Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 3, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion
- Recurrences and its applications
- Solving Recurrences

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$?

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $y_{1}+y_{2}+y_{3}=8$)

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $y_{1}+y_{2}+y_{3}=8$) \checkmark
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$?

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$? (add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$?
(add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark
- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \geq 6$?

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$? (add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark
- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \geq 6$? (we have seen an example of this earlier)

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$?
(add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark
- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \geq 6$? (we have seen an example of this earlier)

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$?
(add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark
- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \geq 6$? (we have seen an example of this earlier)

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$?
(add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark
- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \geq 6$? (we have seen an example of this earlier)

All the above can be solved using combinations with repetitions.

Example: Number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

- How many integral solutions if each $x_{i} \geq 0$?
- How many integral solutions if each $x_{i} \geq 1$? (replace $x_{i}-1=y_{i}$ and equation is $\left.y_{1}+y_{2}+y_{3}=8\right) \checkmark$
- What if we want to count the number of solutions for $x_{1}+x_{2}+x_{3} \leq 11$? where each $x_{i} \geq 0$? (add another variable x_{4} and set it to an equality. $x_{4} \geq 0$.) \checkmark
- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \geq 6$? (we have seen an example of this earlier)

All the above can be solved using combinations with repetitions.

- How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?

Verify that this cannot be solved using the same. We will use the principle of inclusion exclusion.

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

It is a generalization of the familiar formula below.

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Ex: Write down the formula for $|A \cup B \cup C|$.

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots, A_{n}$ be n finite sets. Then,

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

It is a generalization of the familiar formula below.

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Ex: Write down the formula for $|A \cup B \cup C|$.
Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots, A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once.

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- It is counted $r=\binom{r}{1}$ times by $\sum\left|A_{i}\right|$.

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- It is counted $r=\binom{r}{1}$ times by $\sum\left|A_{i}\right|$.
- It is counted $\binom{r}{2}$ times by $\sum\left|A_{i} \cap A_{j}\right|$ for the pairs A_{i} and A_{j} both containing x.

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- It is counted $r=\binom{r}{1}$ times by $\sum\left|A_{i}\right|$.
- It is counted $\binom{r}{2}$ times by $\sum\left|A_{i} \cap A_{j}\right|$ for the pairs A_{i} and A_{j} both containing x. Note the negative sign for this count.

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- It is counted $r=\binom{r}{1}$ times by $\sum\left|A_{i}\right|$.
- It is counted $\binom{r}{2}$ times by $\sum\left|A_{i} \cap A_{j}\right|$ for the pairs A_{i} and A_{j} both containing x. Note the negative sign for this count.
- In general, it is counted $\binom{r}{m}$ times for the intersection of m of the r sets containing x.

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- It is counted $r=\binom{r}{1}$ times by $\sum\left|A_{i}\right|$.
- It is counted $\binom{r}{2}$ times by $\sum\left|A_{i} \cap A_{j}\right|$ for the pairs A_{i} and A_{j} both containing x. Note the negative sign for this count.
- In general, it is counted $\binom{r}{m}$ times for the intersection of m of the r sets containing x.
- Thus, x gets counted exactly:

$$
\binom{r}{1}-\binom{r}{2}+\binom{r}{3}-\ldots+(-1)^{r+1}\binom{r}{r} \text { times }
$$

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- Thus, x gets counted exactly:

$$
\binom{r}{1}-\binom{r}{2}+\binom{r}{3}-\ldots+(-1)^{r+1}\binom{r}{r}=k \text { times }
$$

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- Thus, x gets counted exactly:

$$
\binom{r}{1}-\binom{r}{2}+\binom{r}{3}-\ldots+(-1)^{r+1}\binom{r}{r}=k \text { times }
$$

However, note that

$$
\binom{r}{0}-k=0 \quad \text { why? }
$$

Correctness of Principle of Inclusion Exclusion

Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

We prove that the formula is correct, or any element $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once. Let x belong to r amongst the n sets.

- Thus, x gets counted exactly:

$$
\binom{r}{1}-\binom{r}{2}+\binom{r}{3}-\ldots+(-1)^{r+1}\binom{r}{r}=k \text { times }
$$

However, note that

$$
\binom{r}{0}-k=0 \quad \text { why? }
$$

Thus, $k=\binom{r}{0}=1$, that is x gets counted exactly once on the RHS.

