Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 9, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion \checkmark
- Recurrences and its applications \checkmark
- Solving Recurrences

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Recurrences occur many times especially in analysis of algorithms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recurrences occur many times especially in analysis of algorithms.

Our goal: To obtain a closed form solution to the recurrence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Recurrences occur many times especially in analysis of algorithms.

Our goal: To obtain a closed form solution to the recurrence.

Why closed form?

• We may want the 1000-th term which depends on the 999-th term. Computing that with the recursive formulation is tedious.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recurrences occur many times especially in analysis of algorithms.

Our goal: To obtain a closed form solution to the recurrence.

Why closed form?

- We may want the 1000-th term which depends on the 999-th term. Computing that with the recursive formulation is tedious.
- The recurrence may denote the running time of your algorithm. We want an estimate on running time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Recurrences occur many times especially in analysis of algorithms.

Our goal: To obtain a closed form solution to the recurrence.

Why closed form?

- We may want the 1000-th term which depends on the 999-th term. Computing that with the recursive formulation is tedious.
- The recurrence may denote the running time of your algorithm. We want an estimate on running time.

Today's class: (Some) Techniques to solve recurrences.

There is no single recipe to solve all recurrences. However, we will show techniques that apply to a wide variety.

Fibonacci Sequence Recurrence

$$f(n) = n \qquad \text{if } n = 0 \text{ or } n = 1$$
$$= f(n-1) + f(n-2) \qquad otherwise$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fibonacci Sequence Recurrence

$$f(n) = n \qquad \text{if } n = 0 \text{ or } n = 1$$

= $f(n-1) + f(n-2) \qquad otherwise$

Towers of Hanoi Recurrence

$$T(n) = 1 if n = 1 = 2T(n-1) + 1 otherwise$$

Fibonacci Sequence Recurrence

$$f(n) = n \qquad \text{if } n = 0 \text{ or } n = 1$$

= $f(n-1) + f(n-2) \qquad otherwise$

Towers of Hanoi Recurrence

$$T(n) = 1$$
 if $n = 1$
 $= 2T(n-1) + 1$ otherwise

Binary Search Recurrence

assume $n = 2^k$ for $k \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

assume $n = 2^k$ for $k \ge 0$

(ロ)、(型)、(E)、(E)、 E) のQの

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

assume $n = 2^k$ for $k \ge 0$

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$
$$= T\left(\frac{n}{4}\right) + 1 + 1$$

assume $n = 2^k$ for $k \ge 0$

(ロ)、(型)、(E)、(E)、 E) のQの

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

= $T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{2^2}\right) + 2 \cdot 1$
= $T\left(\frac{n}{8}\right) + 1 + 1 + 1$

÷

assume $n = 2^k$ for $k \ge 0$

(ロ)、(型)、(E)、(E)、 E) のQの

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

= $T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{2^2}\right) + 2 \cdot 1$
= $T\left(\frac{n}{8}\right) + 1 + 1 + 1 = T\left(\frac{n}{2^3}\right) + 3 \cdot 1$

assume $n = 2^k$ for $k \ge 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

= $T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{2^2}\right) + 2 \cdot 1$
= $T\left(\frac{n}{8}\right) + 1 + 1 + 1 = T\left(\frac{n}{2^3}\right) + 3 \cdot 1$
:
= $T\left(\frac{n}{2^k}\right) + k \cdot 1$ observing a pattern

assume $n = 2^k$ for $k \ge 0$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへぐ

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

= $T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{2^2}\right) + 2 \cdot 1$
= $T\left(\frac{n}{8}\right) + 1 + 1 + 1 = T\left(\frac{n}{2^3}\right) + 3 \cdot 1$
:
= $T\left(\frac{n}{2^k}\right) + k \cdot 1$ observing a pattern

At this step we can guess that $T(n) = \log n + 1$. Recall $n = 2^k$ for $k \ge 0$.

