Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 3, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion
- Recurrences and its applications
- Solving Recurrences

$$x_1 + x_2 + x_3 = 11$$

• How many integral solutions if each $x_i \ge 0$?

$$x_1 + x_2 + x_3 = 11$$

• How many integral solutions if each $x_i \ge 0$? \checkmark

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each $x_i \ge 1$?

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each $x_i \ge 1$? (replace $x_i 1 = y_i$ and equation is $y_1 + y_2 + y_3 = 8$)

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each $x_i \ge 1$? (replace $x_i 1 = y_i$ and equation is $y_1 + y_2 + y_3 = 8$) \checkmark

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each $x_i \ge 1$? (replace $x_i 1 = y_i$ and equation is $y_1 + y_2 + y_3 = 8$) \checkmark
- What if we want to count the number of solutions for x₁ + x₂ + x₃ ≤ 11? where each x_i > 0?

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each x_i ≥ 1? (replace x_i 1 = y_i and equation is y₁ + y₂ + y₃ = 8) √
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i \ge 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each x_i ≥ 1? (replace x_i 1 = y_i and equation is y₁ + y₂ + y₃ = 8) √
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i \ge 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark
- How many integral solutions if each $x_i \ge 0$ and $x_1 \ge 6$?

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each x_i ≥ 1? (replace x_i 1 = y_i and equation is y₁ + y₂ + y₃ = 8) √
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i \ge 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark
- How many integral solutions if each $x_i \ge 0$ and $x_1 \ge 6$? (we have seen an example of this earlier)

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each x_i ≥ 1? (replace x_i 1 = y_i and equation is y₁ + y₂ + y₃ = 8) √
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i \ge 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark
- How many integral solutions if each $x_i \ge 0$ and $x_1 \ge 6$? (we have seen an example of this earlier) \checkmark

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each x_i ≥ 1? (replace x_i 1 = y_i and equation is y₁ + y₂ + y₃ = 8) √
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i \ge 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark
- How many integral solutions if each $x_i \ge 0$ and $x_1 \ge 6$? (we have seen an example of this earlier) \checkmark

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each $x_i \ge 1$? (replace $x_i 1 = y_i$ and equation is $y_1 + y_2 + y_3 = 8$) \checkmark
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i \ge 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark
- How many integral solutions if each $x_i \ge 0$ and $x_1 \ge 6$? (we have seen an example of this earlier) \checkmark

All the above can be solved using combinations with repetitions.

$$x_1 + x_2 + x_3 = 11$$

- How many integral solutions if each $x_i \ge 0$? \checkmark
- How many integral solutions if each $x_i \ge 1$? (replace $x_i 1 = y_i$ and equation is $y_1 + y_2 + y_3 = 8$) \checkmark
- What if we want to count the number of solutions for $x_1 + x_2 + x_3 \le 11$? where each $x_i > 0$? (add another variable x_4 and set it to an equality. $x_4 \ge 0$.) \checkmark
- How many integral solutions if each $x_i \ge 0$ and $x_1 \ge 6$? (we have seen an example of this earlier) <

All the above can be solved using combinations with repetitions.

• How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Verify that this cannot be solved using the same. We will use the principle of inclusion exclusion. 4 D > 4 D > 4 E > 4 E > E 990

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

It is a generalization of the familiar formula below.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Ex: Write down the formula for $|A \cup B \cup C|$.

Principle of Inclusion Exclusion: Let A_1, A_2, \ldots, A_n be *n* finite sets. Then,

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

It is a generalization of the familiar formula below.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Ex: Write down the formula for $|A \cup B \cup C|$.

Principle of Inclusion Exclusion: Let A_1, A_2, \ldots, A_n be *n* finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be n finite sets. Then,

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| + \ldots$$

$$+ (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$

We prove that the formula is correct, or any element $x \in A_1 \cup A_2 \cup ... \cup A_n$ is counted exactly once.

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be n finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

We prove that the formula is correct, or any element $x \in A_1 \cup A_2 \cup ... \cup A_n$ is counted exactly once. Let x belong to r amongst the n sets.

• It is counted $r = \binom{r}{1}$ times by $\sum |A_i|$.

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

- It is counted $r = \binom{r}{1}$ times by $\sum |A_i|$.
- It is counted $\binom{r}{2}$ times by $\sum |A_i \cap A_j|$ for the pairs A_i and A_j both containing x.

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

- It is counted $r = \binom{r}{1}$ times by $\sum |A_i|$.
- It is counted (^r₂) times by ∑ |A_i ∩ A_j| for the pairs A_i and A_j both containing x. Note the negative sign for this count.

