Structured Sets

CS1200, CSE IIT Madras

Meghana Nasre

April 27, 2020

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Structured Sets

- Relational Structures
 - Properties and closures \checkmark
 - Equivalence Relations ✓
 - Partially Ordered Sets (Posets) and Lattices \checkmark
- Algebraic Structures
 - Groups and Rings

 If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.
- If $B \subseteq A$ and (B, *) forms a group, then B is a sub-group of (A, *).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.
- If $B \subseteq A$ and (B, *) forms a group, then B is a sub-group of (A, *).

• Generator of a group and cyclic groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.
- If $B \subseteq A$ and (B, *) forms a group, then B is a sub-group of (A, *).
- Generator of a group and cyclic groups. Example group that is not cyclic.

*	а	b	с	d
а	а	b	с	d
b	b	а	d	С
с	С	d	а	b
d	d	с	b	а

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- If * is closed and associative, and an identity element e exists, and every element b ∈ A has an inverse then (A, *) is a group.
- If $B \subseteq A$ and (B, *) forms a group, then B is a sub-group of (A, *).
- Generator of a group and cyclic groups. Example group that is not cyclic.

*	а	b	с	d
а	а	b	с	d
Ь	b	а	d	С
с	С	d	а	Ь
d	d	с	Ь	а

• Lagrange's Theorem: The order of any subgroup of a finite group divides the order of the group.

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$H_c = \{c * b \mid b \in H\}$$

Example:

 $Z_6 = \{0, 1, 2, 3, 4, 5\}$ (Z_6, \oplus_6) is a group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the subset $H = \{0, 1, 5\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\}$$
 $H_2 = \{2, 3, 1\}$ $H_3 = \{3, 4, 2\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\} \quad (Z_6, \oplus_6)$$
 is a group.

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\} \qquad H_2 = \{2, 3, 1\} \qquad H_3 = \{3, 4, 2\}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ● ●

Now let us consider a set $B = \{0, 2, 4\}$.

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\} \quad (Z_6, \oplus_6) ext{ is a group.}$$

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\}$$
 $H_2 = \{2, 3, 1\}$ $H_3 = \{3, 4, 2\}$

Now let us consider a set $B = \{0, 2, 4\}$.

$$B_1 = \{1, 3, 5\} \qquad B_2 = \{2, 4, 0\} \qquad B_3 = \{3, 5, 1\}$$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ● ●

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\} \quad (Z_6, \oplus_6)$$
 is a group.

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\}$$
 $H_2 = \{2, 3, 1\}$ $H_3 = \{3, 4, 2\}$

Now let us consider a set $B = \{0, 2, 4\}$.

$$B_1 = \{1, 3, 5\} \qquad B_2 = \{2, 4, 0\} \qquad B_3 = \{3, 5, 1\}$$

CS1200, CSE IIT Madras Meghana Nasre

Structured Sets

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ● ●

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\}$$
 $H_2 = \{2, 3, 1\}$ $H_3 = \{3, 4, 2\}$

Now let us consider a set $B = \{0, 2, 4\}$.

 $B_1 = \{1,3,5\} \qquad B_2 = \{2,4,0\} \qquad B_3 = \{3,5,1\}$

Observe the difference between the cosets obtained when the subset forms a subgroup

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\}$$
 $H_2 = \{2, 3, 1\}$ $H_3 = \{3, 4, 2\}$

Now let us consider a set $B = \{0, 2, 4\}$.

 $B_1 = \{1,3,5\} \qquad B_2 = \{2,4,0\} \qquad B_3 = \{3,5,1\}$

Observe the difference between the cosets obtained when the subset forms a subgroup (recall B, \bigoplus_6) is a group,

$$H_c = \{c * b \mid b \in H\}$$

Example:

$$Z_6 = \{0, 1, 2, 3, 4, 5\}$$
 (Z_6, \oplus_6) is a group.

Consider the subset $H = \{0, 1, 5\}$.

$$H_1 = \{1, 2, 0\}$$
 $H_2 = \{2, 3, 1\}$ $H_3 = \{3, 4, 2\}$

Now let us consider a set $B = \{0, 2, 4\}$.

 $B_1 = \{1,3,5\} \qquad B_2 = \{2,4,0\} \qquad B_3 = \{3,5,1\}$

Observe the difference between the cosets obtained when the subset forms a subgroup (recall B, \bigoplus_6) is a group, whereas (H, \bigoplus_6) is not a group.

$$H_c = \{c * b \mid b \in H\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

Thus there exists h_1 and h_2 in H such that $f = c * h_1 = d * h_2$.

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

Thus there exists h_1 and h_2 in H such that $f = c * h_1 = d * h_2$.

Since (H, *) is a group, inverse exists for every element, in particular h_1 . Therefore $c = d * h_2 * h_1^{-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

Thus there exists h_1 and h_2 in H such that $f = c * h_1 = d * h_2$.

Since (H, *) is a group, inverse exists for every element, in particular h_1 . Therefore $c = d * h_2 * h_1^{-1}$.