CS1200, CSE IIT Madras Meghana Nasre

assume $n = 2^k$ for $k \ge 0$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへぐ

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

= $T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{2^2}\right) + 2 \cdot 1$
= $T\left(\frac{n}{8}\right) + 1 + 1 + 1 = T\left(\frac{n}{2^3}\right) + 3 \cdot 1$
:
= $T\left(\frac{n}{2^k}\right) + k \cdot 1$ observing a pattern

At this step we can guess that $T(n) = \log n + 1$. Recall $n = 2^k$ for $k \ge 0$.

How do we confirm the guess?

CS1200, CSE IIT Madras Meghana Nasre

assume $n = 2^k$ for $k \ge 0$

$$T(n) = 1$$
 if $n = 1$
 $= T\left(\frac{n}{2}\right) + 1$ otherwise

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

= $T\left(\frac{n}{4}\right) + 1 + 1 = T\left(\frac{n}{2^2}\right) + 2 \cdot 1$
= $T\left(\frac{n}{8}\right) + 1 + 1 + 1 = T\left(\frac{n}{2^3}\right) + 3 \cdot 1$
:
= $T\left(\frac{n}{2^k}\right) + k \cdot 1$ observing a pattern

At this step we can guess that $T(n) = \log n + 1$. Recall $n = 2^k$ for $k \ge 0$.

How do we confirm the guess? Ex: Use induction on n to prove the guess.

CS1200, CSE IIT Madras Meghana Nasre

Т

$$(n) = 1$$
 if $n = 1$
 $= 2T(n-1)+1$ otherwise

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

$$T(n) = 1$$
 if $n = 1$
= $2T(n-1) + 1$ otherwise

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2) + 1) + 1
= 2²T(n-2) + 2 + 1

$$T(n) = 1$$
 if $n = 1$
= $2T(n-1) + 1$ otherwise

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2)+1)+1
= 2²T(n-2)+2+1
= 2²(2T(n-3)+1)+2+1
= 2³T(n-3)+2²+2+1

$$T(n) = 1 if n = 1 = 2T(n-1) + 1 otherwise$$

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2) + 1) + 1
= 2²T(n-2) + 2 + 1
= 2²(2T(n-3) + 1) + 2 + 1
= 2³T(n-3) + 2² + 2 + 1
:
= 2^kT(n-k) + $\sum_{i=1}^{k-1} 2^{i}$ observing a pattern

i=0

$$T(n) = 1$$
 if $n = 1$
= $2T(n-1) + 1$ otherwise

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2) + 1) + 1
= 2²T(n-2) + 2 + 1
= 2²(2T(n-3) + 1) + 2 + 1
= 2³T(n-3) + 2² + 2 + 1
:
= 2^kT(n-k) + $\sum_{i=0}^{k-1} 2^{i}$ observing a pattern

$$T(n) = 1$$
 if $n = 1$
= $2T(n-1) + 1$ otherwise

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2)+1)+1
= 2²T(n-2)+2+1
= 2²(2T(n-3)+1)+2+1
= 2³T(n-3)+2²+2+1
:
= 2^kT(n-k) + $\sum_{i=0}^{k-1} 2^{i}$ observing a pattern

At this step we can guess that $T(n) = 2^n - 1$.

Advanced Counting Techniques

7

$$T(n) = 1$$
 if $n = 1$
 $= 2T(n-1) + 1$ otherwise

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2) + 1) + 1
= 2²T(n-2) + 2 + 1
= 2²(2T(n-3) + 1) + 2 + 1
= 2³T(n-3) + 2² + 2 + 1
:
= 2^kT(n-k) + $\sum_{i=0}^{k-1} 2^{i}$ observing a pattern

At this step we can guess that $T(n) = 2^n - 1$.

How do we confirm the guess?

CS1200, CSE IIT Madras Meghana Nasre

Advanced Counting Techniques

7

$$T(n) = 1$$
 if $n = 1$
= $2T(n-1) + 1$ otherwise

$$T(n) = 2T(n-1) + 1$$

= 2(2T(n-2) + 1) + 1
= 2²T(n-2) + 2 + 1
= 2²(2T(n-3) + 1) + 2 + 1
= 2³T(n-3) + 2² + 2 + 1
:
= 2^kT(n-k) + $\sum_{i=0}^{k-1} 2^{i}$ observing a pattern

At this step we can guess that $T(n) = 2^n - 1$.

