Recursion and Proofs by Induction

CS1200, CSE IIT Madras

Meghana Nasre

March 20, 2020

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Recursion

e Familiar recursive functions
e Some important recursive functions

e Proving closed form solutions using
induction

. 4
Drawing Hands by M. C. Escher

=] =

and Proofs by Induction

CS1200, CSE IIT Madras Megh Nasre

Some familiar examples

Factorial Function ‘

fact(n) = 1 ifn=1

= n-fact(n—1) otherwise

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Some familiar examples

Factorial Function ‘

fact(n) = 1 ifn=1

= n-fact(n—1) otherwise

Fibonacci Sequence ‘

0,1,1,2,3,5,8, ...

f(n) = n ifn=0orn=1
= f(n—1)+f(n—-2) otherwise

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Some more examples of recursive functions

gcd(a, b) | : assume a > b

ged(a,b) = a if b=0
= gecd(b,a mod b) otherwise

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Some more examples of recursive functions

gcd(a, b) | : assume a > b

ged(a,b) = a if b=0
ged(b, a mod b) otherwise

Zi = 0 ifn=0
n—1

= n+ Z i otherwise
i=0

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Proving bounds on recursive formulas using induction

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

n=0,n=1 verify
Ind Hyp: Assume that the claim holds for i =0, ..., k.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

n=0,n=1 verify
Ind Hyp: Assume that the claim holds for i =0, ..., k.

f(n) = f(n—1)+1f(n—-2)

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

n=0,n=1 verify
Ind Hyp: Assume that the claim holds for i =0, ..., k.

f(n) = f(h=1)+f(n—2)
< 2mlyon? by strong induction

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
n=0,n=1 verify
Assume that the claim holds for i =0, ..., k.

f(n) = f(h=1)+f(n—2)
< 2mlyon? by strong induction
< 2n71 + 2nfl —2. 2n71 _ 2n.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
n=0,n=1 verify
Assume that the claim holds for i =0, ..., k.

f(n) = f(h=1)+f(n—2)
< 2mlyon? by strong induction
< 2n71 + 2nfl —2. 2n71 _ 2n.

Tighter Bounds

e f(n) <2 ' foralln>1

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
n=0,n=1 verify
Assume that the claim holds for i =0, ..., k.

f(n) f(n—1)+f(n—2)
2"t o2 by strong induction

2n71 + 2nfl —2. 2n71 _ 2n.

<
<

Tighter Bounds

e f(n)<2"! foralln>1

o f(n)<¢" ! foralln>1; ¢ =15 ~ 1618
Does the same technique as above suffice to prove the second bound?

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

Base Case:

.618

Ind Hyp: Assume that the claim holds for i = 2,... k.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

f(2) =1< ¢' ~1.618
f(3)=2< ¢> ~2.618
Assume that the claim holds for i = 2, ..., k.
f(n) = f(n=1)+f(n-2)

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

Base Case:

CS1200, CSE IT Madras Meghana Nasre

.618

Assume that the claim holds for i = 2,... k.

f(n—1)4+1f(n—-2)
¢n—1+¢n—2

IN

by strong induction

Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

by strong induction

similar to above proof

f(2)=1<¢' ~1.618
f(3)=2< ¢> ~2.618
Assume that the claim holds for i = 2,... k.
f(n) = f(n=1)+f(n-2)
S ¢n—1+¢n—2
< 29"

CS1200, CSE IT Madras Meghana Nasre

Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

f(2)=1<¢' ~1.618
f(3) =2 < ¢? ~ 2.618
Assume that the claim holds for i = 2,. .., k.
f(n) = f(n=1)+f(n-2)
< ¢"l4gn? by strong induction
< 2.¢"1 similar to above proof

Il However the above does not help to prove the claim.
Hence we use some properties of ¢.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2, ... k.

f(n) = f(n—1)+f(n—2)
< ¢n—2 + ¢"—3 by strong induction

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2, ... k.

f(n) f(n—1)4+f(n—-2)
¢4 by strong induction

IN

Note that ¢ (golden ratio) is a root of the equality
x> —x—1=0

Thus we have ¢ + 1 = ¢°.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2, ... k.

f(n) f(n—1)4+f(n—-2)
P+ "3 by strong induction
(an—?:((z)+ 1) — ¢n—3 . ¢2 _ d}n—l

INIA

Note that ¢ (golden ratio) is a root of the equality
x> —x—1=0

Thus we have ¢ + 1 = ¢°.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2,... k.

f(n) f(n—1)+f(n-2)
¢4 " by strong induction
¢n—3(¢+ 1) _ ¢n—3 . ¢2 — ¢n—1

INIA

Hence proved!