For any element $y \in H_c$, we can write it as $y = c * h_3$ for some $h_3 \in H$. Thus, $y = d * h_2 * h_1^{-1} * h_3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

Thus there exists h_1 and h_2 in H such that $f = c * h_1 = d * h_2$.

Since (H, *) is a group, inverse exists for every element, in particular h_1 . Therefore $c = d * h_2 * h_1^{-1}$.

For any element $y \in H_c$, we can write it as $y = c * h_3$ for some $h_3 \in H$. Thus, $y = d * h_2 * h_1^{-1} * h_3$ (substituting value of c from above.)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

Thus there exists h_1 and h_2 in H such that $f = c * h_1 = d * h_2$.

Since (H, *) is a group, inverse exists for every element, in particular h_1 . Therefore $c = d * h_2 * h_1^{-1}$.

For any element $y \in H_c$, we can write it as $y = c * h_3$ for some $h_3 \in H$. Thus, $y = d * h_2 * h_1^{-1} * h_3$ (substituting value of c from above.) Since h_2, h_1^{-1}, h_3 all belong to H, we know that $h_2 * h_1^{-1} * h_3$ belongs to H.

(日) (四) (三) (三) (三) (三) (○) (○)

Thus, $y \in H_d$. This shows that $H_c \subseteq H_d$.

$$H_c = \{c * b \mid b \in H\}$$

Claim: If (H, *) is a subgroup of (A, *) then for any $c \in A$ and $d \in A$, either $H_c = H_d$ or $H_c \cap H_d = \emptyset$.

Proof: Let $H_c \cap H_d \neq \emptyset$. Let $f \in H_c \cap H_d$.

Thus there exists h_1 and h_2 in H such that $f = c * h_1 = d * h_2$.

Since (H, *) is a group, inverse exists for every element, in particular h_1 . Therefore $c = d * h_2 * h_1^{-1}$.

For any element $y \in H_c$, we can write it as $y = c * h_3$ for some $h_3 \in H$. Thus, $y = d * h_2 * h_1^{-1} * h_3$ (substituting value of c from above.)

Since h_2, h_1^{-1}, h_3 all belong to H, we know that $h_2 * h_1^{-1} * h_3$ belongs to H. Thus, $y \in H_d$. This shows that $H_c \subseteq H_d$.

Similarly argue that $H_d \subseteq H_c$. This completes the argument that if there is even one common element then the sets are equal.

Proof: Let h_1 and h_2 be distinct elements in H. Now for any $b \in A$, we have $b * h_1 \neq b * h_2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof: Let h_1 and h_2 be distinct elements in H. Now for any $b \in A$, we have $b * h_1 \neq b * h_2$. Thus, $|H_b| = |H|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof: Let h_1 and h_2 be distinct elements in H. Now for any $b \in A$, we have $b * h_1 \neq b * h_2$. Thus, $|H_b| = |H|$.

Now if $H_b = A$ we are done, else pick some $c \in A \setminus H_b$.

We know by previous claim that either $H_c = H_b$ or $H_c \cap H_b = \emptyset$. We claim that $H_c \neq H_b$ (by the way *c* has been selected).

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Proof: Let h_1 and h_2 be distinct elements in H. Now for any $b \in A$, we have $b * h_1 \neq b * h_2$. Thus, $|H_b| = |H|$.

Now if $H_b = A$ we are done, else pick some $c \in A \setminus H_b$.

We know by previous claim that either $H_c = H_b$ or $H_c \cap H_b = \emptyset$. We claim that $H_c \neq H_b$ (by the way *c* has been selected). Thus $|H_c \cup H_b| = 2|H|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proof: Let h_1 and h_2 be distinct elements in H. Now for any $b \in A$, we have $b * h_1 \neq b * h_2$. Thus, $|H_b| = |H|$.

Now if $H_b = A$ we are done, else pick some $c \in A \setminus H_b$.

We know by previous claim that either $H_c = H_b$ or $H_c \cap H_b = \emptyset$. We claim that $H_c \neq H_b$ (by the way *c* has been selected). Thus $|H_c \cup H_b| = 2|H|$.

We repeat till we exhaust the set A. This way, we have partitioned the set A into some k-many blocks of |H|. Thus |A| = k|H|.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Proof: Let h_1 and h_2 be distinct elements in H. Now for any $b \in A$, we have $b * h_1 \neq b * h_2$. Thus, $|H_b| = |H|$.

Now if $H_b = A$ we are done, else pick some $c \in A \setminus H_b$.

We know by previous claim that either $H_c = H_b$ or $H_c \cap H_b = \emptyset$. We claim that $H_c \neq H_b$ (by the way *c* has been selected). Thus $|H_c \cup H_b| = 2|H|$.

We repeat till we exhaust the set A. This way, we have partitioned the set A into some k-many blocks of |H|. Thus |A| = k|H|.

In other words, the order of any subgroup of a finite group divides the order of the group.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Lets say we have two algebraic systems (A, *) and (A, \bullet) .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Algebraic Structures with two operations

Lets say we have two algebraic systems (A, *) and (A, \bullet) .

