
Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 7, 2020

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Advanced Counting Techniques

• Principle of Inclusion-Exclusion X

• Recurrences and its applications

• Solving Recurrences

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Recurrences

Recursive definitions play an important role in CS.
Some examples:

• Fibonacci sequence

• Towers of Hanoi (reading exercise Example 2, Chapter 8)

Today’s class: Modeling a variety of problems having the same solution.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 1: Full binary trees with n internal nodes

Full binary tree: A single node is a full binary tree. If T1 and T2 are disjoint full
binary trees then we can get a full binary tree with root r together with r
connecting to the roots of left subtree T1 and right subtree T2.

Recall: Every node in a full binary tree has either two children or zero children.

T0

T1

T2 X

• Ti denotes a full binary tree with i internal nodes.

• X is not a full binary tree.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 1: Full binary trees with n internal nodes

Goal: Count the number of full binary trees with n internal nodes. Call it f (n)

Ex: Construct explicitly and count the values for n = 0, 1, 2.

Verify that f (0) = f (1) = 1 and f (2) = 2.

T 1
2 T 2

2

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 1: Full binary trees with n internal nodes

Goal: Count the number of full binary trees with n internal nodes. Call it f (n)

A recursive formulation. Clearly, f (0) = f (1) = 1.

A tree with n internal nodes has one internal node as root. We are left with
n − 1 internal nodes. These can be distributed into the left subtree and the
right subtree as:

• 0 internal nodes in left subtree and n − 1 internal nodes in right subtree.
This gives f (0) · f (n − 1) ways of constructing trees with n internal nodes.

OR

• 1 internal node in left subtree and n − 2 internal nodes in right subtree.
This gives f (1) · f (n − 2) ways of constructing trees with n internal nodes.

OR

• 2 internal nodes in left subtree and n − 3 internal nodes in right subtree.
This gives f (2) · f (n − 3) ways of constructing trees with n internal nodes.

...

• n − 1 internal nodes in left subtree and 0 internal nodes in right subtree.
This gives f (n − 1) · f (0) ways of constructing trees with n internal nodes.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 1: Full binary trees with n internal nodes

Goal: Count the number of full binary trees with n internal nodes. Call it f (n)

A recursive formulation. Clearly, f (0) = f (1) = 1.

A tree with n internal nodes has one internal node as root. We are left with
n − 1 internal nodes. These can be distributed into the left subtree and the
right subtree as:

f (n) = f (0) · f (n − 1) + f (1) · f (n − 2) + . . . + f (n − 2) · f (1) + f (n − 1) · f (0)

=
n−1∑
i=0

f (i) · f (n − 1− i)

• Why is adding the terms valid?

• What is a closed form expression for this recurrence?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 2: Number of ways to parenthesize

We are given n + 1 integers: x0, x1, x2, . . . xn and we wish to parenthesize them
to compute their product.

Goal: How many ways are there to parenthesize? Denote this by g(n).

g(n) denotes the number of ways to parenthesize n + 1 integers and not n integers!

Example: Say n = 2, that is, we have 3 integers x0, x1, x2

• We multiply x0x1 first followed by multiplying the product by x2.

((x0 · x1) · x2)

• We multiply x1x2 first followed by multiplying the product by x0.

(x0 · (x1 · x2))

Are there other ways?
No! Note that ((x0 · x2) · x1) is not a valid way to parenthesize x0, x1, x2
The last “·” (multiplication symbol) has to appear between two integers. There
are only two possible places first, between x1 and x2. This gives the first way.
Second between x0 and x1. This gives the second way to multiply.
Base cases: g(0) = 1, g(1) = 1.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 2: Number of ways to parenthesize

We are given n + 1 integers: x0, x1, x2, . . . xn and we wish to parenthesize them
to compute their product.

Goal: How many ways are there to parenthesize? Denote this by g(n).

g(n) denotes the number of ways to parenthesize n + 1 integers and not n integers!

Let the last “·” appear between xk and xk+1

• On the left side of the last “·” we have k + 1 integers x0, . . . xk . These can
be parenthesized in g(k) ways.

• On the right side of the last “·” we have n − k integers xk+1, . . . , xn.
These can be parenthesized in g(n − k − 1) ways. Note that it is not
g(n − k) ways.

• If last “·” appears between xk and xk+1 then number of ways is
g(k) · g(n − k − 1) ways.

Since k can take values between 0 and n − 1, we have

g(n) = g(0) · g(n − 1) + g(1) · g(n − 2) + . . . + g(n − 2) · g(1) + g(n − 1) · g(0)

Compare it with the recurrence for f (n) earlier.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Other Examples

Goal: Determine the number of balanced strings of parenthesis of length 2n.

