}, \oplus_5)$ and (Z_5, \oplus_5)).

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

•
$$1 \oplus_6 1 = 2$$
;

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

Consider the following:

• $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$;

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$;

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the following:

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

What is special about 1 in the context of (Z_6, \oplus_6) ?

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the following:

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

What is special about 1 in the context of (Z_6, \oplus_6) ? It can "generate" every element in Z_6 .

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the following:

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

What is special about 1 in the context of (Z_6, \oplus_6) ? It can "generate" every element in Z_6 . Such an element is called a generator.

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

Consider the following:

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

What is special about 1 in the context of (Z_6, \oplus_6) ? It can "generate" every element in Z_6 . Such an element is called a generator.

Ex: Are there other generators of Z_6 ? How about 3?

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the following:

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

What is special about 1 in the context of (Z_6, \oplus_6) ? It can "generate" every element in Z_6 . Such an element is called a generator.

Ex: Are there other generators of Z_6 ? How about 3?

Ans: 5 is another generator, verify this.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the following:

- $1 \oplus_6 1 = 2$; we write this as $1^2 = 2$ (in this context).
- $1 \oplus_6 1 \oplus_6 1 = 3$; we write this as $1^3 = 3$.
- $1 \oplus_6 1 \oplus_6 1 \oplus_6 1 = 4$; we write this as $1^4 = 4$; $1^5 = 5$ and $1^6 = 0$.

What is special about 1 in the context of (Z_6, \oplus_6) ? It can "generate" every element in Z_6 . Such an element is called a generator.

Ex: Are there other generators of Z_6 ? How about 3?

Ans: 5 is another generator, verify this. The element 3 is not a generator; list some elements that cannot be generated using 3 alone.

Let (A, *) be any group. Let $b \in A$ be some element.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$

Let (A,*) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots\} = \{b^n \mid n \in Z\}$$

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots\} = \{b^n \mid n \in Z\}$$

Note that all the powers of b need not be distinct.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots\} = \{b^n \mid n \in Z\}$$

Note that all the powers of b need not be distinct.

A group (A,*) is cyclic if there exists some $b \in A$ such that $\langle b \rangle = A$.

Examples: (Z_6, \oplus_6) is a cyclic group, with generator $\langle 1 \rangle$.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots\} = \{b^n \mid n \in Z\}$$

Note that all the powers of b need not be distinct.

A group (A,*) is cyclic if there exists some $b \in A$ such that $\langle b \rangle = A$.

Examples: (Z_6, \oplus_6) is a cyclic group, with generator $\langle 1 \rangle$. Similarly (Z, +) is a cyclic group with generator $\langle 1 \rangle$.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\ldots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \ldots\} = \{b^n \mid n \in Z\}$$

Note that all the powers of b need not be distinct.

A group (A,*) is cyclic if there exists some $b \in A$ such that $\langle b \rangle = A$.

Examples: (Z_6, \oplus_6) is a cyclic group, with generator $\langle 1 \rangle$. Similarly (Z, +) is a cyclic group with generator $\langle 1 \rangle$.

Are all groups cyclic?

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\ldots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \ldots\} = \{b^n \mid n \in Z\}$$

Note that all the powers of b need not be distinct.

A group (A,*) is cyclic if there exists some $b \in A$ such that $\langle b \rangle = A$.

Examples: (Z_6, \oplus_6) is a cyclic group, with generator $\langle 1 \rangle$. Similarly (Z, +) is a cyclic group with generator $\langle 1 \rangle$.

Are all groups cyclic? Not necessarily.

Let (A, *) be any group. Let $b \in A$ be some element.

We write $b * b = b^2$. In general $b^i = b * b * \dots * b$ *i* times.

Let $b^0 = e$ identity element of the group.

Let b^{-1} denote the inverse of b in (A,*). Analogously define $b^{-2} = b^{-1} * b^{-1}$.

$$\langle b \rangle = \{\ldots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \ldots\} = \{b^n \mid n \in Z\}$$

Note that all the powers of b need not be distinct.

