Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 27, 2020

Structured Sets

- Relational Structures
- Properties and closures \checkmark
- Equivalence Relations \checkmark
- Partially Ordered Sets (Posets) and Lattices \checkmark
- Algebraic Structures
- Groups and Rings

Algebraic Structures: Recap

Set A with a binary operator *

- If $*$ is closed and associative, and an identity element e exists, and every element $b \in A$ has an inverse then $(A, *)$ is a group.

Algebraic Structures: Recap

Set A with a binary operator *

- If $*$ is closed and associative, and an identity element e exists, and every element $b \in A$ has an inverse then $(A, *)$ is a group.
- If $B \subseteq A$ and $(B, *)$ forms a group, then B is a sub-group of $(A, *)$.

Algebraic Structures: Recap

Set A with a binary operator *

- If $*$ is closed and associative, and an identity element e exists, and every element $b \in A$ has an inverse then $(A, *)$ is a group.
- If $B \subseteq A$ and $(B, *)$ forms a group, then B is a sub-group of $(A, *)$.
- Generator of a group and cyclic groups.

Algebraic Structures: Recap

Set A with a binary operator *

- If $*$ is closed and associative, and an identity element e exists, and every element $b \in A$ has an inverse then $(A, *)$ is a group.
- If $B \subseteq A$ and $(B, *)$ forms a group, then B is a sub-group of $(A, *)$.
- Generator of a group and cyclic groups.

Example group that is not cyclic.

$*$	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

Algebraic Structures: Recap

Set A with a binary operator *

- If $*$ is closed and associative, and an identity element e exists, and every element $b \in A$ has an inverse then $(A, *)$ is a group.
- If $B \subseteq A$ and $(B, *)$ forms a group, then B is a sub-group of $(A, *)$.
- Generator of a group and cyclic groups.

Example group that is not cyclic.

$*$	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

- Lagrange's Theorem: The order of any subgroup of a finite group divides the order of the group.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Now let us consider a set $B=\{0,2,4\}$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Now let us consider a set $B=\{0,2,4\}$.

$$
B_{1}=\{1,3,5\} \quad B_{2}=\{2,4,0\} \quad B_{3}=\{3,5,1\}
$$

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Now let us consider a set $B=\{0,2,4\}$.

$$
B_{1}=\{1,3,5\} \quad B_{2}=\{2,4,0\} \quad B_{3}=\{3,5,1\}
$$

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Now let us consider a set $B=\{0,2,4\}$.

$$
B_{1}=\{1,3,5\} \quad B_{2}=\{2,4,0\} \quad B_{3}=\{3,5,1\}
$$

Observe the difference between the cosets obtained when the subset forms a subgroup

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Now let us consider a set $B=\{0,2,4\}$.

$$
B_{1}=\{1,3,5\} \quad B_{2}=\{2,4,0\} \quad B_{3}=\{3,5,1\}
$$

Observe the difference between the cosets obtained when the subset forms a subgroup (recall B, \oplus_{6}) is a group,

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Example:

$$
Z_{6}=\{0,1,2,3,4,5\} \quad\left(Z_{6}, \oplus_{6}\right) \text { is a group. }
$$

Consider the subset $H=\{0,1,5\}$.

$$
H_{1}=\{1,2,0\} \quad H_{2}=\{2,3,1\} \quad H_{3}=\{3,4,2\}
$$

Now let us consider a set $B=\{0,2,4\}$.

$$
B_{1}=\{1,3,5\} \quad B_{2}=\{2,4,0\} \quad B_{3}=\{3,5,1\}
$$

Observe the difference between the cosets obtained when the subset forms a subgroup (recall B, \oplus_{6}) is a group, whereas $\left(H, \oplus_{6}\right)$ is not a group.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.
Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.
Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.
Thus there exists h_{1} and h_{2} in H such that $f=c * h_{1}=d * h_{2}$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.
Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.
Thus there exists h_{1} and h_{2} in H such that $f=c * h_{1}=d * h_{2}$.
Since $(H, *)$ is a group, inverse exists for every element, in particular h_{1}. Therefore $c=d * h_{2} * h_{1}^{-1}$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.

Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.
Thus there exists h_{1} and h_{2} in H such that $f=c * h_{1}=d * h_{2}$.
Since $(H, *)$ is a group, inverse exists for every element, in particular h_{1}.
Therefore $c=d * h_{2} * h_{1}^{-1}$.
For any element $y \in H_{c}$, we can write it as $y=c * h_{3}$ for some $h_{3} \in H$. Thus, $y=d * h_{2} * h_{1}^{-1} * h_{3}$

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.

Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.
Thus there exists h_{1} and h_{2} in H such that $f=c * h_{1}=d * h_{2}$.
Since $(H, *)$ is a group, inverse exists for every element, in particular h_{1}.
Therefore $c=d * h_{2} * h_{1}^{-1}$.
For any element $y \in H_{c}$, we can write it as $y=c * h_{3}$ for some $h_{3} \in H$. Thus, $y=d * h_{2} * h_{1}^{-1} * h_{3} \quad$ (substituting value of c from above.)

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.
Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.
Thus there exists h_{1} and h_{2} in H such that $f=c * h_{1}=d * h_{2}$.
Since $(H, *)$ is a group, inverse exists for every element, in particular h_{1}.
Therefore $c=d * h_{2} * h_{1}^{-1}$.
For any element $y \in H_{c}$, we can write it as $y=c * h_{3}$ for some $h_{3} \in H$. Thus, $y=d * h_{2} * h_{1}^{-1} * h_{3} \quad$ (substituting value of c from above.)
Since h_{2}, h_{1}^{-1}, h_{3} all belong to H, we know that $h_{2} * h_{1}^{-1} * h_{3}$ belongs to H. Thus, $y \in H_{d}$. This shows that $H_{c} \subseteq H_{d}$.

Cosets of a subset

Let $(A, *)$ be a group and H be any subset of A. For any element $c \in A$, the left coset of H w.r.t. c is defined as:

$$
H_{c}=\{c * b \mid b \in H\}
$$

Claim: If $(H, *)$ is a subgroup of $(A, *)$ then for any $c \in A$ and $d \in A$, either $H_{c}=H_{d}$ or $H_{c} \cap H_{d}=\emptyset$.
Proof: Let $H_{c} \cap H_{d} \neq \emptyset$. Let $f \in H_{c} \cap H_{d}$.
Thus there exists h_{1} and h_{2} in H such that $f=c * h_{1}=d * h_{2}$.
Since $(H, *)$ is a group, inverse exists for every element, in particular h_{1}.
Therefore $c=d * h_{2} * h_{1}^{-1}$.
For any element $y \in H_{c}$, we can write it as $y=c * h_{3}$ for some $h_{3} \in H$. Thus, $y=d * h_{2} * h_{1}^{-1} * h_{3} \quad$ (substituting value of c from above.)
Since h_{2}, h_{1}^{-1}, h_{3} all belong to H, we know that $h_{2} * h_{1}^{-1} * h_{3}$ belongs to H. Thus, $y \in H_{d}$. This shows that $H_{c} \subseteq H_{d}$.
Similarly argue that $H_{d} \subseteq H_{c}$. This completes the argument that if there is even one common element then the sets are equal.

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.
Proof: Let h_{1} and h_{2} be distinct elements in H. Now for any $b \in A$, we have $b * h_{1} \neq b * h_{2}$.

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.
Proof: Let h_{1} and h_{2} be distinct elements in H. Now for any $b \in A$, we have $b * h_{1} \neq b * h_{2}$.
Thus, $\left|H_{b}\right|=|H|$.

