Recursion and Proofs by Induction

CS1200, CSE IIT Madras

Meghana Nasre

March 20, 2020

Recursion

- Familiar recursive functions
- Some important recursive functions
- Proving closed form solutions using induction

Drawing Hands by M. C. Escher

Some familiar examples

Factorial Function

$$
\begin{aligned}
\operatorname{fact}(n) & =1 & & \text { if } n=1 \\
& =n \cdot \operatorname{fact}(n-1) & & \text { otherwise }
\end{aligned}
$$

Some familiar examples

Factorial Function

$$
\begin{aligned}
\operatorname{fact}(n) & =1 & & \text { if } n=1 \\
& =n \cdot \operatorname{fact}(n-1) & & \text { otherwise }
\end{aligned}
$$

Fibonacci Sequence

\[

\]

Some more examples of recursive functions

$\operatorname{gcd}(a, b):$ assume $a \geq b$

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =a & & \text { if } b=0 \\
& =\operatorname{gcd}(b, a \bmod b) & & \text { otherwise }
\end{aligned}
$$

Some more examples of recursive functions

$\operatorname{gcd}(a, b):$ assume $a \geq b$

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =a & & \text { if } b=0 \\
& =\operatorname{gcd}(b, a \bmod b) & & \text { otherwise }
\end{aligned}
$$

$\sum_{i=0}^{n} i$

$$
\begin{aligned}
\sum_{i=0}^{n} i & =0 & & \text { if } n=0 \\
& =n+\sum_{i=0}^{n-1} i & & \text { otherwise }
\end{aligned}
$$

Proving bounds on recursive formulas using induction

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.

$$
\text { Base Case: } \quad n=0, n=1
$$

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.
Base Case: $\quad n=0, n=1$
verify
Ind Hyp: Assume that the claim holds for $i=0, \ldots, k$.

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.
Base Case: $\quad n=0, n=1$
verify
Ind Hyp: Assume that the claim holds for $i=0, \ldots, k$.

$$
f(n)=f(n-1)+f(n-2)
$$

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.
Base Case: $\quad n=0, n=1$
verify
Ind Hyp: Assume that the claim holds for $i=0, \ldots, k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& <2^{n-1}+2^{n-2}
\end{aligned}
$$

by strong induction

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.
Base Case: $\quad n=0, n=1$
verify
Ind Hyp: Assume that the claim holds for $i=0, \ldots, k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& <2^{n-1}+2^{n-2} \quad \quad \text { by strong induction } \\
& <2^{n-1}+2^{n-1}=2 \cdot 2^{n-1}=2^{n} .
\end{aligned}
$$

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.
Base Case: $\quad n=0, n=1$
verify
Ind Hyp: Assume that the claim holds for $i=0, \ldots, k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& <2^{n-1}+2^{n-2} \quad \quad \text { by strong induction } \\
& <2^{n-1}+2^{n-1}=2 \cdot 2^{n-1}=2^{n} .
\end{aligned}
$$

Tighter Bounds

- $f(n) \leq 2^{n-1} \quad$ for all $n \geq 1$

An upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n)<2^{n}$.
Base Case: $\quad n=0, n=1$
verify
Ind Hyp: Assume that the claim holds for $i=0, \ldots, k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& <2^{n-1}+2^{n-2} \quad \quad \text { by strong induction } \\
& <2^{n-1}+2^{n-1}=2 \cdot 2^{n-1}=2^{n} .
\end{aligned}
$$

Tighter Bounds

- $f(n) \leq 2^{n-1} \quad$ for all $n \geq 1$
- $f(n) \leq \phi^{n-1} \quad$ for all $n \geq 1 ; \phi=\frac{1+\sqrt{5}}{2} \approx 1.618$

Does the same technique as above suffice to prove the second bound?

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Base Case: $\quad n=2, n=3$
$f(2)=1 \leq \phi^{1} \approx 1.618$
$f(3)=2 \leq \phi^{2} \approx 2.618$
Ind Hyp: Assume that the claim holds for $i=2, \ldots, k$.

