Recursion and Proofs by Induction

CS1200, CSE IIT Madras

Meghana Nasre

March 20, 2020

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction



Recursion

e Familiar recursive functions
e Some important recursive functions

e Proving closed form solutions using
induction

. 4
Drawing Hands by M. C. Escher
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and Proofs by Induction
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Some familiar examples

Factorial Function ‘

fact(n) = 1 ifn=1

= n-fact(n—1) otherwise
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Some familiar examples

Factorial Function ‘

fact(n) = 1 ifn=1

= n-fact(n—1) otherwise

Fibonacci Sequence ‘

0,1,1,2,3,5,8, ...

f(n) = n ifn=0orn=1
= f(n—1)+f(n—-2) otherwise

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction



Some more examples of recursive functions

gcd(a, b) | : assume a > b

ged(a,b) = a if b=0
= gecd(b,a mod b) otherwise
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Some more examples of recursive functions

gcd(a, b) | : assume a > b

ged(a,b) = a if b=0
ged(b, a mod b) otherwise

Zi = 0 ifn=0
n—1

= n+ Z i otherwise
i=0
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Proving bounds on recursive formulas using induction
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

n=0,n=1 verify
Ind Hyp: Assume that the claim holds for i =0, ..., k.
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

n=0,n=1 verify
Ind Hyp: Assume that the claim holds for i =0, ..., k.

f(n) = f(n—1)+1f(n—-2)
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".

n=0,n=1 verify
Ind Hyp: Assume that the claim holds for i =0, ..., k.

f(n) = f(h=1)+f(n—2)
< 2mlyon? by strong induction
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
n=0,n=1 verify
Assume that the claim holds for i =0, ..., k.

f(n) = f(h=1)+f(n—2)
< 2mlyon? by strong induction
< 2n71 + 2nfl —2. 2n71 _ 2n.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction



An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
n=0,n=1 verify
Assume that the claim holds for i =0, ..., k.

f(n) = f(h=1)+f(n—2)
< 2mlyon? by strong induction
< 2n71 + 2nfl —2. 2n71 _ 2n.

Tighter Bounds

e f(n) <2 ' foralln>1
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An upper bound on f(n)

Claim: The n-th fibonacci number f(n) < 2".
n=0,n=1 verify
Assume that the claim holds for i =0, ..., k.

f(n) f(n—1)+f(n—2)
2"t o2 by strong induction

2n71 + 2nfl —2. 2n71 _ 2n.

<
<

Tighter Bounds

e f(n)<2"! foralln>1

o f(n)<¢" ! foralln>1; ¢ =15 ~ 1618
Does the same technique as above suffice to prove the second bound?
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

Base Case:

.618

Ind Hyp: Assume that the claim holds for i = 2,... k.
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

f(2) =1< ¢' ~1.618
f(3)=2< ¢> ~2.618
Assume that the claim holds for i = 2, ..., k.
f(n) = f(n=1)+f(n-2)
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

Base Case:
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.618

Assume that the claim holds for i = 2,... k.

f(n—1)4+1f(n—-2)
¢n—1+¢n—2

IN

by strong induction
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

by strong induction

similar to above proof

f(2)=1<¢' ~1.618
f(3)=2< ¢> ~2.618
Assume that the claim holds for i = 2,... k.
f(n) = f(n=1)+f(n-2)
S ¢n—1+¢n—2
< 29"
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~* for n > 2.

f(2)=1<¢' ~1.618
f(3) =2 < ¢? ~ 2.618
Assume that the claim holds for i = 2,. .., k.
f(n) = f(n=1)+f(n-2)
< ¢"l4gn? by strong induction
< 2.¢"1 similar to above proof

Il However the above does not help to prove the claim.
Hence we use some properties of ¢.
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2, ... k.

f(n) = f(n—1)+f(n—2)
< ¢n—2 + ¢"—3 by strong induction
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2, ... k.

f(n) f(n—1)4+f(n—-2)
¢4 by strong induction

IN

Note that ¢ (golden ratio) is a root of the equality
x> —x—1=0

Thus we have ¢ + 1 = ¢°.
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2, ... k.

f(n) f(n—1)4+f(n—-2)
P+ "3 by strong induction
(an—?:((z)+ 1) — ¢n—3 . ¢2 _ d}n—l

INIA

Note that ¢ (golden ratio) is a root of the equality
x> —x—1=0

Thus we have ¢ + 1 = ¢°.
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Another upper bound on f(n)

Claim: The n-th fibonacci number f(n) < ¢"~! for n > 2.