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.
Proof: Let h_{1} and h_{2} be distinct elements in H. Now for any $b \in A$, we have $b * h_{1} \neq b * h_{2}$.
Thus, $\left|H_{b}\right|=|H|$.
Now if $H_{b}=A$ we are done, else pick some $c \in A \backslash H_{b}$.
We know by previous claim that either $H_{c}=H_{b}$ or $H_{c} \cap H_{b}=\emptyset$. We claim that $H_{c} \neq H_{b}$ (by the way c has been selected).

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.
Proof: Let h_{1} and h_{2} be distinct elements in H. Now for any $b \in A$, we have $b * h_{1} \neq b * h_{2}$.
Thus, $\left|H_{b}\right|=|H|$.
Now if $H_{b}=A$ we are done, else pick some $c \in A \backslash H_{b}$.
We know by previous claim that either $H_{c}=H_{b}$ or $H_{c} \cap H_{b}=\emptyset$. We claim that $H_{c} \neq H_{b}$ (by the way c has been selected). Thus $\left|H_{c} \cup H_{b}\right|=2|H|$.

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.
Proof: Let h_{1} and h_{2} be distinct elements in H. Now for any $b \in A$, we have $b * h_{1} \neq b * h_{2}$.
Thus, $\left|H_{b}\right|=|H|$.
Now if $H_{b}=A$ we are done, else pick some $c \in A \backslash H_{b}$.
We know by previous claim that either $H_{c}=H_{b}$ or $H_{c} \cap H_{b}=\emptyset$. We claim that $H_{c} \neq H_{b}$ (by the way c has been selected). Thus $\left|H_{c} \cup H_{b}\right|=2|H|$.
We repeat till we exhaust the set A. This way, we have partitioned the set A into some k-many blocks of $|H|$. Thus $|A|=k|H|$.

Proof of Lagrange's Theorem

Lagrange's Theorem (restated): If $(H, *)$ is a subgroup of $(A, *)$ then $|A|=k|H|$ for some positive integer k.
Proof: Let h_{1} and h_{2} be distinct elements in H. Now for any $b \in A$, we have $b * h_{1} \neq b * h_{2}$.
Thus, $\left|H_{b}\right|=|H|$.
Now if $H_{b}=A$ we are done, else pick some $c \in A \backslash H_{b}$.
We know by previous claim that either $H_{c}=H_{b}$ or $H_{c} \cap H_{b}=\emptyset$. We claim that $H_{c} \neq H_{b}$ (by the way c has been selected). Thus $\left|H_{c} \cup H_{b}\right|=2|H|$.
We repeat till we exhaust the set A. This way, we have partitioned the set A into some k-many blocks of $|H|$. Thus $|A|=k|H|$.

In other words, the order of any subgroup of a finite group divides the order of the group.

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$?

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.
Example: $(\{a, b\}, *, \bullet)$

$*$	a	b
a	a	b
b	b	a

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.
Example: $(\{a, b\}, *, \bullet)$

$*$	a	b
a	a	b
b	b	a

\bullet	a	b
a	a	a
b	a	b

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.
Example: $(\{a, b\}, *, \bullet)$

$*$	a	b
a	a	b
b	b	a

\bullet	a	b
a	a	a
b	a	b

We say that • distributes over $*$ if for $a, b, c \in A$
$a \bullet(b * c)=(a \bullet b) *(a \bullet c)$
and
$(b * c) \bullet a=(b \bullet a) *(c \bullet a)$

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.
Example: $(\{a, b\}, *, \bullet)$

$*$	a	b
a	a	b
b	b	a

\bullet	a	b
a	a	a
b	a	b

We say that • distributes over $*$ if for $a, b, c \in A$

$$
\begin{aligned}
a \bullet(b * c)= & (a \bullet b) *(a \bullet c) \\
& \text { and } \\
(b * c) \bullet a= & (b \bullet a) *(c \bullet a)
\end{aligned}
$$

Verify that in the above example, • is distributive over $*$. However, $*$ is not distributive over -