• An empty string is a balanced parenthesis.

• (()) and ()() are two balanced parenthesis of length 2 ∗ 2.

• Every balanced parenthesis of length 2n contains n open and n close
parenthesis. In addition, every prefix of the string has as many open
parenthesis as many close parenthesis.

Goal: Given n + 2 side convex polygon, in how many ways can triangulate it?

Input Two ways to triangulate it

Ex: Work out the recursive formulation for both the examples.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 3: Diagonal Avoiding Grid Paths

Goal: Input is a n × n grid. To compute number of paths from (0, 0) to (n, n).
Constraints:

• Use steps of one unit and go right or up at each step.

• Each path contains n right steps (R) and n up (U) steps.
we have already solved this when there were no more

constraints

• Additional condition: Paths should not cross the main diagonal.

• Two paths – one red and another blue.

• Red path is invalid.
(RRRUUUUURURR)

• Blue path is valid.
(RRRRRUURUUUU)

Goal: Compute total number of valid paths,
that is, diagonal avoiding paths.

A first guess it to count all paths from (0, 0) to (n, n) which is
(
2n
n

)
and then

claim that half of the total paths are diagonal avoiding.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 3: Diagonal Avoiding Grid Paths

Input: An n × n grid.

Goal: To compute number of diagonal avoiding paths from (0, 0) to (n, n),
denote it by h(n).

n = 1

h(n) = 1

n = 2

h(n) = 2

• Note that h(2) 6= 1
2

(
2×2
2

)
• Thus, h(n) 6= 1

2

(
2n
n

)

An invalid path has some prefix in which there are more Us than Rs.

In contrast every valid path satisfies the property that every prefix has at least
as many Rs as the number of Us. Thus, every diagonal avoiding grid path is in
one-to-one correspondence with a string of balanced parenthesis of length 2n.

This is simply obtained by replacing every ”(” by R and every ”)” by U.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 3: Diagonal Avoiding Grid Paths

Claim: The number of diagonal avoiding grid paths in an n × n grid are:

h(n) =
1

n + 1

(
2n

n

)
Plan of the proof:

• Count total number of paths from (0, 0) to (n, n).

• Subtract the number of invalid paths. That is, count invalid paths.

• However, since that is not straightforward, convert invalid paths into
another counting problem!

How does an invalid path look like?

RRRUUUUURURR

• It has a prefix in which there are more Us than Rs. (that is why it crosses
the diagonal!)

• Select the smallest such prefix. (RRRUUUU – in the above).

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 3: Diagonal Avoiding Grid Paths

Claim: The number of diagonal avoiding grid paths in an n × n grid are:

h(n) =
1

n + 1

(
2n

n

)
Every invalid path has:

• Exactly n Rs and n Us. (since it does reach n, n).

• Has a prefix (the smallest one) in which there is one more U than R. That
is, it has x Rs and x + 1 Us.

• The remaining part of the path has n − x Rs and n − (x + 1) Us.

A clever trick

• Keep the prefix of the path as it is and in the remaining path flip the Us
and Rs. Call this the modified path.

RRRUUUUURURR → RRRUUUURURUU

Every modified path has:

• x + n − (x + 1) = n − 1 many Rs. (why?)

• x + 1 + n − x = n + 1 many Us. (why?)

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 3: Diagonal Avoiding Grid Paths

The trick in action.

invalid path (RRRUUUUURURR) → modified path RRRUUUURURUU

• Note that the modified blue path
follows the red path for the prefix part,
and then flips it.

How does it help?

• Every modified path always ends in (n − 1, n + 1).
revisit the previous slide and construct a proof!

• One to one correspondence between invalid paths and paths (no more
constraints of diagonal avoiding) from (0, 0) to (n − 1, n + 1).
establish this correspondence!

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Example 3: Diagonal Avoiding Grid Paths

Claim: The number of diagonal avoiding grid paths in an n × n grid are:

h(n) =
1

n + 1

(
2n

n

)
Plan of the proof:

• Count total number of paths from (0, 0) to (n, n).

• Subtract the number of invalid paths. That is, count invalid paths.

• However, since that is not straightforward, convert invalid paths into
another counting problem! X

• Total number of paths from (0, 0) to (n, n) is:
(
2n
n

)
.

• Number of invalid paths is:
(

2n
n+1

)
Number of valid paths = h(n) =(

2n

n

)
−

(
2n

n + 1

)
=

1

n + 1

(
2n

n

)
.

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Catalan Number

The number 1
n+1

(
2n
n

)
is called the n-th Catalan number.

• Gives a closed form solution to several examples (seen today).

• Many more applications.

• References Section 8.1[KR].

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques


