Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 6, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion
- Recurrences and its applications
- Solving Recurrences

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of finite sets.

It is a generalization of the familiar formula below.

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Ex: Write down the formula for $|A \cup B \cup C|$.
Principle of Inclusion Exclusion: Let $A_{1}, A_{2}, \ldots, A_{n}$ be n finite sets. Then,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|+\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Example: Number of Derangements

We are given n objects, say $1,2,3, \ldots, n$.
Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

$3,1,2,5,4$	\checkmark	
$4,1,3,5,2$	\times	since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by D_{n}. Ex:

- Find out D_{2} and D_{3}.
- Cast D_{n} as properties that we wish to avoid.

Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original position.
P_{i} : A permutation that has i at its original position.
2, 3, 4, 1, 5 satisfies P_{5}.
$1,2,3,4,5$ satisfies P_{5}.
A_{i} : Set of permutations that have i at its original position.
$A_{1} \cup A_{2} \cup \ldots \cup A_{n}$: Set of permutations that have at least one object at its original position.

Modified Goal: Compute the size of $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.
Number of Derangements:

$$
D_{n}=n!-\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|
$$

Ex: Complete the above to show that the number of derangements is

$$
D_{n}=n!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots+(-1)^{n} \frac{1}{n!}\right]
$$

Number of Derangements: A recursive specification

Now we give a recursive definition of D_{n}.

$$
\begin{aligned}
& D_{1}=0 ; \quad D_{2}=1 \\
& D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)
\end{aligned}
$$

We give a combinatorial proof of the above. Verify base cases.
Think of a derangement as n objects to be placed in n positions with each position having exactly one forbidden object.

Number of choices for first position $=(n-1)$.
Every derangement starting at k where $2 \leq k \leq n-1$ can be categorized as:

- Object 1 is at position k. In this case, we can omit the two positions 1 and k and the two objects and consider derangements on $n-2$ positions with each position having one forbidden object. The number of such derangements is D_{n-2}.
- Object 1 is not at position k. In this case, we have $n-1$ objects and $n-1$ positions. Each position has exactly one forbidden object. Note that position k cannot have object 1 now. Thus number of such derangements is D_{n-1}.

This completes the proof.

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

Set X with
m elements

Set Y with n elements

- Total number of functions from X to $Y: n^{m}$
- Number of one-to-one functions from X to Y : $n \cdot(n-1) \cdot(n-2) \cdots(n-m+1)$ (requires $m \leq n$)
- Goal: Number of onto functions from X to Y. (requires $m \geq n$)

Try counting without the principle of inclusion exclusion.
Can we cast it as certain properties that we wish to avoid?

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

Set X with m elements

Set Y with n elements

- Not an onto function. b_{n} is not in the range of the function.
- This is precisely something that we would like to avoid.

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

- Not an onto function. b_{n} is not in the range of the function.

Modified Goal: Compute the size of $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.
Number of Onto Functions:

$$
n^{m}-\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|
$$

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements. Modified Goal: Compute $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|$.

- $\left|A_{i}\right|=(n-1)^{m}$
- $\left|A_{i} \cap A_{j}\right|=(n-2)^{m}$
- Number of functions that do not have k many b 's in the range $=(n-k)^{m}$
- Number of functions that do not have n many b 's in the range $=0$. There cannot be any such function!

The number of onto functions from an m element set to an n element set where $m \geq n$ is:

$$
n^{m}-\binom{n}{1}(n-1)^{m}+\binom{n}{2}(n-2)^{m}-\ldots+(-1)^{n-1}\binom{n}{n-1} 1^{m}
$$

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.
$S(m, n)$: Number of onto functions from a set X with m elements to a set Y with n elements where $m \geq n$.

$$
\begin{array}{rlrl}
S(m, n) & =1 & n=1 \\
& =n^{m}-\sum_{k=1}^{n-1}\binom{n}{k} S(m, k) & & \text { otherwise }
\end{array}
$$

Proof: The base case is readily verified. For the recursive step we observe:

- A function from X to Y is not onto if it has $1 \leq k \leq n-1$ many elements of Y in the range.
- There are $\binom{n}{k}$ ways of selecting k elements from the set Y. Once we select these k elements as Y_{k} then $S(m, k)$ denotes the number of onto functions from X to Y_{k}.
- Thus, $\binom{n}{k} S(m, k)$ denotes the number of functions from X to Y having exactly k elements in the range. Hence $\sum_{k=1}^{n-1}\binom{n}{k} S(m, k)$ is the number of functions from X to Y that are not onto.
- Subtracting this from the total number of functions n^{m} gives the desired result.

Recurrences and its applications

We have already seen recursive sequences.
Next, we will see how to formulate real-world problems as recursive sequences and eventually get closed form expressions.

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it contains odd number of 0 s . Write a recursive formula for a_{n} which gives the number of code words of length n.

Examples:

- 0 is the only one length valid code-word. Thus $a_{1}=1$.
- 120078201 is valid but 120078200 is invalid.

A recursive formula:

- To create a n length code-word, we can take an $n-1$ length code-word and add an appropriate digit.
- If $n-1$ length code-word is valid, we can extend it in 9 different ways(why?) The number of $n-1$ length valid code-words is a_{n-1}.
- If $n-1$ length code-word is invalid, we can extend it in 1 way, by adding a 0 . The number of invalid code-words of length $n-1$ is $10^{n-1}-a_{n-1}$.

$$
\begin{aligned}
a_{n} & =9 a_{n-1}+10^{n-1}-a_{n-1} \\
& =8 a_{n-1}+10^{n-1}
\end{aligned}
$$

Ex: What if the valid code-words need to contain even number of 0s. How does the formula change?

Summary

- Two important applications of principle of Inclusion Exclusion.
- Recursive definitions of the same.
- Recursive formula for a simple example.
- References Section 8.6 and 8.1 [KR]