Note that ¢ (golden ratio) is a root of the equality
xX—-x—-1=0

Thus we have ¢ + 1 = ¢°.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A lower bound on f(n)

Claim: The n-th fibonacci number f(n) > ¢"~2 for n > 2.

Ex: complete the proof.

Ex: Read here about the Golden Ratio ¢.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

https://www.mathsisfun.com/numbers/golden-ratio.html

Recursively defined functions

A recursively defined function for non-negative integers as its domain:
o Basis step: Define the function for first k positive integers.

e Recursive step: Define the function for i > k using function value at
smaller integers.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Recursively defined functions

A recursively defined function for non-negative integers as its domain:
o Basis step: Define the function for first k positive integers.

e Recursive step: Define the function for i > k using function value at
smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Recursively defined functions

A recursively defined function for non-negative integers as its domain:
o Basis step: Define the function for first k positive integers.

e Recursive step: Define the function for i > k using function value at
smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.

Ex: For the functions below, determine if they are well-defined and if yes, find a
(non-recursive) formula for them and prove your formula using induction.

e h(0) =0; h(n) =2h(n—2) forn>1.
e g(0)=0;g(n)=g(n—1)—1 forn>1.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Some important recursive functions

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A(m, n)

A fast growing function: Ackermann function

= 2n ifm=0

= 0 ifm>1landn=20
= 2 ifm>1landn=1
= A(m-1,A(m,n—1)) ifm>1landn>?2

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A fast growing function: Ackermann function

A(m,n) = 2n ifm=0
= 0 ifm>1landn=20
= 2 ifm>1landn=1
= A(m-1,A(m,n—1)) ifm>1landn>?2

Ex: Solve the following.
e Compute A(1,1) and A(2,2).

e Guess a value for A(1,n) for n > 1 and prove your answer using induction
on n.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A fast growing function: Ackermann function

A(m,n) = 2n ifm=0
= 0 ifm>1landn=20
= 2 ifm>1landn=1
= A(m-1,A(m,n—1)) ifm>1landn>?2

Ex: Solve the following.
e Compute A(1,1) and A(2,2).

e Guess a value for A(1,n) for n > 1 and prove your answer using induction
on n.

e Can you compute A(2,3)?

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log®(n) = n if k=0
(k=1) . (k=1)(Y : . . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log®(n) = n if k=0
(k=1) . (k=1)(Y : . . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

Note: log®)(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log®(n) = n if k=0
(k=1) . (k=1)(Y : . . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

Note: log®)(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Examples:
e log®(16) = 2 whereas log?(16) = log(16) - log(16) = 4 - 4 = 16.

e log?(200) < log?(256) = 3

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

= n if k=0
log(log* ™ V(n)) if log* Y (n) is defined and is positive

= undefined otherwise

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log®(n) = n if k=0
(k—1) . (k=1)(y : , . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log¥(n) = n if k=0
log(log* ™ V(n)) if log* Y (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log™(n) ‘: This is the smallest non-negative integer k such

that log®(n) < 1.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log¥(n) = n if k=0
log(log* ™ V(n)) if log* Y (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log™(n) ‘: This is the smallest non-negative integer k such

that log®(n) < 1.

Ex: What is log*(4) and what is log*(22%4%)?

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

A slow growing function: iterated logarithm

log¥(n) = n if k=0
log(log* ™ V(n)) if log* Y (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log™(n) ‘: This is the smallest non-negative integer k such

that log®(n) < 1.

Ex: What is log*(4) and what is log*(22%4%)?
Justify the title of the slide: slow growing function!

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

Summary

e Some well-known and not so well-known recursive functions.
e Use of induction to prove formulas.
o Reference: Section 5.3 [KT].

To iterate is human, to recurse is divine. L. peter Deutsch

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction