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Base Case: $\quad n=2, n=3$

$$
\begin{aligned}
& f(2)=1 \leq \phi^{1} \approx 1.618 \\
& f(3)=2 \leq \phi^{2} \approx 2.618
\end{aligned}
$$

Ind Hyp: Assume that the claim holds for $i=2, \ldots, k$.

$$
f(n)=f(n-1)+f(n-2)
$$

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Base Case: $\quad n=2, n=3$

$$
\begin{aligned}
& f(2)=1 \leq \phi^{1} \approx 1.618 \\
& f(3)=2 \leq \phi^{2} \approx 2.618
\end{aligned}
$$

Ind Hyp: Assume that the claim holds for $i=2, \ldots, k$.

$$
\begin{array}{rlr}
f(n) & =f(n-1)+f(n-2) & \\
& \leq \phi^{n-1}+\phi^{n-2} & \text { by strong induction }
\end{array}
$$

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Base Case: $\quad n=2, n=3$

$$
f(2)=1 \leq \phi^{1} \approx 1.618
$$

$$
f(3)=2 \leq \phi^{2} \approx 2.618
$$

Ind Hyp: Assume that the claim holds for $i=2, \ldots, k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& \leq \phi^{n-1}+\phi^{n-2} \\
& \leq 2 \cdot \phi^{n-1}
\end{aligned}
$$

by strong induction similar to above proof

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Base Case: $\quad n=2, n=3$

$$
\begin{aligned}
& f(2)=1 \leq \phi^{1} \approx 1.618 \\
& f(3)=2 \leq \phi^{2} \approx 2.618
\end{aligned}
$$

Ind Hyp: Assume that the claim holds for $i=2, \ldots, k$.

$$
f(n)=f(n-1)+f(n-2)
$$

$$
\leq \phi^{n-1}+\phi^{n-2} \quad \text { by strong induction }
$$

$$
\leq 2 \cdot \phi^{n-1} \quad \text { similar to above proof }
$$

!! However the above does not help to prove the claim. Hence we use some properties of ϕ.

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Ind Hyp: Assume that the claim holds for all values $i=2, \ldots k$.

$$
f(n)=f(n-1)+f(n-2)
$$

$$
\leq \phi^{n-2}+\phi^{n-3} \quad \text { by strong induction }
$$

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Ind Hyp: Assume that the claim holds for all values $i=2, \ldots k$.

$$
\begin{array}{rlr}
f(n) & =f(n-1)+f(n-2) & \\
& \leq \phi^{n-2}+\phi^{n-3} \quad \text { by strong induction }
\end{array}
$$

Note that ϕ (golden ratio) is a root of the equality

$$
x^{2}-x-1=0
$$

Thus we have $\phi+1=\phi^{2}$.

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Ind Hyp: Assume that the claim holds for all values $i=2, \ldots k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& \leq \phi^{n-2}+\phi^{n-3} \quad \text { by strong induction } \\
& \leq \phi^{n-3}(\phi+1)=\phi^{n-3} \cdot \phi^{2}=\phi^{n-1}
\end{aligned}
$$

Note that ϕ (golden ratio) is a root of the equality

$$
x^{2}-x-1=0
$$

Thus we have $\phi+1=\phi^{2}$.

Another upper bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \leq \phi^{n-1}$ for $n \geq 2$.
Ind Hyp: Assume that the claim holds for all values $i=2, \ldots k$.

$$
\begin{aligned}
f(n) & =f(n-1)+f(n-2) \\
& \leq \phi^{n-2}+\phi^{n-3} \quad \text { by strong induction } \\
& \leq \phi^{n-3}(\phi+1)=\phi^{n-3} \cdot \phi^{2}=\phi^{n-1}
\end{aligned}
$$

Hence proved!
Note that ϕ (golden ratio) is a root of the equality

$$
x^{2}-x-1=0
$$

Thus we have $\phi+1=\phi^{2}$.

A lower bound on $f(n)$

Claim: The n-th fibonacci number $f(n) \geq \phi^{n-2}$ for $n \geq 2$.

Ex: complete the proof.

Ex: Read here about the Golden Ratio ϕ.

Recursively defined functions

A recursively defined function for non-negative integers as its domain:

- Basis step: Define the function for first k positive integers.
- Recursive step: Define the function for $i>k$ using function value at smaller integers.

Recursively defined functions

A recursively defined function for non-negative integers as its domain:

- Basis step: Define the function for first k positive integers.
- Recursive step: Define the function for $i>k$ using function value at smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.

Recursively defined functions

A recursively defined function for non-negative integers as its domain:

- Basis step: Define the function for first k positive integers.
- Recursive step: Define the function for $i>k$ using function value at smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.
Ex: For the functions below, determine if they are well-defined and if yes, find a (non-recursive) formula for them and prove your formula using induction.