How do we confirm the guess? Ex: Use induction on n to prove the guess.

CS1200, CSE IIT Madras Meghana Nasre

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

・ロト・日本・モト・モート ヨー うへで

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= 3(3T(n-2) + 2(n-1)) + 2n

・ロト・日本・モト・モート ヨー うへで

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= 3(3T(n-2) + 2(n-1)) + 2n
= 3²T(n-2) + 2(3(n-1) + n))

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= 3(3T(n-2) + 2(n-1)) + 2n
= 3²T(n-2) + 2(3(n-1) + n))
:

work out and observe a pattern

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= 3(3T(n-2) + 2(n-1)) + 2n
= 3²T(n-2) + 2(3(n-1) + n))
:

work out and observe a pattern

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$= 3^{k}T(n-k) + 2\sum_{i=0}^{k-1} 3^{i}(n-i)$$

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= $3(3T(n-2) + 2(n-1)) + 2n$
= $3^{2}T(n-2) + 2(3(n-1) + n))$ work out and observe a pattern
:
= $3^{k}T(n-k) + 2\sum_{i=0}^{k-1} 3^{i}(n-i)$
= $3^{n}T(0) + 2\sum_{i=0}^{n-1} 3^{i}(n-i)$
= $2n\left(\sum_{i=0}^{n-1} 3^{i}\right) - 2\left(\sum_{i=0}^{n-1} 3^{i}i\right)$ we need to solve $\sum_{i=0}^{n-1} 3^{i}i$

CS1200, CSE IIT Madras Meghana Nasre

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= $2n\left(\sum_{i=0}^{n-1} 3^i\right) - 2\left(\sum_{i=0}^{n-1} 3^i i\right)$

we need to solve $\sum_{i=0}^{n-1} 3^i i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T(n) = 0 \qquad \text{if } n = 0$$

= $3T(n-1) + 2n \qquad \text{otherwise}$

$$T(n) = 3T(n-1) + 2n$$

= $2n\left(\sum_{i=0}^{n-1} 3^i\right) - 2\left(\sum_{i=0}^{n-1} 3^i i\right)$

we need to solve $\sum_{i=0}^{n-1} 3^i i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

A sub-problem to solve first.

$$\left(\sum_{i=0}^{n-1} 3^i i\right) =$$

$$T(n) = 0 \qquad \text{if } n = 0$$

= $3T(n-1) + 2n \qquad \text{otherwise}$

we need to solve $\sum_{i=0}^{n-1} 3^i i$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$$T(n) = 3T(n-1) + 2n$$

= $2n\left(\sum_{i=0}^{n-1} 3^i\right) - 2\left(\sum_{i=0}^{n-1} 3^i i\right)$

A sub-problem to solve first.

$$\left(\sum_{i=0}^{n-1} 3^{i} i\right) = \frac{3^{n}(2n-3)+3}{4}$$

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= $2n\left(\sum_{i=0}^{n-1} 3^i\right) - 2\left(\sum_{i=0}^{n-1} 3^i i\right)$ we need to solve $\sum_{i=0}^{n-1} 3^i i$

A sub-problem to solve first.

$$\left(\sum_{i=0}^{n-1} 3^{i} i\right) = \frac{3^{n}(2n-3)+3}{4}$$
 this needs a derivation and proof!

In general: good to know sum of commonly occurring sums.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Another recurrence

$$T(n) = 0 if n = 0= 3T(n-1) + 2n otherwise$$

$$T(n) = 3T(n-1) + 2n$$

= $2n\left(\sum_{i=0}^{n-1} 3^i\right) - 2\left(\sum_{i=0}^{n-1} 3^i i\right)$ we need to solve $\sum_{i=0}^{n-1} 3^i i$
= $\frac{2n \cdot 3^n + 3^{n+1} - 4n - 3}{4}$ needs to be proved by induction

A sub-problem to solve first.

$$\left(\sum_{i=0}^{n-1} 3^i i\right) = rac{3^n (2n-3) + 3}{4}$$
 this needs a derivation and proof!

