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Advanced Counting Techniques

e Principle of Inclusion-Exclusion v/
e Recurrences and its applications v/

e Solving Recurrences
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Recurrences

Recurrences occur many times especially in analysis of algorithms.
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Recurrences occur many times especially in analysis of algorithms.

Our goal: To obtain a closed form solution to the recurrence.
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Recurrences

Recurrences occur many times especially in analysis of algorithms.
Our goal: To obtain a closed form solution to the recurrence.

Why closed form?

e We may want the 1000-th term which depends on the 999-th term.
Computing that with the recursive formulation is tedious.
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Recurrences

Recurrences occur many times especially in analysis of algorithms.
Our goal: To obtain a closed form solution to the recurrence.

Why closed form?

e We may want the 1000-th term which depends on the 999-th term.
Computing that with the recursive formulation is tedious.

e The recurrence may denote the running time of your algorithm. We want
an estimate on running time.
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Recurrences

Recurrences occur many times especially in analysis of algorithms.
Our goal: To obtain a closed form solution to the recurrence.

Why closed form?

e We may want the 1000-th term which depends on the 999-th term.
Computing that with the recursive formulation is tedious.

e The recurrence may denote the running time of your algorithm. We want
an estimate on running time.

Today's class: (Some) Techniques to solve recurrences.

There is no single recipe to solve all recurrences. However, we will show techniques that apply to a

wide variety.
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Some familiar recurrences

Fibonacci Sequence Recurrence

f(n) = n ifn=0orn=1
= f(n—=1)+f(n-2) otherwise
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Some familiar recurrences

Fibonacci Sequence Recurrence

f(n) = n ifn=0orn=1
= f(n—=1)+f(n-2) otherwise

Towers of Hanoi Recurrence

T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise
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Some familiar recurrences

Fibonacci Sequence Recurrence

f(n) = n ifn=0orn=1
= f(n—=1)+f(n-2) otherwise

Towers of Hanoi Recurrence

T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

Binary Search Recurrence assume n = 2% for k > 0

T(n) = 1 ifn=1

= T (g) +1 otherwise
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
= T (g) +1 otherwise
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
= T (g) +1 otherwise
T(n) = T(3)+1
n
= T (7) 1+1
) t1+
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
= T (g) +1 otherwise
T(n) = T(3)+1
n n
- 7(Z)+1+1 - T(§)+2¢
n
8

I
~
/

JH1+141
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
n .
= T (§> +1 otherwise
T(n) = T(3)+1
n n
= T(Z)+1+1 - T(§)+2-1
n n
- T(§)+1+1+1 = T(5)+3:1
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) 1 ifn=1
n .
= T (§> +1 otherwise
T(n) = T (g) +1
n n
= T(Z)+1+1 - T(§)+2-1
n n
= T(f)+1+141 = T()+3:1
n .
= T (27) + k-1 observing a pattern
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
n .
= T (§> +1 otherwise
T(n) = T (g) +1
n n
= T(Z)+1+1 - T(§)+2-1
n n
- T(§)+1+1+1 = T(5)+3:1
n .
= T (27) + k-1 observing a pattern

At this step we can guess that ‘ T(n) =logn+ 1| Recall n=2* for k > 0.
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
n .
= T (§> +1 otherwise
T(n) = T (g) +1
n n
= T(Z)+1+1 - T(§)+2-1
n n
- T(§)+1+1+1 = T(5)+3:1
n .
= T (27) + k-1 observing a pattern

At this step we can guess that ‘ T(n) =logn+ 1| Recall n=2* for k > 0.

How do we confirm the guess?
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Repeated Substitution Method : Example 1

Binary Search Recurrence assume n = 2 for k > 0
T(n) = 1 ifn=1
n .
= T (§> +1 otherwise
T(n) = T (g) +1
n n
= T(Z)+1+1 - T(§)+2-1
n n
- T(§)+1+1+1 = T(5)+3:1
n .
= T (27) + k-1 observing a pattern

At this step we can guess that ’ T(n) =logn+ 1| Recall n=2* for k > 0.