Algebraic Structures with two operations

Lets say we have two algebraic systems $(A, *)$ and (A, \bullet).
Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.
Example: $(\{a, b\}, *, \bullet)$

$*$	a	b
a	a	b
b	b	a

\bullet	a	b
a	a	a
b	a	b

We say that • distributes over $*$ if for $a, b, c \in A$

$$
\begin{aligned}
a \bullet(b * c)= & (a \bullet b) *(a \bullet c) \\
& \text { and } \\
(b * c) \bullet a= & (b \bullet a) *(c \bullet a)
\end{aligned}
$$

Verify that in the above example, \bullet is distributive over $*$. However, $*$ is not distributive over • example: $b *(a \bullet b)=b$ and $(b * a) \bullet(b * b)=a$.

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group.

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation + .

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation + .

Additionally, if (A, \cdot) is a monoid, then $(A,+, \cdot)$ is a called a ring with identity.

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation + .

Additionally, if (A, \cdot) is a monoid, then $(A,+, \cdot)$ is a called a ring with identity.
Examples:

- $(Z,+, \cdot)$ is a ring with identity.

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation + .

Additionally, if (A, \cdot) is a monoid, then $(A,+, \cdot)$ is a called a ring with identity.
Examples:

- $(Z,+, \cdot)$ is a ring with identity.
- Recall the set Z_{n} for any positive integer n. We have seen the operation \oplus_{n} and verified that $\left(Z_{n}, \oplus_{n}\right)$ is a group. Now define \odot as

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation + .

Additionally, if (A, \cdot) is a monoid, then $(A,+, \cdot)$ is a called a ring with identity.
Examples:

- $(Z,+, \cdot)$ is a ring with identity.
- Recall the set Z_{n} for any positive integer n. We have seen the operation \oplus_{n} and verified that $\left(Z_{n}, \oplus_{n}\right)$ is a group. Now define \odot as

$$
a \odot_{n} b=a b \quad \bmod n
$$

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation . is distributive over the operation + .

Additionally, if (A, \cdot) is a monoid, then $(A,+, \cdot)$ is a called a ring with identity.

Examples:

- $(Z,+, \cdot)$ is a ring with identity.
- Recall the set Z_{n} for any positive integer n. We have seen the operation \oplus_{n} and verified that $\left(Z_{n}, \oplus_{n}\right)$ is a group. Now define \odot as

$$
a \odot_{n} b=a b \quad \bmod n
$$

- Verify that $\left(Z_{n}, \odot_{n}\right)$ is a semigroup
- Verify that \odot_{n} distributes over \oplus_{n}

Algebraic Structures with two operations

Let $(A,+, \cdot)$ be an algebraic structure. It is called a ring if

- $(A,+)$ is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation . is distributive over the operation + .

Additionally, if (A, \cdot) is a monoid, then $(A,+, \cdot)$ is a called a ring with identity.

Examples:

- $(Z,+, \cdot)$ is a ring with identity.
- Recall the set Z_{n} for any positive integer n. We have seen the operation \oplus_{n} and verified that $\left(Z_{n}, \oplus_{n}\right)$ is a group. Now define \odot as

$$
a \odot_{n} b=a b \quad \bmod n
$$

- Verify that $\left(Z_{n}, \odot_{n}\right)$ is a semigroup
- Verify that \odot_{n} distributes over \oplus_{n}

Thus, $\left(Z_{n}, \oplus_{n}, \odot_{n}\right)$ is a ring.

Summary

- Semigroups, Monoids and Groups.
- Subgroups and interesting properties.
- Lagranges Theorem and proof.
- Algebraic Structures with multiple operations.

Summary

- Semigroups, Monoids and Groups.
- Subgroups and interesting properties.
- Lagranges Theorem and proof.
- Algebraic Structures with multiple operations.
- Reference: Section 11.3, Elements of Discrete Mathematics by C. L. Liu.