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| + \ldots$$

$$+ (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$

- It is counted $r = \binom{r}{1}$ times by $\sum |A_i|$.
- It is counted (^r₂) times by ∑ |A_i ∩ A_j| for the pairs A_i and A_j both containing x. Note the negative sign for this count.
- In general, it is counted $\binom{r}{m}$ times for the intersection of m of the r sets containing x.

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| + \ldots$$

$$+ (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$

- It is counted $r = \binom{r}{1}$ times by $\sum |A_i|$.
- It is counted $\binom{r}{2}$ times by $\sum |A_i \cap A_j|$ for the pairs A_i and A_j both containing x. Note the negative sign for this count.
- In general, it is counted (^r_m) times for the intersection of m of the r sets containing x.
- Thus, x gets counted exactly:

$$\binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \ldots + (-1)^{r+1} \binom{r}{r}$$
 times

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be n finite sets. Then,

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \le i < j < k \le n} |A_{i} \cap A_{j} \cap A_{k}| + \ldots$$

$$+ (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$

We prove that the formula is correct, or any element $x \in A_1 \cup A_2 \cup ... \cup A_n$ is counted exactly once. Let x belong to r amongst the n sets.

Thus, x gets counted exactly:

$$\binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \ldots + (-1)^{r+1} \binom{r}{r} = k \text{ times}$$

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$+ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

We prove that the formula is correct, or any element $x \in A_1 \cup A_2 \cup ... \cup A_n$ is counted exactly once. Let x belong to r amongst the n sets.

• Thus, x gets counted exactly:

$$\binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \ldots + (-1)^{r+1} \binom{r}{r} = k \text{ times}$$

However, note that

$$\binom{r}{0} - k = 0 \quad \text{why?}$$

Principle of Inclusion Exclusion: Let $A_1, A_2, \dots A_n$ be *n* finite sets. Then,

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i < j \leq n} |A_{i} \cap A_{j}|$$

$$+ \sum_{1 \leq i < j < k \leq n} |A_{i} \cap A_{j} \cap A_{k}| + \ldots$$

$$+ (-1)^{n+1} |A_{1} \cap A_{2} \cap \ldots \cap A_{n}|$$

We prove that the formula is correct, or any element $x \in A_1 \cup A_2 \cup ... \cup A_n$ is counted exactly once. Let x belong to r amongst the n sets.

• Thus, x gets counted exactly:

$$\binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \ldots + (-1)^{r+1} \binom{r}{r} = k \text{ times}$$

However, note that

$$\binom{r}{0} - k = 0 \quad \text{why?}$$

Thus, $k = \binom{r}{0} = 1$, that is x gets counted exactly once on the RHS.

Many times we have several properties say P_1, P_2, \dots, P_n .

• Let A_i be the set of elements that satisfy P_i .

Many times we have several properties say P_1, P_2, \dots, P_n .

- Let A_i be the set of elements that satisfy P_i .
- We also know the total number of elements say *N* (without any regard to whether they satisfy any of the properties)

Many times we have several properties say P_1, P_2, \ldots, P_n .

- Let A_i be the set of elements that satisfy P_i .
- We also know the total number of elements say *N* (without any regard to whether they satisfy any of the properties)
- And we are interested in counting the number of elements that do not satisfy any of the properties. Denote the number by $N(\bar{P}_1, \bar{P}_2, \dots, \bar{P}_n)$.

Many times we have several properties say P_1, P_2, \ldots, P_n .

- Let A_i be the set of elements that satisfy P_i .
- We also know the total number of elements say N (without any regard to whether they satisfy any of the properties)
- And we are interested in counting the number of elements that do not satisfy any of the properties. Denote the number by $N(\bar{P}_1, \bar{P}_2, \dots, \bar{P}_n)$.

Thus,

$$N(\bar{P_1}, \bar{P_2}, \dots, \bar{P_n}) = N - |A_1 \cup A_2 \cup \dots \cup A_n|$$

Many times we have several properties say P_1, P_2, \ldots, P_n .

- Let A_i be the set of elements that satisfy P_i .
- We also know the total number of elements say N (without any regard to whether they satisfy any of the properties)
- And we are interested in counting the number of elements that do not satisfy any of the properties. Denote the number by $N(\bar{P}_1, \bar{P}_2, \dots, \bar{P}_n)$.

Thus,

$$N(\bar{P}_1, \bar{P}_2, \ldots, \bar{P}_n) = N - |A_1 \cup A_2 \cup \ldots \cup A_n|$$

We see examples of this form next.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

 P_i : property that *i*-th couple stands next to each other for i = 1, 2, 3.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

 P_i : property that *i*-th couple stands next to each other for i = 1, 2, 3.

 A_i : set of arrangements satisfying P_i .

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

 P_i : property that *i*-th couple stands next to each other for i = 1, 2, 3.

 A_i : set of arrangements satisfying P_i .

N: Total number of arrangements = 6!

Goal: Compute $N - |A_1 \cup A_2 \cup A_3|$.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 A_1 is the set of arrangements satisfying P_1 , say blue couple stand together. Compute $|A_1|$.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 A_1 is the set of arrangements satisfying P_1 , say blue couple stand together. Compute $|A_1|$.

We think of "gluing" the couple together.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 A_1 is the set of arrangements satisfying P_1 , say blue couple stand together. Compute $|A_1|$.

We think of "gluing" the couple together.

Now we have only 5 "objects" to permute. This can be done in 5! ways.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 A_1 is the set of arrangements satisfying P_1 , say blue couple stand together. Compute $|A_1|$.

We think of "gluing" the couple together.

Now we have only 5 "objects" to permute. This can be done in 5! ways. However, for each such permutation, we can have two ways of arranging the couple.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 A_1 is the set of arrangements satisfying P_1 , say blue couple stand together. Compute $|A_1|$.

We think of "gluing" the couple together.

Now we have only 5 "objects" to permute. This can be done in 5! ways. However, for each such permutation, we can have two ways of arranging the couple.

$$|A_1| = 2 \cdot 5!$$

This holds for each i = 1, 2, 3.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 Let A₁ ∩ A₂ denote the arrangements in which first and second couple stand next to each other.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

• Let $A_1 \cap A_2$ denote the arrangements in which first and second couple stand next to each other.

$$|A_1 \cap A_2| = 2 \cdot 2 \cdot 4!$$

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 Let A₁ ∩ A₂ denote the arrangements in which first and second couple stand next to each other.

$$|A_1 \cap A_2| = 2 \cdot 2 \cdot 4!$$

why?

This holds for each every A_i , A_j pair.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 Let A₁ ∩ A₂ denote the arrangements in which first and second couple stand next to each other.

$$|A_1 \cap A_2| = 2 \cdot 2 \cdot 4!$$

why?

This holds for each every A_i , A_i pair.

• Finally let $A_1 \cap A_2 \cap A_3$ represent the arrangements where all there couples stand next to each other. Thus, $|A_1 \cap A_2 \cap A_3| = 2 \cdot 2 \cdot 2 \cdot 3!$.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 Let A₁ ∩ A₂ denote the arrangements in which first and second couple stand next to each other.

$$|A_1 \cap A_2| = 2 \cdot 2 \cdot 4!$$

why?

This holds for each every A_i, A_j pair.

• Finally let $A_1 \cap A_2 \cap A_3$ represent the arrangements where all there couples stand next to each other. Thus, $|A_1 \cap A_2 \cap A_3| = 2 \cdot 2 \cdot 2 \cdot 3!$.

Thus
$$|A_1 \cup A_2 \cup A_3| = k = 3(2 \cdot 5!) - 3(2^2 \cdot 4!) + 2^3 \cdot 3!$$

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 Let A₁ ∩ A₂ denote the arrangements in which first and second couple stand next to each other.

$$|A_1 \cap A_2| = 2 \cdot 2 \cdot 4!$$

why?

This holds for each every A_i, A_j pair.

• Finally let $A_1 \cap A_2 \cap A_3$ represent the arrangements where all there couples stand next to each other. Thus, $|A_1 \cap A_2 \cap A_3| = 2 \cdot 2 \cdot 2 \cdot 3!$.

Thus $|A_1 \cup A_2 \cup A_3| = k = 3(2 \cdot 5!) - 3(2^2 \cdot 4!) + 2^3 \cdot 3!$ Finally, number of ways to arrange such that no couple stands next to each other is 6! - k.

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

 Let A₁ ∩ A₂ denote the arrangements in which first and second couple stand next to each other.

$$|A_1 \cap A_2| = 2 \cdot 2 \cdot 4!$$

why?

This holds for each every A_i , A_i pair.

• Finally let $A_1 \cap A_2 \cap A_3$ represent the arrangements where all there couples stand next to each other. Thus, $|A_1 \cap A_2 \cap A_3| = 2 \cdot 2 \cdot 2 \cdot 3!$.

