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Advanced Counting Techniques

• Principle of Inclusion-Exclusion

• Recurrences and its applications

• Solving Recurrences
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Principle of Inclusion Exclusion

Principle of Inclusion Exclusion gives a formula to find the size of union of
finite sets.

It is a generalization of the familiar formula below.

|A ∪ B| = |A|+ |B| − |A ∩ B|

Ex: Write down the formula for |A ∪ B ∪ C |.

Principle of Inclusion Exclusion: Let A1,A2, . . . ,An be n finite sets. Then,

|A1 ∪ A2 ∪ . . . ∪ An| =
n∑

i=1

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak |+ . . .

+ (−1)n+1|A1 ∩ A2 ∩ . . . ∩ An|
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Example: Number of Derangements

We are given n objects, say 1, 2, 3, . . . , n.

Derangement: A permutation such that no object is in its original position.

Input: 1, 2, 3, 4, 5

3, 1, 2, 5, 4 X

4, 1, 3, 5, 2 × since 3 is at its original position

Goal: Count the number of derangements of n objects, denote it by Dn.

Ex:

• Find out D2 and D3.

• Cast Dn as properties that we wish to avoid.
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Example: Number of Derangements

Derangement: A permutation of n objects s.t. no object is in its original
position.

Pi : A permutation that has i at its original position.

2, 3, 4, 1, 5 satisfies P5.
1, 2, 3, 4, 5 satisfies P5.

Ai : Set of permutations that have i at its original position.

A1 ∪ A2 ∪ . . . ∪ An : Set of permutations that have at least one object at its
original position.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Derangements:

Dn = n!− |A1 ∪ A2 ∪ . . . ∪ An|
Ex: Complete the above to show that the number of derangements is

Dn = n!

[
1− 1

1!
+

1

2!
− 1

3!
+ . . . + (−1)n

1

n!

]
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Number of Derangements: A recursive specification

Now we give a recursive definition of Dn.

D1 = 0; D2 = 1

Dn = (n − 1)(Dn−1 + Dn−2)

We give a combinatorial proof of the above. Verify base cases.

Think of a derangement as n objects to be placed in n positions with each
position having exactly one forbidden object.

Number of choices for first position = (n − 1).

Every derangement starting at k where 2 ≤ k ≤ n − 1 can be categorized as:

• Object 1 is at position k. In this case, we can omit the two positions 1
and k and the two objects and consider derangements on n − 2 positions
with each position having one forbidden object. The number of such
derangements is Dn−2.

• Object 1 is not at position k. In this case, we have n− 1 objects and n− 1
positions. Each position has exactly one forbidden object. Note that
position k cannot have object 1 now. Thus number of such derangements
is Dn−1.

This completes the proof.
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Example: Number of Functions

Number of functions from a set with m elements to a set with n elements.

n elements

Set X with 

m elements

Set Y with 

• Total number of functions from X to Y :

nm

• Number of one-to-one functions from X to Y :
n · (n − 1) · (n − 2) · · · (n −m + 1)
(requires m ≤ n)

• Goal: Number of onto functions from X to Y .
(requires m ≥ n)

Try counting without the principle of inclusion exclusion.

Can we cast it as certain properties that we wish to avoid?
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Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with 

m elements

Set Y with 

b

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!
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these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with 

m elements

Set Y with 

b

c

• Not an onto function. bn is not in the range of
the function.

• This is precisely something that we would like to
avoid.

Lets label the elements in Y as b1, b2, . . . , bn.

• Ai : Set of functions from X to Y such that bi is not in the range. note

some other b’s may not be in the range as well.

• Ai ∩ Aj ∩ Ak : Set of functions from X to Y that do have bi , bj and bk in
the range.

• A1 ∪ A2 ∪ . . . ∪ An: Set of functions from X to Y that leave at least one
b ∈ Y is not in the range. these are the functions we want to avoid!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with 

m elements

Set Y with 

b

• Not an onto function. bn is not in the range of
the function.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Onto Functions:

nm − |A1 ∪ A2 ∪ . . . ∪ An|

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with 

m elements

Set Y with 

b

• Not an onto function. bn is not in the range of
the function.

Modified Goal: Compute the size of A1 ∪ A2 ∪ . . . ∪ An.

Number of Onto Functions:

nm − |A1 ∪ A2 ∪ . . . ∪ An|

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example: Number of Onto Functions

Number of onto functions from a set with m elements to a set with n elements.

n elements

Set X with 

m elements

Set Y with 

b

Modified Goal: Compute |A1 ∪ A2 ∪ . . . ∪ An|.

• |Ai | = (n − 1)m

• |Ai ∩ Aj | = (n − 2)m

• Number of functions that do not have k many
b’s in the range = (n − k)m

• Number of functions that do not have n many
b’s in the range = 0. There cannot be any such
function!
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Number of Onto Functions: a recursive specification

We now present a recursive definition of number of onto functions.

S(m, n): Number of onto functions from a set X with m elements to a set Y
with n elements where m ≥ n.

S(m, n) = 1 n = 1

= nm −
n−1∑
k=1

(
n

k

)
S(m, k) otherwise

Proof: The base case is readily verified. For the recursive step we observe:

• A function from X to Y is not onto if it has 1 ≤ k ≤ n− 1 many elements
of Y in the range.

• There are
(
n
k

)
ways of selecting k elements from the set Y . Once we select

these k elements as Yk then S(m, k) denotes the number of onto
functions from X to Yk .

• Thus,
(
n
k

)
S(m, k) denotes the number of functions from X to Y having

exactly k elements in the range. Hence
∑n−1

k=1

(
n
k

)
S(m, k) is the number of

functions from X to Y that are not onto.

• Subtracting this from the total number of functions nm gives the desired
result.
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Recurrences and its applications

We have already seen recursive sequences.

Next, we will see how to formulate real-world problems as recursive sequences
and eventually get closed form expressions.
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Recurrence relations : a simple example

Qn: A code-word is made up of digits from 0 to 9 and a code word is valid if it
contains odd number of 0s. Write a recursive formula for an which gives the
number of code words of length n.

Examples:

• 0 is the only one length valid code-word. Thus a1 = 1.

• 120078201 is valid but 120078200 is invalid.

A recursive formula:
• To create a n length code-word, we can take an n − 1 length code-word

and add an appropriate digit.
• If n − 1 length code-word is valid, we can extend it in 9 different

ways(why?) The number of n − 1 length valid code-words is an−1.
• If n − 1 length code-word is invalid, we can extend it in 1 way, by adding a

0. The number of invalid code-words of length n − 1 is 10n−1 − an−1.

an = 9an−1 + 10n−1 − an−1

= 8an−1 + 10n−1

Ex: What if the valid code-words need to contain even number of 0s. How
does the formula change?
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Summary

• Two important applications of principle of Inclusion Exclusion.

• Recursive definitions of the same.

• Recursive formula for a simple example.

• References Section 8.6 and 8.1 [KR]
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