An alternate form

Many times we have several properties say $P_{1}, P_{2}, \ldots, P_{n}$.

- Let A_{i} be the set of elements that satisfy P_{i}.

An alternate form

Many times we have several properties say $P_{1}, P_{2}, \ldots, P_{n}$.

- Let A_{i} be the set of elements that satisfy P_{i}.
- We also know the total number of elements say N (without any regard to whether they satisfy any of the properties)

An alternate form

Many times we have several properties say $P_{1}, P_{2}, \ldots, P_{n}$.

- Let A_{i} be the set of elements that satisfy P_{i}.
- We also know the total number of elements say N (without any regard to whether they satisfy any of the properties)
- And we are interested in counting the number of elements that do not satisfy any of the properties. Denote the number by $N\left(\bar{P}_{1}, \bar{P}_{2}, \ldots, \bar{P}_{n}\right)$.

An alternate form

Many times we have several properties say $P_{1}, P_{2}, \ldots, P_{n}$.

- Let A_{i} be the set of elements that satisfy P_{i}.
- We also know the total number of elements say N (without any regard to whether they satisfy any of the properties)
- And we are interested in counting the number of elements that do not satisfy any of the properties. Denote the number by $N\left(\bar{P}_{1}, \bar{P}_{2}, \ldots, \bar{P}_{n}\right)$.
Thus,

$$
N\left(\bar{P}_{1}, \bar{P}_{2}, \ldots, \bar{P}_{n}\right)=N-\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|
$$

An alternate form

Many times we have several properties say $P_{1}, P_{2}, \ldots, P_{n}$.

- Let A_{i} be the set of elements that satisfy P_{i}.
- We also know the total number of elements say N (without any regard to whether they satisfy any of the properties)
- And we are interested in counting the number of elements that do not satisfy any of the properties. Denote the number by $N\left(\bar{P}_{1}, \bar{P}_{2}, \ldots, \bar{P}_{n}\right)$.
Thus,

$$
N\left(\bar{P}_{1}, \bar{P}_{2}, \ldots, \bar{P}_{n}\right)=N-\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|
$$

We see examples of this form next.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?
P_{i} : property that i-th couple stands next to each other for $i=1,2,3$.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?
P_{i} : property that i-th couple stands next to each other for $i=1,2,3$.
A_{i} : set of arrangements satisfying P_{i}.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
$\square \bigcirc \bigcirc \bigcirc \square$

- circle denotes a woman, square denotes a man
- same color denotes a couple
- above arrangement is not allowed since the blue couple stands together.

Can we cast this as properties that we wish to avoid?
P_{i} : property that i-th couple stands next to each other for $i=1,2,3$.
A_{i} : set of arrangements satisfying P_{i}.
N : Total number of arrangements $=6$!
Goal: Compute $N-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

A_{1} is the set of arrangements satisfying P_{1}, say blue couple stand together. Compute $\left|A_{1}\right|$.

Example: Arranging six people for a photo

Qu: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
A_{1} is the set of arrangements satisfying P_{1}, say blue couple stand together. Compute $\left|A_{1}\right|$.
We think of "gluing" the couple together.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
A_{1} is the set of arrangements satisfying P_{1}, say blue couple stand together. Compute $\left|A_{1}\right|$.
We think of "gluing" the couple together.

Now we have only 5 "objects" to permute. This can be done in 5 ! ways.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
A_{1} is the set of arrangements satisfying P_{1}, say blue couple stand together. Compute $\left|A_{1}\right|$.
We think of "gluing" the couple together.

Now we have only 5 "objects" to permute. This can be done in 5 ! ways. However, for each such permutation, we can have two ways of arranging the couple.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
A_{1} is the set of arrangements satisfying P_{1}, say blue couple stand together. Compute $\left|A_{1}\right|$.
We think of "gluing" the couple together.

Now we have only 5 "objects" to permute. This can be done in 5 ! ways. However, for each such permutation, we can have two ways of arranging the couple.

$$
\square \bigcirc \bigcirc \bigcirc \quad\left|A_{1}\right|=2 \cdot 5!
$$

\square
This holds for each $i=1,2,3$.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

$$
\left|A_{1} \cap A_{2}\right|=2 \cdot 2 \cdot 4!\quad \text { why? }
$$

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

$$
\begin{array}{ll}
\left|A_{1} \cap A_{2}\right|=2 \cdot 2 \cdot 4! & \text { why? } \\
\text { This holds for each every } A_{i}, A_{j} \text { pair. } &
\end{array}
$$

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

$$
\left|A_{1} \cap A_{2}\right|=2 \cdot 2 \cdot 4!\quad \text { why? }
$$

This holds for each every A_{i}, A_{j} pair.

- Finally let $A_{1} \cap A_{2} \cap A_{3}$ represent the arrangements where all there couples stand next to each other. Thus, $\left|A_{1} \cap A_{2} \cap A_{3}\right|=2 \cdot 2 \cdot 2 \cdot 3$!.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
\square

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

$$
\left|A_{1} \cap A_{2}\right|=2 \cdot 2 \cdot 4!\quad \text { why? }
$$

$$
\text { This holds for each every } A_{i}, A_{j} \text { pair. }
$$

- Finally let $A_{1} \cap A_{2} \cap A_{3}$ represent the arrangements where all there couples stand next to each other. Thus, $\left|A_{1} \cap A_{2} \cap A_{3}\right|=2 \cdot 2 \cdot 2 \cdot 3$!.

Thus $\left|A_{1} \cup A_{2} \cup A_{3}\right|=k=3(2 \cdot 5!)-3\left(2^{2} \cdot 4!\right)+2^{3} \cdot 3!$

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
\square

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

$$
\left|A_{1} \cap A_{2}\right|=2 \cdot 2 \cdot 4!\quad \text { why? }
$$

$$
\text { This holds for each every } A_{i}, A_{j} \text { pair. }
$$

- Finally let $A_{1} \cap A_{2} \cap A_{3}$ represent the arrangements where all there couples stand next to each other. Thus, $\left|A_{1} \cap A_{2} \cap A_{3}\right|=2 \cdot 2 \cdot 2 \cdot 3$!.

Thus $\left|A_{1} \cup A_{2} \cup A_{3}\right|=k=3(2 \cdot 5!)-3\left(2^{2} \cdot 4!\right)+2^{3} \cdot 3$! Finally, number of ways to arrange such that no couple stands next to each other is $6!-k$.

Example: Arranging six people for a photo

Qn: Six people which has three couples stand in line for a photo. How many ways can they be arranged such that no wife stands next to her husband?
\square

\square
\square

- Let $A_{1} \cap A_{2}$ denote the arrangements in which first and second couple stand next to each other.

$$
\left|A_{1} \cap A_{2}\right|=2 \cdot 2 \cdot 4!\quad \text { why? }
$$

$$
\text { This holds for each every } A_{i}, A_{j} \text { pair. }
$$

- Finally let $A_{1} \cap A_{2} \cap A_{3}$ represent the arrangements where all there couples stand next to each other. Thus, $\left|A_{1} \cap A_{2} \cap A_{3}\right|=2 \cdot 2 \cdot 2 \cdot 3$!.

Thus $\left|A_{1} \cup A_{2} \cup A_{3}\right|=k=3(2 \cdot 5!)-3\left(2^{2} \cdot 4!\right)+2^{3} \cdot 3$! Finally, number of ways to arrange such that no couple stands next to each other is $6!-k$.
Ex: Calculate the same when there are 5 couples instead of 3 .

Example: Counting number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?

Example: Counting number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?
$N=$ number of integral solutions where $x_{i} \geq 0 . \quad N=\binom{3-1+11}{11}$

Example: Counting number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?
$N=$ number of integral solutions where $x_{i} \geq 0 . \quad N=\binom{3-1+11}{11}$

- Let P_{1} denote the solutions with $x_{1} \geq 4$ and A_{1} denote such solutions
- Let P_{2} denote the solutions with $x_{2} \geq 5$ and A_{2} denote such solutions
- Let P_{3} denote the solutions with $x_{3} \geq 7$ and A_{3} denote such solutions

Example: Counting number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?