In general: good to know sum of commonly occurring sums.

CS1200, CSE IIT Madras Meghana Nasre

Advanced Counting Techniques

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

(ロ)、

• An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background

- An elementary method to solve recurrences. elementary does not mean simple, but a something that does not need background
- Need to observe a pattern.

- An elementary method to solve recurrences. elementary does not mean simple, but a something that does not need background
- Need to observe a pattern.
- Oversimplification may make us miss the pattern.

- An elementary method to solve recurrences. elementary does not mean simple, but a something that does not need background
- Need to observe a pattern.
- Oversimplification may make us miss the pattern.
- Creativity and experience with summation of series help.

- An elementary method to solve recurrences. elementary does not mean simple, but a something that does not need background
- Need to observe a pattern.
- Oversimplification may make us miss the pattern.
- Creativity and experience with summation of series help.
- However, the pattern has to be observed for each recurrence and there is no generic rule. Are there some recurrences that can be solved by a formula?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

- An elementary method to solve recurrences. elementary does not mean simple, but a something that does not need background
- Need to observe a pattern.
- Oversimplification may make us miss the pattern.
- Creativity and experience with summation of series help.
- However, the pattern has to be observed for each recurrence and there is no generic rule. Are there some recurrences that can be solved by a formula?

Ex: Solve by repeated substitution

$$T(n) = 2$$
 if $n = 0$
 $= 2\sqrt{T(n-1)}$ otherwise

$$T(n) = 12$$
 if $n = 0$
= 20 if $n = 1$
= $2T(n-1) - T(n-2)$ otherwise

CS1200, CSE IIT Madras Meghana Nasre

Advanced Counting Techniques

Linear recurrences

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Linear Homogeneous Recurrences with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

 $1 \leq i \leq k$, c_i is a real number and $c_k \neq 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques

Linear Homogeneous Recurrences with constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

 $1 \leq i \leq k$, c_i is a real number and $c_k \neq 0$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Linear because a_{n-1} , a_{n-2} ... appear in separate terms and to the first power.

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

- Linear because a_{n-1} , a_{n-2} ... appear in separate terms and to the first power.
- Homogeneous because degree of every term is the same. There is no constant term.

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへぐ

- Linear because a_{n-1} , a_{n-2} ... appear in separate terms and to the first power.
- Homogeneous because degree of every term is the same. There is no constant term.
- Constant coefficients because $c_1, c_2 \dots$ are reals which do not depend on n.

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

- Linear because a_{n-1} , a_{n-2} ... appear in separate terms and to the first power.
- Homogeneous because degree of every term is the same. There is no constant term.
- Constant coefficients because $c_1, c_2 \dots$ are reals which do not depend on n.

Examples:

•
$$T(n) = 2T(n-1)$$
 and $T(0) = 1$.

• T(n) = T(n-1) + T(n-2) and T(0) = 0, T(1) = 1.

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

- Linear because a_{n-1} , a_{n-2} ... appear in separate terms and to the first power.
- Homogeneous because degree of every term is the same. There is no constant term.
- Constant coefficients because $c_1, c_2 \dots$ are reals which do not depend on n.

Examples:

•
$$T(n) = 2T(n-1)$$
 and $T(0) = 1$.

• T(n) = T(n-1) + T(n-2) and T(0) = 0, T(1) = 1.

Non Examples:

- T(n) = nT(n-1) and T(0) = 1 does not have constant coefficients
- $T(n) = T(n-1) \cdot T(n-2)$ and T(0) = 0, T(1) = 1. not linear
- $T(n) = n \cdot T(n-1)$ and T(1) = 1. does not have constant coefficients

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Our goal: To derive a systematic way of solving such recurrences. Upcoming next week

- A technique to solve linear homogeneous equations.
- A technique to solve linear non-homogeneous equations.
- References: Section 8.2[KR]