How do we confirm the guess? Ex: Use induction on n to prove the guess.
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

T(n) = 2T(n—-1)+1
= 22T(n—2)+1)+1
22T(n—2)+2+1
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

T(n) = 2T(n—-1)+1
= 2Q2T(n—2)+1)+1
= 2’T(n—-2)+2+1
= 2’QT(n—-3)+1)+2+1
= 2’T(n-3)+2°+2+1
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

T(n) = 2T(n—-1)+1
= 2Q2T(n—2)+1)+1
= 2’T(n—-2)+2+1
= 2’QT(n—-3)+1)+2+1
= 2’T(n-3)+2°+2+1

= 2 T(n—k)+ Z 2! observing a pattern
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise
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= 2’T(n-3)+2°+2+1
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

T(n) = 2T(n—-1)+1
= 2Q2T(n—2)+1)+1
= 2’T(n—-2)+2+1
= 2’QT(n—-3)+1)+2+1
= 2’T(n-3)+2°+2+1

= 2 T(n—k)+ Z 2! observing a pattern

At this step we can guess that | T(n) =2" — 1|
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

T(n) = 2T(n—-1)+1
= 2Q2T(n—2)+1)+1
= 2’T(n—-2)+2+1
= 2’QT(n—-3)+1)+2+1
= 2’T(n-3)+2°+2+1

= 2 T(n—k)+ Z 2! observing a pattern

At this step we can guess that | T(n) =2" — 1|

How do we confirm the guess?
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Repeated Substitution Method : Example 2

Towers of Hanoi Recurrence
T(n) = 1 ifn=1
= 2T(n—-1)+1 otherwise

T(n) = 2T(n—-1)+1
= 2Q2T(n—2)+1)+1
= 2’T(n—-2)+2+1
= 2’QT(n—-3)+1)+2+1
= 2’T(n-3)+2°+2+1

= 2 T(n—k)+ Z 2! observing a pattern

At this step we can guess that | T(n) =2" — 1|

How do we confirm the guess? Ex: Use induction on n to prove the guess.
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Repeated Substitution Method : Example 3

Another recurrence
T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise
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Repeated Substitution Method : Example 3

Another recurrence
T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise

T(n) = 3T(n—1)+2n
33T(n—2)+2(n—1))+2n
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Repeated Substitution Method : Example 3

Another recurrence
T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise

T(n) = 3T(n—1)+2n
33T(n—2)+2(n—1))+2n
= 3FT(n—2)+23(n—1)+n))
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n
= 3(3T(n—2)+2(n—1))+2n
= 3FT(n—2)+23(n—1)+n)) work out and observe a pattern
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n
= 3(3T(n—2)+2(n—1))+2n
= 3FT(n—2)+23(n—1)+n)) work out and observe a pattern

k—1
= 3T(n—k)+2> 3(n—i)
i=0
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n
= 3(3T(n—2)+2(n—1))+2n
= 3FT(n—2)+23(n—1)+n)) work out and observe a pattern

= 3*T(n—k)+ 2i3i(n — 1)
= 3"T(0)+2 niy'(n — i)

n—1 n—1
= 2n (Z 3i> -2 <Z 3ii> we need to solve 37" 3i
i=0 i=0
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=0
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n

14
need to solve » 7~ " 3'i

<
®

= 2n <Z§ 3") -2 <’:Z§3’i)
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=0
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n

14
need to solve » 7~ " 3'i

<
®

() (5

A sub-problem to solve first.
n—1 )
(%) -
i=0
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=0
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n

14
need to solve » 7~ " 3'i

<
®

() (5

A sub-problem to solve first.

(”1 > 3"(2n—3) +3
IR EEE
i=0 4
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=0
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n

n—1 n—1
2n <Z 3i> -2 <Z 3'7) we need to solve 37 '3
i=0 i=0

A sub-problem to solve first.

n—1

) n(op _

(Z 3'i> = 3("4& this needs a derivation and proof!
i=0

In general: good to know sum of commonly occurring sums.
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Repeated Substitution Method : Example 3