A group (A,*) is cyclic if there exists some $b \in A$ such that $\langle b \rangle = A$.

Examples: (Z_6, \oplus_6) is a cyclic group, with generator $\langle 1 \rangle$. Similarly (Z, +) is a cyclic group with generator $\langle 1 \rangle$.

Are all groups cyclic? Not necessarily. Construct example.

Let (A, *) be any group. Let $b \in A$ be some element.

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{\dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots\} = \{b^n \mid n \in Z\}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{\dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots\} = \{b^n \mid n \in Z\}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{ \dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots \} = \{ b^n \mid n \in Z \}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

Proof: Need to show that $(\langle b \rangle, *)$ satisfies all properties of a group.

• Associativity: Follows since * is associative.

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{ \dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots \} = \{ b^n \mid n \in Z \}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

- Associativity: Follows since * is associative.
- Closure: By construction of $\langle b \rangle$.

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{ \dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots \} = \{ b^n \mid n \in Z \}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

- Associativity: Follows since * is associative.
- Closure: By construction of $\langle b \rangle$.
- Identity: We know that $b^0 = e \in \langle b \rangle$.

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{ \dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots \} = \{ b^n \mid n \in Z \}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

- Associativity: Follows since * is associative.
- Closure: By construction of $\langle b \rangle$.
- Identity: We know that $b^0 = e \in \langle b \rangle$.
- Inverse: Let $x = b^i$

Let (A, *) be any group. Let $b \in A$ be some element.

$$\langle b \rangle = \{ \dots, b^{-3}, b^{-2}, b^{-1}, e, b, b^2, b^3, \dots \} = \{ b^n \mid n \in Z \}$$

Claim: The system $(\langle b \rangle, *)$ forms a group and hence a subgroup of (A, *).

- Associativity: Follows since * is associative.
- Closure: By construction of $\langle b \rangle$.
- Identity: We know that $b^0 = e \in \langle b \rangle$.
- Inverse: Let $x = b^i$ then b^{-i} is the inverse of x since $b^i * b^{-i} = b^0 = e$. Hence every element has an inverse in $\langle b \rangle$.

Groups and Finite subsets

Let (A,*) be any group. Let $B \subseteq A$.

Groups and Finite subsets

Let (A,*) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B.

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present:

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because * is closed on B, for any $c \in B$, we have c, c^2, c^3, \ldots , belong to B. Since B is finite, it must be the case that $c^i = c^j$ for some i < j. Thus, $c^i = c^i * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because * is closed on B, for any $c \in B$, we have c, c^2, c^3, \ldots , belong to B. Since B is finite, it must be the case that $c^i = c^j$ for some i < j. Thus, $c^i = c^i * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Inverse for any element c exists:

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because * is closed on B, for any $c \in B$, we have c, c^2, c^3, \ldots , belong to B. Since B is finite, it must be the case that $c^i = c^j$ for some i < j. Thus, $c^i = c^i * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Inverse for any element c exists: If j - i > 1, then $c^{j-i} = c * c^{j-i-1}$,

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because * is closed on B, for any $c \in B$, we have c, c^2, c^3, \ldots , belong to B. Since B is finite, it must be the case that $c^i = c^j$ for some i < j. Thus, $c^i = c^i * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Inverse for any element c exists: If j-i>1, then $c^{j-i}=c*c^{j-i-1}$, then since $c^{j-i}=e$, we conclude that c^{j-i-1} is the inverse of c.

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because * is closed on B, for any $c \in B$, we have c, c^2, c^3, \ldots , belong to B. Since B is finite, it must be the case that $c^i = c^j$ for some i < j. Thus, $c^i = c^i * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Inverse for any element c exists: If j-i>1, then $c^{j-i}=c*c^{j-i-1}$, then since $c^{j-i}=e$, we conclude that c^{j-i-1} is the inverse of c. If j-i=1, then $c^i=c^i*c$. Thus, c must be the identity and its own inverse.

Let (A, *) be any group. Let $B \subseteq A$.

Claim: If B is finite and * is closed on B, then (B,*) is a subgroup of (A,*).