Can we combine them into another system $(A, *, \bullet)$?

Lets say we have two algebraic systems (A, *) and (A, \bullet) .

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

・ロト・日本・モト・モート ヨー うへで

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Example: $(\{a, b\}, *, \bullet)$

*	a b			
а	а	b		
b	b	а		

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Example: $(\{a, b\}, *, \bullet)$

*	а	b	•	а	Ь
а	а	Ь		а	
b	b	а	Ь	а	b

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Example: $(\{a, b\}, *, \bullet)$

	а		•	а	Ь
а	а	b	а	а	а
Ь	b	а	Ь	а	b

We say that ullet distributes over * if for $a, b, c \in A$

$$a \bullet (b * c) = (a \bullet b) * (a \bullet c)$$

and

$$(b*c) \bullet a = (b \bullet a) * (c \bullet a)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Example: $(\{a, b\}, *, \bullet)$

	а			а	
а	а	b	а	а	а
b	b	а	b	а	b

We say that ullet distributes over * if for $a, b, c \in A$

$$a \bullet (b * c) = (a \bullet b) * (a \bullet c)$$

and

$$(b*c) \bullet a = (b \bullet a) * (c \bullet a)$$

Verify that in the above example, \bullet is distributive over *. However, * is not distributive over \bullet

CS1200, CSE IIT Madras Meghana Nasre

Can we combine them into another system $(A, *, \bullet)$? Yes! Meaningful if the operations are related in some way.

Say, they are related by distributivity.

Example: $(\{a, b\}, *, \bullet)$

*	a	b	•	а	Ь
а	а	b	а	а	а
b	b	а	Ь	а	b

We say that ullet distributes over * if for $a, b, c \in A$

$$a \bullet (b * c) = (a \bullet b) * (a \bullet c)$$

and

$$(b*c) \bullet a = (b \bullet a) * (c \bullet a)$$

Verify that in the above example, • is distributive over *. However, * is not distributive over • example: b * (a • b) = b and (b * a) • (b * b) = a.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

• (A, +) is an Abelian group.

・ロト・日本・モト・モート ヨー うへで

• (A, +) is an Abelian group. recall Abelian says + is commutative.

・ロト・日本・モト・モート ヨー うへで

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

Additionally, if (A, \cdot) is a monoid, then $(A, +, \cdot)$ is a called a ring with identity.

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

Additionally, if (A, \cdot) is a monoid, then $(A, +, \cdot)$ is a called a ring with identity.

Examples:

• (Z, +, ·) is a ring with identity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

Additionally, if (A, \cdot) is a monoid, then $(A, +, \cdot)$ is a called a ring with identity.

Examples:

- $(Z, +, \cdot)$ is a ring with identity.
- Recall the set Z_n for any positive integer n. We have seen the operation \bigoplus_n and verified that (Z_n, \bigoplus_n) is a group. Now define \odot as

(日) (四) (三) (三) (三) (三) (○) (○)

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

Additionally, if (A, \cdot) is a monoid, then $(A, +, \cdot)$ is a called a ring with identity.

Examples:

- $(Z, +, \cdot)$ is a ring with identity.
- Recall the set Z_n for any positive integer n. We have seen the operation \bigoplus_n and verified that (Z_n, \bigoplus_n) is a group. Now define \odot as

$$a \odot_n b = ab \mod n$$

(日) (四) (三) (三) (三) (三) (○) (○)

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

Additionally, if (A, \cdot) is a monoid, then $(A, +, \cdot)$ is a called a ring with identity.

Examples:

- $(Z, +, \cdot)$ is a ring with identity.
- Recall the set Z_n for any positive integer n. We have seen the operation \oplus_n and verified that (Z_n, \oplus_n) is a group. Now define \odot as

$$a \odot_n b = ab \mod n$$

- Verify that (Z_n, \odot_n) is a semigroup
- Verify that \odot_n distributes over \oplus_n

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- (A, +) is an Abelian group. recall Abelian says + is commutative.
- (A, \cdot) is a semigroup.
- The operation \cdot is distributive over the operation +.

Additionally, if (A, \cdot) is a monoid, then $(A, +, \cdot)$ is a called a ring with identity.

Examples:

- $(Z, +, \cdot)$ is a ring with identity.
- Recall the set Z_n for any positive integer n. We have seen the operation \bigoplus_n and verified that (Z_n, \bigoplus_n) is a group. Now define \odot as

$$a \odot_n b = ab \mod n$$

- Verify that (Z_n, \odot_n) is a semigroup
- Verify that \odot_n distributes over \oplus_n

Thus, (Z_n, \oplus_n, \odot_n) is a ring.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Summary

- Semigroups, Monoids and Groups.
- Subgroups and interesting properties.
- Lagranges Theorem and proof.
- Algebraic Structures with multiple operations.

Summary

- Semigroups, Monoids and Groups.
- Subgroups and interesting properties.
- Lagranges Theorem and proof.
- Algebraic Structures with multiple operations.
- Reference: Section 11.3, Elements of Discrete Mathematics by C. L. Liu.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@