Can we cast this as properties that we wish to avoid? What is our universe (that is N)?
$N=$ number of integral solutions where $x_{i} \geq 0 . \quad N=\binom{3-1+11}{11}$

- Let P_{1} denote the solutions with $x_{1} \geq 4$ and A_{1} denote such solutions
- Let P_{2} denote the solutions with $x_{2} \geq 5$ and A_{2} denote such solutions
- Let P_{3} denote the solutions with $x_{3} \geq 7$ and A_{3} denote such solutions

The our solution $k=N-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

- $N\left(P_{1}\right)=\left|A_{1}\right|=\binom{3-1+7}{7}$
- $N\left(P_{1} P_{2}\right)=\left|A_{1} \cap A_{2}\right|=$ number of solutions with $x_{1} \geq 4$ and $x_{2} \geq 5$ $N\left(P_{1} P_{2}\right)=\binom{3-1+2}{2}$
verify this!

Example: Counting number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?

Can we cast this as properties that we wish to avoid?
What is our universe (that is N)?
$N=$ number of integral solutions where $x_{i} \geq 0 . \quad N=\binom{3-1+11}{11}$

- Let P_{1} denote the solutions with $x_{1} \geq 4$ and A_{1} denote such solutions
- Let P_{2} denote the solutions with $x_{2} \geq 5$ and A_{2} denote such solutions
- Let P_{3} denote the solutions with $x_{3} \geq 7$ and A_{3} denote such solutions

The our solution $k=N-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

- $N\left(P_{1}\right)=\left|A_{1}\right|=\binom{3-1+7}{7}$
- $N\left(P_{1} P_{2}\right)=\left|A_{1} \cap A_{2}\right|=$ number of solutions with $x_{1} \geq 4$ and $x_{2} \geq 5$ $N\left(P_{1} P_{2}\right)=\binom{3-1+2}{2}$ verify this!
- $N\left(P_{1} P_{2} P_{3}\right)$ is the number of solutions with $x_{1} \geq 4$ and $x_{2} \geq 5$ and $x_{3} \geq 6$. Clearly $N\left(P_{1} P_{2} P_{3}\right)=0$.

Example: Counting number of solutions to an equation

$$
x_{1}+x_{2}+x_{3}=11
$$

How many integral solutions if each $x_{i} \geq 0$ and $x_{1} \leq 3, x_{2} \leq 4$ and $x_{3} \leq 6$?
Can we cast this as properties that we wish to avoid?
What is our universe (that is N)?
$N=$ number of integral solutions where $x_{i} \geq 0 . \quad N=\binom{3-1+11}{11}$

- Let P_{1} denote the solutions with $x_{1} \geq 4$ and A_{1} denote such solutions
- Let P_{2} denote the solutions with $x_{2} \geq 5$ and A_{2} denote such solutions
- Let P_{3} denote the solutions with $x_{3} \geq 7$ and A_{3} denote such solutions

The our solution $k=N-\left|A_{1} \cup A_{2} \cup A_{3}\right|$.

- $N\left(P_{1}\right)=\left|A_{1}\right|=\binom{3-1+7}{7}$
- $N\left(P_{1} P_{2}\right)=\left|A_{1} \cap A_{2}\right|=$ number of solutions with $x_{1} \geq 4$ and $x_{2} \geq 5$ $N\left(P_{1} P_{2}\right)=\binom{3-1+2}{2} \quad$ verify this!
- $N\left(P_{1} P_{2} P_{3}\right)$ is the number of solutions with $x_{1} \geq 4$ and $x_{2} \geq 5$ and $x_{3} \geq 6$. Clearly $N\left(P_{1} P_{2} P_{3}\right)=0$.
- Compute $\left|A_{1} \cup A_{2} \cup A_{3}\right|=\sum_{i=1}^{3} N\left(P_{i}\right)-\sum_{1 \leq i<j \leq 3} N\left(P_{i} P_{j}\right)+N\left(P_{1} P_{2} P_{3}\right)$

Summary

- Principle of inclusion exclusion with applications.
- Allows us to count elements avoiding certain properties.
- Need to come up with appropriate properties (specific to the example)
- Once properties are identified (correctly) use known techniques to count sets satisfying properties.
- In arranging couples, we used product rule.
- In number of solutions to equation, we used combinations with repetition.
- References Section 8.6[KR]

