
Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 6, 2020

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Advanced Counting Techniques

• Principle of Inclusion-Exclusion

• Recurrences and its applications

• Solving Recurrences

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of
finite sets.

It is a generalization of the familiar formula below.

|A ∪ B| = |A|+ |B| − |A ∩ B|

Ex: Write down the formula for |A ∪ B ∪ C |.

Principle of Inclusion Exclusion: Let A1,A2, . . . ,An be n finite sets. Then,

|A1 ∪ A2 ∪ . . . ∪ An| =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |+ . . .

+ (−1)n+1|A1 ∩ A2 ∩ . . . ∩ An|

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4

X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2

× since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original
position.

Pi : A permutation that has i at its original position.

2, 3, 4, 1, 5 satisfies P5.
1, 2, 3, 4, 5 satisfies P5.

Ai : Set of permutations that have i at its original position.

A1 ∪ A2 ∪ . . . ∪ An : Set of permutations that have at least one object at its
original position.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Derangements:

Dn = n!− |A1 ∪ A2 ∪ . . . ∪ An|
Ex: Complete the above to show that the number of derangements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ . . . + (−1)n

1

n!

]

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original
position.

Pi : A permutation that has i at its original position.

2, 3, 4, 1, 5 satisfies P5.
1, 2, 3, 4, 5 satisfies P5.

Ai : Set of permutations that have i at its original position.

A1 ∪ A2 ∪ . . . ∪ An : Set of permutations that have at least one object at its
original position.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Derangements:

Dn = n!− |A1 ∪ A2 ∪ . . . ∪ An|
Ex: Complete the above to show that the number of derangements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ . . . + (−1)n

1

n!

]

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original
position.

Pi : A permutation that has i at its original position.

2, 3, 4, 1, 5 satisfies P5.
1, 2, 3, 4, 5 satisfies P5.

Ai : Set of permutations that have i at its original position.

A1 ∪ A2 ∪ . . . ∪ An : Set of permutations that have at least one object at its
original position.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Derangements:

Dn = n!− |A1 ∪ A2 ∪ . . . ∪ An|
Ex: Complete the above to show that the number of derangements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ . . . + (−1)n

1

n!

]

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original
position.

Pi : A permutation that has i at its original position.

2, 3, 4, 1, 5 satisfies P5.
1, 2, 3, 4, 5 satisfies P5.

Ai : Set of permutations that have i at its original position.

A1 ∪ A2 ∪ . . . ∪ An : Set of permutations that have at least one object at its
original position.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Derangements:

Dn = n!− |A1 ∪ A2 ∪ . . . ∪ An|
Ex: Complete the above to show that the number of derangements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ . . . + (−1)n

1

n!

]

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original
position.

Pi : A permutation that has i at its original position.

2, 3, 4, 1, 5 satisfies P5.
1, 2, 3, 4, 5 satisfies P5.

Ai : Set of permutations that have i at its original position.

A1 ∪ A2 ∪ . . . ∪ An : Set of permutations that have at least one object at its
original position.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Derangements:

Dn = n!− |A1 ∪ A2 ∪ . . . ∪ An|
Ex: Complete the above to show that the number of derangements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ . . . + (−1)n

1

n!

]
CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y :

nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :

n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)

(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .

(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

• Total number of functions from X to Y : nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

c

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

c

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

c

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range.

these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

c

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

• Not an onto function. bn is not in the range of
the function.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Onto Functions:

nm − |A1 ∪ A2 ∪ . . . ∪ An|

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

• Not an onto function. bn is not in the range of
the function.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Onto Functions:

nm − |A1 ∪ A2 ∪ . . . ∪ An|

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range =

0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0.

There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with

m elements

Set Y with

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!

The number of onto functions from an m element set to an n element set
where m ≥ n is:

nm −

(
n

1

)
(n − 1)m +

(
n

2

)
(n − 2)m − . . . + (−1)n−1

(
n

n − 1

)
1m

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrences and its applications

We have already seen recursive sequences.

Next, we will see how to formulate real-world problems as recursive sequences
and eventually get closed form expressions.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.

• If n − 1 length code-word is valid, we can extend it in 9 different
ways(why?) The number of n − 1 length valid code-words is an−1.

• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a
0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways

(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?)

The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.

• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a
0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0.

The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Summary

• Two important applications of principle of Inclusion Exclusion.

• Recursive definitions of the same.

• Recursive formula for a simple example.

• References Section 8.6 and 8.1 [KR]

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