 (Z_6, \oplus_6) is a group. Consider $B = \{0, 3\}$. Observe that \oplus_6 is closed under B. Verify that (B, \oplus_6) is a group.

Proof: By assumption * is closed on B. We need to only show that every element has its inverse in B and identity element belongs to B.

Identity is present: Because * is closed on B, for any $c \in B$, we have c, c^2, c^3, \ldots , belong to B. Since B is finite, it must be the case that $c^i = c^j$ for some i < j. Thus, $c^i = c^i * c^{j-i}$. Thus c^{j-i} is the identity element and is included in B.

Inverse for any element c exists: If j-i>1, then $c^{j-i}=c*c^{j-i-1}$, then since $c^{j-i}=e$, we conclude that c^{j-i-1} is the inverse of c. If j-i=1, then $c^i=c^i*c$. Thus, c must be the identity and its own inverse.

Ex: Make sure you work out the proof on the example above by taking c=3 and c=0 and observe how you fall in the two cases.

$$\textit{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

$$\label{eq:Z6} \textit{Z}_6 = \{0, 1, 2, 3, 4, 5\} \ \ (\textit{Z}_6, \oplus_6) \text{ is a group}.$$

$$\label{eq:Z6} \textit{Z}_6 = \{0, 1, 2, 3, 4, 5\} \hspace{0.5cm} (\textit{Z}_6, \oplus_6) \text{ is a group.}$$

Order of a group: For a finite group (A, *) we say that |A| is the order of the group.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Order of a group: For a finite group (A, *) we say that |A| is the order of the group.

• Order of (Z_6, \oplus_6) is 6.

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Order of a group: For a finite group (A, *) we say that |A| is the order of the group.

- Order of (Z_6, \oplus_6) is 6.
- Recall that ($\{0\}$, \oplus_6), ($\{0,3\}$, \oplus_6), ($\{0,2,4\}$, \oplus_6) and (Z_6 , \oplus_6) are the only subgroups of (Z_6 , \oplus_6)

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

Order of a group: For a finite group (A, *) we say that |A| is the order of the group.

- Order of (Z_6, \oplus_6) is 6.
- Recall that $(\{0\}, \oplus_6)$, $(\{0,3\}, \oplus_6)$, $(\{0,2,4\}, \oplus_6)$ and (Z_6, \oplus_6) are the only subgroups of (Z_6, \oplus_6) respectively of order 1, 2 and 3.

$$Z_6 = \{0,1,2,3,4,5\} \hspace{0.5cm} (Z_6, \oplus_6) \text{ is a group.}$$

Order of a group: For a finite group (A,*) we say that |A| is the order of the group.

- Order of (Z_6, \oplus_6) is 6.
- Recall that $(\{0\}, \oplus_6)$, $(\{0,3\}, \oplus_6)$, $(\{0,2,4\}, \oplus_6)$ and (Z_6, \oplus_6) are the only subgroups of (Z_6, \oplus_6) respectively of order 1, 2 and 3.

Qn: Is there any relation between the order of a finite group and the order of its subgroups?

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Order of a group: For a finite group (A, *) we say that |A| is the order of the group.

- Order of (Z_6, \oplus_6) is 6.
- Recall that $(\{0\}, \oplus_6)$, $(\{0,3\}, \oplus_6)$, $(\{0,2,4\}, \oplus_6)$ and (Z_6, \oplus_6) are the only subgroups of (Z_6, \oplus_6) respectively of order 1, 2 and 3.

Qn: Is there any relation between the order of a finite group and the order of its subgroups?

Lagrange's Theorem: The order of any subgroup of a finite group divides the order of the group.

Corollary: For any prime p, the group (Z_p, \oplus_p) does not have any non-trivial sub-group.

Summary

- Subgroups: definition, examples.
- Generator of a group and cyclic groups.
- Finite subsets and subgroups.
- Order of a group.

Summary

- Subgroups: definition, examples.
- Generator of a group and cyclic groups.
- Finite subsets and subgroups.
- Order of a group.
- References: Section 11.3, 11.4 of Elements of Discrete Maths, C.L. Liu.