Another recurrence

T(n) = 0 ifn=20
= 3T(n—1)+2n otherwise
T(n) = 3T(n—1)+2n

n—1 n—1

= 2n (Z 3i> -2 <Z 3ii> we need to solve 37 '3

i=0 i=0
. an n+1 _

= 2n-3 + 34 4n—3 needs to be proved by induction

A sub-problem to solve first.
n—1 n -
(Z 3ii> = M this needs a derivation and proof!
i=0

In general: good to know sum of commonly occurring sums.
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Repeated Substitution Method : Learnings
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Repeated Substitution Method : Learnings

e An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background
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Repeated Substitution Method : Learnings

e An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background

o Need to observe a pattern.
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Repeated Substitution Method : Learnings

e An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background
o Need to observe a pattern.

o Oversimplification may make us miss the pattern.
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Repeated Substitution Method : Learnings

An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background
Need to observe a pattern.
Oversimplification may make us miss the pattern.

Creativity and experience with summation of series help.
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Repeated Substitution Method : Learnings

An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background
Need to observe a pattern.

Oversimplification may make us miss the pattern.

Creativity and experience with summation of series help.

However, the pattern has to be observed for each recurrence and there is
no generic rule. Are there some recurrences that can be solved by a formula?
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Repeated Substitution Method : Learnings

e An elementary method to solve recurrences.

elementary does not mean simple, but a something that does not need background
o Need to observe a pattern.
o Oversimplification may make us miss the pattern.
o Creativity and experience with summation of series help.

o However, the pattern has to be observed for each recurrence and there is
no generic rule. Are there some recurrences that can be solved by a formula?

Ex: Solve by repeated substitution
T(n) = 2 ifn=0

= 2y/T(n—-1) otherwise

T(n) 12 ifn=0
20 ifn=1

2T(n—1)—T(n—2) otherwise
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Linear recurrences
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Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2+ ...+ Ckan—«k

1 <i<k, ¢iis areal number and ¢, #0

CS1200, CSE IIT Madras Meghana Nasre Advanced Counting Techniques



Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2+ ...+ Ckan—«k

1 <i<k, ¢iis areal number and ¢, #0

e Linear because a,—1, an—2 ... appear in separate terms and to the first
power.
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Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2+ ...+ Ckan—«k

1 <i<k, ¢iis areal number and ¢, #0

e Linear because a,—1, an—2 ... appear in separate terms and to the first
power.

e Homogeneous because degree of every term is the same. There is no
constant term.
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Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2+ ...+ Ckan—«k

1 <i<k, ¢iis areal number and ¢, #0

e Linear because a,—1, an—2 ... appear in separate terms and to the first
power.

e Homogeneous because degree of every term is the same. There is no
constant term.

e Constant coefficients because ci, c; ... are reals which do not depend on n.
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Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2+ ...+ Ckan—«k

1 <i<k, ¢iis areal number and ¢, #0

e Linear because a,—1, an—2 ... appear in separate terms and to the first
power.

e Homogeneous because degree of every term is the same. There is no
constant term.

e Constant coefficients because ci, c; ... are reals which do not depend on n.

Examples:
e T(n)=2T(n—1)and T(0)=1.
e T(nN)=T(n—1)+ T(n—2)and T(0)=0,T(1) =1.
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Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2+ ...+ Ckan—«k

1< i<k, cjis a real number and ¢, # 0

e Linear because a,—1, an—2 ... appear in separate terms and to the first
power.

e Homogeneous because degree of every term is the same. There is no
constant term.

e Constant coefficients because ci, c; ... are reals which do not depend on n.

Examples:
e T(n)=2T(n—1)and T(0)=1.
e T(nN)=T(n—1)+ T(n—2)and T(0)=0,T(1) =1.

Non Examples:
e T(n)=nT(n—1)and T(0) =1 does not have constant coefficients
e T(n)=T(n—1)-T(n—2)and T(0) =0, T(1) =1. not linear
e T(n)=n-T(n—1)and T(1) = 1. does not have constant coefficients
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Linear Homogeneous Recurrences with constant coefficients

an = Clan—1+ Can—2 + ...+ Ckan—«k

1 <<k, cjis areal number and ¢, # 0

Our goal: To derive a systematic way of solving such recurrences.
Upcoming next week

e A technique to solve linear homogeneous equations.
e A technique to solve linear non-homogeneous equations.
o References: Section 8.2[KR]
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