Thus $|A_1 \cup A_2 \cup A_3| = k = 3(2 \cdot 5!) - 3(2^2 \cdot 4!) + 2^3 \cdot 3!$ Finally, number of ways to arrange such that no couple stands next to each other is 6! - k. Ex: Calculate the same when there are 5 couples instead of 3.

$$x_1 + x_2 + x_3 = 11$$

How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

$$x_1 + x_2 + x_3 = 11$$

How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

 $N = \text{number of integral solutions where } x_i \geq 0.$ $N = \binom{3-1+11}{11}$

$$x_1 + x_2 + x_3 = 11$$

How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

N= number of integral solutions where $x_i\geq 0$. $N={3-1+11\choose 11}$

- Let P_1 denote the solutions with $x_1 \ge 4$ and A_1 denote such solutions
- Let P_2 denote the solutions with $x_2 \ge 5$ and A_2 denote such solutions
- Let P_3 denote the solutions with $x_3 \ge 7$ and A_3 denote such solutions

$$x_1 + x_2 + x_3 = 11$$

How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

N= number of integral solutions where $x_i\geq 0$. $N={3-1+11\choose 11}$

- Let P_1 denote the solutions with $x_1 \ge 4$ and A_1 denote such solutions
- Let P_2 denote the solutions with $x_2 \ge 5$ and A_2 denote such solutions
- Let P_3 denote the solutions with $x_3 \ge 7$ and A_3 denote such solutions

The our solution $k = N - |A_1 \cup A_2 \cup A_3|$.

- $N(P_1) = |A_1| = {3-1+7 \choose 7}$
- $N(P_1P_2)=|A_1\cap A_2|=$ number of solutions with $x_1\geq 4$ and $x_2\geq 5$ $N(P_1P_2)={3-1+2\choose 2}$ verify this!

$$x_1 + x_2 + x_3 = 11$$

How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

N= number of integral solutions where $x_i\geq 0$. $N={3-1+11\choose 11}$

- Let P_1 denote the solutions with $x_1 \ge 4$ and A_1 denote such solutions
- Let P_2 denote the solutions with $x_2 \ge 5$ and A_2 denote such solutions
- Let P_3 denote the solutions with $x_3 \ge 7$ and A_3 denote such solutions

The our solution $k = N - |A_1 \cup A_2 \cup A_3|$.

- $N(P_1) = |A_1| = {3-1+7 \choose 7}$
- $N(P_1P_2)=|A_1\cap A_2|=$ number of solutions with $x_1\geq 4$ and $x_2\geq 5$ $N(P_1P_2)={3-1+2\choose 2}$ verify this!
- $N(P_1P_2P_3)$ is the number of solutions with $x_1 \ge 4$ and $x_2 \ge 5$ and $x_3 \ge 6$. Clearly $N(P_1P_2P_3) = 0$.

$$x_1 + x_2 + x_3 = 11$$

How many integral solutions if each $x_i \ge 0$ and $x_1 \le 3$, $x_2 \le 4$ and $x_3 \le 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

 $N = \text{number of integral solutions where } x_i \ge 0.$ $N = \binom{3-1+11}{11}$

- Let P_1 denote the solutions with $x_1 \ge 4$ and A_1 denote such solutions
- Let P_2 denote the solutions with $x_2 \ge 5$ and A_2 denote such solutions
- Let P_3 denote the solutions with $x_3 \ge 7$ and A_3 denote such solutions

The our solution $k = N - |A_1 \cup A_2 \cup A_3|$.

- $N(P_1) = |A_1| = {3-1+7 \choose 7}$
- $N(P_1P_2)=|A_1\cap A_2|=$ number of solutions with $x_1\geq 4$ and $x_2\geq 5$ $N(P_1P_2)={3-1+2\choose 2}$ verify this!
- $N(P_1P_2P_3)$ is the number of solutions with $x_1 \ge 4$ and $x_2 \ge 5$ and $x_3 \ge 6$. Clearly $N(P_1P_2P_3) = 0$.
- Compute $|A_1 \cup A_2 \cup A_3| = \sum_{i=1}^3 N(P_i) \sum_{1 \le i < j \le 3} N(P_iP_j) + N(P_1P_2P_3)$

Summary

- Principle of inclusion exclusion with applications.
- Allows us to count elements avoiding certain properties.
- Need to come up with appropriate properties (specific to the example)
- Once properties are identified (correctly) use known techniques to count sets satisfying properties.
 - In arranging couples, we used product rule.
 - In number of solutions to equation, we used combinations with repetition.
- References Section 8.6[KR]