- $h(0)=0 ; h(n)=2 h(n-2)$ for $n \geq 1$.
- $g(0)=0 ; g(n)=g(n-1)-1 \quad$ for $n \geq 1$.

Some important recursive functions

A fast growing function: Ackermann function

$$
\begin{aligned}
A(m, n) & =2 n \\
& =0 \\
& =2 \\
& =A(m-1, A(m, n-1))
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } m=0 \\
& \text { if } m \geq 1 \text { and } n=0 \\
& \text { if } m \geq 1 \text { and } n=1 \\
& \text { if } m \geq 1 \text { and } n \geq 2
\end{aligned}
$$

A fast growing function: Ackermann function

$$
\begin{aligned}
A(m, n) & =2 n \\
& =0 \\
& =2 \\
& =A(m-1, A(m, n-1))
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } m=0 \\
& \text { if } m \geq 1 \text { and } n=0 \\
& \text { if } m \geq 1 \text { and } n=1 \\
& \text { if } m \geq 1 \text { and } n \geq 2
\end{aligned}
$$

Ex: Solve the following.

- Compute $A(1,1)$ and $A(2,2)$.
- Guess a value for $A(1, n)$ for $n \geq 1$ and prove your answer using induction on n.

A fast growing function: Ackermann function

$$
\begin{aligned}
A(m, n) & =2 n \\
& =0 \\
& =2 \\
& =A(m-1, A(m, n-1))
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } m=0 \\
& \text { if } m \geq 1 \text { and } n=0 \\
& \text { if } m \geq 1 \text { and } n=1 \\
& \text { if } m \geq 1 \text { and } n \geq 2
\end{aligned}
$$

Ex: Solve the following.

- Compute $A(1,1)$ and $A(2,2)$.
- Guess a value for $A(1, n)$ for $n \geq 1$ and prove your answer using induction on n.
- Can you compute $A(2,3)$?

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

Note: $\log ^{(k)}(n)$ is NOT $\log (n) \cdot \log (n) \ldots \log (n), k$ times.
Assume base of logarithm is 2 .

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

Note: $\log ^{(k)}(n)$ is NOT $\log (n) \cdot \log (n) \ldots \log (n), k$ times.
Assume base of logarithm is 2 .

Examples:

- $\log ^{(2)}(16)=2$ whereas $\log ^{2}(16)=\log (16) \cdot \log (16)=4 \cdot 4=16$.
- $\log ^{(2)}(200)<\log ^{(2)}(256)=3$

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

Note: $\log ^{(k)}(n)$ is NOT $\log (n) \cdot \log (n) \ldots \log (n), k$ times.
Assume base of logarithm is 2 .

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

Note: $\log ^{(k)}(n)$ is NOT $\log (n) \cdot \log (n) \ldots \log (n), k$ times.
Assume base of logarithm is 2 .

Iterated Logarithm: $\log ^{*}(n)$: This is the smallest non-negative integer k such that $\log ^{(k)}(n) \leq 1$.

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

Note: $\log ^{(k)}(n)$ is NOT $\log (n) \cdot \log (n) \ldots \log (n), k$ times.
Assume base of logarithm is 2 .

Iterated Logarithm: $\log ^{*}(n)$: This is the smallest non-negative integer k such that $\log ^{(k)}(n) \leq 1$.

Ex: What is $\log ^{*}(4)$ and what is $\log ^{*}\left(2^{2048}\right) ?$

A slow growing function: iterated logarithm

$$
\begin{aligned}
\log ^{(k)}(n) & =n & & \text { if } k=0 \\
& =\log \left(\log ^{(k-1)}(n)\right) & & \text { if } \log ^{(k-1)}(n) \text { is defined and is positive } \\
& =\text { undefined } & & \text { otherwise }
\end{aligned}
$$

Note: $\log ^{(k)}(n)$ is NOT $\log (n) \cdot \log (n) \ldots \log (n), k$ times.
Assume base of logarithm is 2 .

Iterated Logarithm: $\log ^{*}(n)$: This is the smallest non-negative integer k such that $\log ^{(k)}(n) \leq 1$.

Ex: What is $\log ^{*}(4)$ and what is $\log ^{*}\left(2^{2048}\right)$? Justify the title of the slide: slow growing function!

Summary

- Some well-known and not so well-known recursive functions.
- Use of induction to prove formulas.
- Reference: Section 5.3 [KT].

To iterate is human, to recurse is divine. L. Peter Deutsch

