
Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 3, 2020

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Advanced Counting Techniques

• Principle of Inclusion-Exclusion

• Recurrences and its applications

• Solving Recurrences

All images are courtsey Google Images

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example: Number of solutions to an equation

x1 + x2 + x3 = 11

• How many integral solutions if each xi ≥ 0? X

• How many integral solutions if each xi ≥ 1? (replace xi − 1 = yi and
equation is y1 + y2 + y3 = 8) X

• What if we want to count the number of solutions for x1 + x2 + x3 ≤ 11?
where each xi ≥ 0?
(add another variable x4 and set it to an equality. x4 ≥ 0.) X

• How many integral solutions if each xi ≥ 0 and x1 ≥ 6? (we have seen an
example of this earlier) X

All the above can be solved using combinations with repetitions.

• How many integral solutions if each xi ≥ 0 and x1 ≤ 3, x2 ≤ 4 and x3 ≤ 6?

Verify that this cannot be solved using the same. We will use the principle of
inclusion exclusion.
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Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of
finite sets.

It is a generalization of the familiar formula below.

|A ∪ B| = |A|+ |B| − |A ∩ B|

Ex: Write down the formula for |A ∪ B ∪ C |.

Principle of Inclusion Exclusion: Let A1,A2, . . . ,An be n finite sets. Then,

|A1 ∪ A2 ∪ . . . ∪ An| =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |+ . . .

+ (−1)n+1|A1 ∩ A2 ∩ . . . ∩ An|
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Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let A1,A2, . . .An be n finite sets. Then,

|A1 ∪ A2 ∪ . . . ∪ An| =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |+ . . .

+ (−1)n+1|A1 ∩ A2 ∩ . . . ∩ An|

We prove that the formula is correct, or any element x ∈ A1 ∪ A2 ∪ . . . ∪ An is
counted exactly once. Let x belong to r amongst the n sets.

• It is counted r =
(
r
1

)
times by

∑
|Ai |.

• It is counted
(
r
2

)
times by

∑
|Ai ∩ Aj | for the pairs Ai and Aj both

containing x . Note the negative sign for this count.

• In general, it is counted
(
r
m

)
times for the intersection of m of the r sets

containing x .

• Thus, x gets counted exactly:(
r

1

)
−

(
r

2

)
+

(
r

3

)
− . . . + (−1)r+1

(
r

r

)
times
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Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let A1,A2, . . .An be n finite sets. Then,

|A1 ∪ A2 ∪ . . . ∪ An| =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |+ . . .

+ (−1)n+1|A1 ∩ A2 ∩ . . . ∩ An|

We prove that the formula is correct, or any element x ∈ A1 ∪ A2 ∪ . . . ∪ An is
counted exactly once. Let x belong to r amongst the n sets.

• Thus, x gets counted exactly:(
r

1

)
−

(
r

2

)
+

(
r

3

)
− . . . + (−1)r+1

(
r

r

)
= k times

However, note that (
r

0

)
− k = 0 why?

Thus, k =
(
r
0

)
= 1, that is x gets counted exactly once on the RHS.
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An alternate form

Many times we have several properties say P1,P2, . . . ,Pn.

• Let Ai be the set of elements that satisfy Pi .

• We also know the total number of elements say N (without any regard to
whether they satisfy any of the properties)

• And we are interested in counting the number of elements that do not
satisfy any of the properties. Denote the number by N(P̄1, P̄2, . . . , P̄n).

Thus,

N(P̄1, P̄2, . . . , P̄n) = N − |A1 ∪ A2 ∪ . . . ∪ An|

We see examples of this form next.
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Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many
ways can they be arranged such that no wife stands next to her husband?

• circle denotes a woman, square denotes a man

• same color denotes a couple

• above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

Pi : property that i-th couple stands next to each other for i = 1, 2, 3.

Ai : set of arrangements satisfying Pi .

N: Total number of arrangements = 6!

Goal: Compute N − |A1 ∪ A2 ∪ A3|.
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Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many
ways can they be arranged such that no wife stands next to her husband?

A1 is the set of arrangements satisfying P1, say blue couple stand together.
Compute |A1|.
We think of ”gluing” the couple together.

Now we have only 5 ”objects” to permute. This can be done in 5! ways.
However, for each such permutation, we can have two ways of arranging the
couple.

|A1| = 2 · 5!

This holds for
each i = 1, 2, 3.
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Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many
ways can they be arranged such that no wife stands next to her husband?

• Let A1 ∩ A2 denote the arrangements in which first and second couple
stand next to each other.
|A1 ∩ A2| = 2 · 2 · 4! why?
This holds for each every Ai ,Aj pair.

• Finally let A1 ∩A2 ∩A3 represent the arrangements where all there couples
stand next to each other. Thus, |A1 ∩ A2 ∩ A3| = 2 · 2 · 2 · 3!.

Thus |A1 ∪A2 ∪A3| = k = 3(2 · 5!)− 3(22 · 4!) + 23 · 3! Finally, number of ways
to arrange such that no couple stands next to each other is 6!− k.
Ex: Calculate the same when there are 5 couples instead of 3.
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Example: Counting number of solutions to an equation

x1 + x2 + x3 = 11

How many integral solutions if each xi ≥ 0 and x1 ≤ 3, x2 ≤ 4 and x3 ≤ 6?

Can we cast this as properties that we wish to avoid?
What is our universe (that is N)?

N = number of integral solutions where xi ≥ 0. N =
(
3−1+11

11

)
• Let P1 denote the solutions with x1 ≥ 4 and A1 denote such solutions

• Let P2 denote the solutions with x2 ≥ 5 and A2 denote such solutions

• Let P3 denote the solutions with x3 ≥ 7 and A3 denote such solutions

The our solution k = N − |A1 ∪ A2 ∪ A3|.
• N(P1) = |A1| =

(
3−1+7

7

)
• N(P1P2) = |A1 ∩ A2| = number of solutions with x1 ≥ 4 and x2 ≥ 5
N(P1P2) =

(
3−1+2

2

)
verify this!

• N(P1P2P3) is the number of solutions with x1 ≥ 4 and x2 ≥ 5 and x3 ≥ 6.
Clearly N(P1P2P3) = 0.

• Compute |A1 ∪ A2 ∪ A3| =
∑3

i=1 N(Pi )−
∑

1≤i<j≤3 N(PiPj) + N(P1P2P3)
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Summary

• Principle of inclusion exclusion with applications.

• Allows us to count elements avoiding certain properties.

• Need to come up with appropriate properties (specific to the example)

• Once properties are identified (correctly) use known techniques to count
sets satisfying properties.

• In arranging couples, we used product rule.
• In number of solutions to equation, we used combinations with repetition.

• References Section 8.6[KR]
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