Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 9, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion \checkmark
- Recurrences and its applications \checkmark
- Solving Recurrences

Recurrences

Recurrences occur many times especially in analysis of algorithms.
Our goal: To obtain a closed form solution to the recurrence.
Why closed form?

- We may want the 1000 -th term which depends on the 999-th term. Computing that with the recursive formulation is tedious.
- The recurrence may denote the running time of your algorithm. We want an estimate on running time.

Today's class: (Some) Techniques to solve recurrences.

There is no single recipe to solve all recurrences. However, we will show techniques that apply to a wide variety.

Some familiar recurrences

Fibonacci Sequence Recurrence

$$
\begin{aligned}
f(n) & =n & & \text { if } n=0 \text { or } n=1 \\
& =f(n-1)+f(n-2) & & \text { otherwise }
\end{aligned}
$$

Towers of Hanoi Recurrence

$$
\begin{aligned}
T(n) & =1 & & \text { if } n=1 \\
& =2 T(n-1)+1 & & \text { otherwise }
\end{aligned}
$$

Binary Search Recurrence

$$
\begin{aligned}
T(n) & =1 & & \text { if } n=1 \\
& =T\left(\frac{n}{2}\right)+1 & & \text { otherwise }
\end{aligned}
$$

assume $n=2^{k}$ for $k \geq 0$

Repeated Substitution Method : Example 1

Binary Search Recurrence

 assume $n=2^{k}$ for $k \geq 0$$$
\begin{aligned}
T(n) & =1 & & \text { if } n=1 \\
& =T\left(\frac{n}{2}\right)+1 & & \text { otherwise }
\end{aligned}
$$

$$
\begin{array}{rlrl}
T(n) & =T\left(\frac{n}{2}\right)+1 & \\
& =T\left(\frac{n}{4}\right)+1+1 & =T\left(\frac{n}{2^{2}}\right)+2 \cdot 1 \\
& =T\left(\frac{n}{8}\right)+1+1+1=T\left(\frac{n}{2^{3}}\right)+3 \cdot 1 \\
\vdots & & \\
& =T\left(\frac{n}{2^{k}}\right)+k \cdot 1 & &
\end{array}
$$

At this step we can guess that $T(n)=\log n+1$. Recall $n=2^{k}$ for $k \geq 0$.
How do we confirm the guess? Ex: Use induction on n to prove the guess.

Repeated Substitution Method: Example 2

Towers of Hanoi Recurrence

$$
\begin{aligned}
T(n) & =1 & & \text { if } n=1 \\
& =2 T(n-1)+1 & & \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& =2(2 T(n-2)+1)+1 \\
& =2^{2} T(n-2)+2+1 \\
& =2^{2}(2 T(n-3)+1)+2+1 \\
& =2^{3} T(n-3)+2^{2}+2+1
\end{aligned}
$$

$$
=2^{k} T(n-k)+\sum_{i=0}^{k-1} 2^{i} \quad \text { observing a pattern }
$$

At this step we can guess that $T(n)=2^{n}-1$.
How do we confirm the guess? Ex: Use induction on n to prove the guess.

Repeated Substitution Method: Example 3

Another recurrence

$$
\begin{aligned}
T(n) & =0 & & \text { if } n=0 \\
& =3 T(n-1)+2 n & & \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =3 T(n-1)+2 n \\
& =3(3 T(n-2)+2(n-1))+2 n \\
& \left.=3^{2} T(n-2)+2(3(n-1)+n)\right)
\end{aligned}
$$

$$
=3^{k} T(n-k)+2 \sum_{i=0}^{k-1} 3^{i}(n-i)
$$

$$
=3^{n} T(0)+2 \sum_{i=0}^{n-1} 3^{i}(n-i)
$$

$$
=2 n\left(\sum_{i=0}^{n-1} 3^{i}\right)-2\left(\sum_{i=0}^{n-1} 3^{i} i\right) \quad \text { we need to solve } \sum_{i=0}^{n-1} 3^{i} i
$$

Repeated Substitution Method: Example 3

Another recurrence

$$
\begin{aligned}
T(n) & =0 & & \text { if } n=0 \\
& =3 T(n-1)+2 n & & \text { otherwise }
\end{aligned}
$$

$$
\begin{aligned}
T(n) & =3 T(n-1)+2 n \\
& =2 n\left(\sum_{i=0}^{n-1} 3^{i}\right)-2\left(\sum_{i=0}^{n-1} 3^{i} i\right) \quad \text { we need to solve } \sum_{i=0}^{n-1} 3^{i} i \\
& =\frac{2 n \cdot 3^{n}+3^{n+1}-4 n-3}{4} \text { needs to be proved by induction }
\end{aligned}
$$

A sub-problem to solve first.

$$
\left(\sum_{i=0}^{n-1} 3^{i} i\right)=\frac{3^{n}(2 n-3)+3}{4} \quad \text { this needs a derivation and proof! }
$$

In general: good to know sum of commonly occurring sums.

Repeated Substitution Method : Learnings

- An elementary method to solve recurrences.
elementary does not mean simple, but a something that does not need background
- Need to observe a pattern.
- Oversimplification may make us miss the pattern.
- Creativity and experience with summation of series help.
- However, the pattern has to be observed for each recurrence and there is no generic rule. Are there some recurrences that can be solved by a formula?

Ex: Solve by repeated substitution

$$
\begin{aligned}
T(n) & =2 & \text { if } n=0 \\
& =2 \sqrt{T(n-1)} & \text { otherwise }
\end{aligned}
$$

$$
\begin{array}{rlrl}
T(n) & =12 & \text { if } n=0 \\
& =20 & & \text { if } n=1 \\
& =2 T(n-1)-T(n-2) & & \text { otherwise }
\end{array}
$$

Linear recurrences

Linear Homogeneous Recurrences with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

$1 \leq i \leq k, c_{i}$ is a real number and $c_{k} \neq 0$

- Linear because $a_{n-1}, a_{n-2} \ldots$ appear in separate terms and to the first power.
- Homogeneous because degree of every term is the same. There is no constant term.
- Constant coefficients because $c_{1}, c_{2} \ldots$ are reals which do not depend on n.

Examples:

- $T(n)=2 T(n-1)$ and $T(0)=1$.
- $T(n)=T(n-1)+T(n-2)$ and $T(0)=0, T(1)=1$.

Non Examples:

- $T(n)=n T(n-1)$ and $T(0)=1$ does not have constant coefficients
- $T(n)=T(n-1) \cdot T(n-2)$ and $T(0)=0, T(1)=1$. not linear
- $T(n)=n \cdot T(n-1)$ and $T(1)=1$. does not have constant coefficients

Linear Homogeneous Recurrences with constant coefficients

$$
\begin{aligned}
& a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k} \\
& \qquad 1 \leq i \leq k, c_{i} \text { is a real number and } c_{k} \neq 0
\end{aligned}
$$

Our goal: To derive a systematic way of solving such recurrences. Upcoming next week

- A technique to solve linear homogeneous equations.
- A technique to solve linear non-homogeneous equations.
- References: Section 8.2[KR]

