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Structured Sets

• Relational Structures
• Properties and closures X
• Equivalence Relations X
• Partially Ordered Sets (Posets) and Lattices X

• Algebraic Structures
• Groups and Rings
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Algebraic Structures: Recap

Set A with a binary operator ∗

• If ∗ is closed and associative, and an identity element e exists, and every
element b ∈ A has an inverse then (A, ∗) is a group.

• If B ⊆ A and (B, ∗) forms a group, then B is a sub-group of (A, ∗).

• Generator of a group and cyclic groups.
Example group that is not cyclic.

* a b c d

a a b c d
b b a d c
c c d a b
d d c b a

• Lagrange’s Theorem: The order of any subgroup of a finite group divides
the order of the group.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Algebraic Structures: Recap

Set A with a binary operator ∗

• If ∗ is closed and associative, and an identity element e exists, and every
element b ∈ A has an inverse then (A, ∗) is a group.

• If B ⊆ A and (B, ∗) forms a group, then B is a sub-group of (A, ∗).

• Generator of a group and cyclic groups.
Example group that is not cyclic.

* a b c d

a a b c d
b b a d c
c c d a b
d d c b a

• Lagrange’s Theorem: The order of any subgroup of a finite group divides
the order of the group.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Algebraic Structures: Recap

Set A with a binary operator ∗

• If ∗ is closed and associative, and an identity element e exists, and every
element b ∈ A has an inverse then (A, ∗) is a group.

• If B ⊆ A and (B, ∗) forms a group, then B is a sub-group of (A, ∗).

• Generator of a group and cyclic groups.

Example group that is not cyclic.

* a b c d

a a b c d
b b a d c
c c d a b
d d c b a

• Lagrange’s Theorem: The order of any subgroup of a finite group divides
the order of the group.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Algebraic Structures: Recap

Set A with a binary operator ∗

• If ∗ is closed and associative, and an identity element e exists, and every
element b ∈ A has an inverse then (A, ∗) is a group.

• If B ⊆ A and (B, ∗) forms a group, then B is a sub-group of (A, ∗).

• Generator of a group and cyclic groups.
Example group that is not cyclic.

* a b c d

a a b c d
b b a d c
c c d a b
d d c b a

• Lagrange’s Theorem: The order of any subgroup of a finite group divides
the order of the group.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Algebraic Structures: Recap

Set A with a binary operator ∗

• If ∗ is closed and associative, and an identity element e exists, and every
element b ∈ A has an inverse then (A, ∗) is a group.

• If B ⊆ A and (B, ∗) forms a group, then B is a sub-group of (A, ∗).

• Generator of a group and cyclic groups.
Example group that is not cyclic.

* a b c d

a a b c d
b b a d c
c c d a b
d d c b a

• Lagrange’s Theorem: The order of any subgroup of a finite group divides
the order of the group.

CS1200, CSE IIT Madras Meghana Nasre Structured Sets



Cosets of a subset

Let (A, ∗) be a group and H be any subset of A. For any element c ∈ A, the
left coset of H w.r.t. c is defined as:

Hc = {c ∗ b | b ∈ H}

Example:

Z6 = {0, 1, 2, 3, 4, 5} (Z6,⊕6) is a group.

Consider the subset H = {0, 1, 5}.

H1 = {1, 2, 0} H2 = {2, 3, 1} H3 = {3, 4, 2}

Now let us consider a set B = {0, 2, 4}.

B1 = {1, 3, 5} B2 = {2, 4, 0} B3 = {3, 5, 1}

Observe the difference between the cosets obtained when the subset forms a
subgroup (recall B,⊕6) is a group, whereas (H,⊕6) is not a group.
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Cosets of a subset

Let (A, ∗) be a group and H be any subset of A. For any element c ∈ A, the
left coset of H w.r.t. c is defined as:

Hc = {c ∗ b | b ∈ H}

Claim: If (H, ∗) is a subgroup of (A, ∗) then for any c ∈ A and d ∈ A, either
Hc = Hd or Hc ∩ Hd = ∅.
Proof: Let Hc ∩ Hd 6= ∅. Let f ∈ Hc ∩ Hd .

Thus there exists h1 and h2 in H such that f = c ∗ h1 = d ∗ h2.

Since (H, ∗) is a group, inverse exists for every element, in particular h1.
Therefore c = d ∗ h2 ∗ h−1

1 .

For any element y ∈ Hc , we can write it as y = c ∗ h3 for some h3 ∈ H. Thus,
y = d ∗ h2 ∗ h−1

1 ∗ h3 (substituting value of c from above.)

Since h2, h
−1
1 , h3 all belong to H, we know that h2 ∗ h−1

1 ∗ h3 belongs to H.
Thus, y ∈ Hd . This shows that Hc ⊆ Hd .

Similarly argue that Hd ⊆ Hc . This completes the argument that if there is
even one common element then the sets are equal.
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Proof of Lagrange’s Theorem

Lagrange’s Theorem (restated): If (H, ∗) is a subgroup of (A, ∗) then
|A| = k|H| for some positive integer k.

Proof: Let h1 and h2 be distinct elements in H. Now for any b ∈ A, we have
b ∗ h1 6= b ∗ h2.
Thus, |Hb| = |H|.
Now if Hb = A we are done, else pick some c ∈ A \ Hb.

We know by previous claim that either Hc = Hb or Hc ∩Hb = ∅. We claim that
Hc 6= Hb (by the way c has been selected). Thus |Hc ∪ Hb| = 2|H|.
We repeat till we exhaust the set A. This way, we have partitioned the set A
into some k-many blocks of |H|. Thus |A| = k|H|.

In other words, the order of any subgroup of a finite group divides the order of
the group.
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Algebraic Structures with two operations

Lets say we have two algebraic systems (A, ∗) and (A, •).

Can we combine them into another system (A, ∗, •)? Yes! Meaningful if the
operations are related in some way.

Say, they are related by distributivity.

Example: ({a, b}, ∗, •)

∗ a b
a a b
b b a

• a b
a a a
b a b

We say that • distributes over ∗ if for a, b, c ∈ A

a • (b ∗ c) = (a • b) ∗ (a • c)

and

(b ∗ c) • a = (b • a) ∗ (c • a)

Verify that in the above example, • is distributive over ∗. However, ∗ is not
distributive over • example: b ∗ (a • b) = b and (b ∗ a) • (b ∗ b) = a.
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Algebraic Structures with two operations

Let (A,+, ·) be an algebraic structure. It is called a ring if

• (A,+) is an Abelian group. recall Abelian says + is commutative.

• (A, ·) is a semigroup.

• The operation · is distributive over the operation +.

Additionally, if (A, ·) is a monoid, then (A,+, ·) is a called a ring with identity.

Examples:

• (Z ,+, ·) is a ring with identity.

• Recall the set Zn for any positive integer n. We have seen the operation
⊕n and verified that (Zn,⊕n) is a group. Now define � as

a�n b = ab mod n

• Verify that (Zn,�n) is a semigroup
• Verify that �n distributes over ⊕n

Thus, (Zn,⊕n,�n) is a ring.
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Summary

• Semigroups, Monoids and Groups.

• Subgroups and interesting properties.

• Lagranges Theorem and proof.

• Algebraic Structures with multiple operations.

• Reference: Section 11.3, Elements of Discrete Mathematics by C. L. Liu.
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