Ind Hyp: Assume that the claim holds for all values i =2,... k.

f(n) f(n—1)+f(n-2)
¢4 " by strong induction
¢n—3(¢+ 1) _ ¢n—3 . ¢2 — ¢n—1

INIA

Hence proved!

Note that ¢ (golden ratio) is a root of the equality
xX—-x—-1=0

Thus we have ¢ + 1 = ¢°.
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A lower bound on f(n)

Claim: The n-th fibonacci number f(n) > ¢"~2 for n > 2.

Ex: complete the proof.

Ex: Read here about the Golden Ratio ¢.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction


https://www.mathsisfun.com/numbers/golden-ratio.html

Recursively defined functions

A recursively defined function for non-negative integers as its domain:
o Basis step: Define the function for first k positive integers.

e Recursive step: Define the function for i > k using function value at
smaller integers.
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Recursively defined functions

A recursively defined function for non-negative integers as its domain:
o Basis step: Define the function for first k positive integers.

e Recursive step: Define the function for i > k using function value at
smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.
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Recursively defined functions

A recursively defined function for non-negative integers as its domain:
o Basis step: Define the function for first k positive integers.

e Recursive step: Define the function for i > k using function value at
smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.

Ex: For the functions below, determine if they are well-defined and if yes, find a
(non-recursive) formula for them and prove your formula using induction.

e h(0) =0; h(n) =2h(n—2) forn>1.
e g(0)=0;g(n)=g(n—1)—1 forn>1.
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Some important recursive functions
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A(m, n)

A fast growing function: Ackermann function

= 2n ifm=0

= 0 ifm>1landn=20
= 2 ifm>1landn=1
= A(m-1,A(m,n—1)) ifm>1landn>?2
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A fast growing function: Ackermann function

A(m,n) = 2n ifm=0
= 0 ifm>1landn=20
= 2 ifm>1landn=1
= A(m-1,A(m,n—1)) ifm>1landn>?2

Ex: Solve the following.
e Compute A(1,1) and A(2,2).

e Guess a value for A(1,n) for n > 1 and prove your answer using induction
on n.
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A fast growing function: Ackermann function

A(m,n) = 2n ifm=0
= 0 ifm>1landn=20
= 2 ifm>1landn=1
= A(m-1,A(m,n—1)) ifm>1landn>?2

Ex: Solve the following.
e Compute A(1,1) and A(2,2).

e Guess a value for A(1,n) for n > 1 and prove your answer using induction
on n.

e Can you compute A(2,3)?
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A slow growing function: iterated logarithm

log®(n) = n if k=0
(k=1) . (k=1)( Y : . . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise
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A slow growing function: iterated logarithm

log®(n) = n if k=0
(k=1) . (k=1)( Y : . . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

Note: log®)(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.
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A slow growing function: iterated logarithm

log®(n) = n if k=0
(k=1) . (k=1)( Y : . . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

Note: log®)(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Examples:
e log®(16) = 2 whereas log?(16) = log(16) - log(16) = 4 - 4 = 16.

e log?(200) < log?(256) = 3
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A slow growing function: iterated logarithm

= n if k=0
log(log* ™ V(n))  if log* Y (n) is defined and is positive

= undefined otherwise
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A slow growing function: iterated logarithm

log®(n) = n if k=0
(k—1) . (k=1)( y : , . o
log(log (n)) if log (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.
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A slow growing function: iterated logarithm

log¥(n) = n if k=0
log(log* ™ V(n))  if log* Y (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log™(n) ‘: This is the smallest non-negative integer k such

that log®(n) < 1.
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A slow growing function: iterated logarithm

log¥(n) = n if k=0
log(log* ™ V(n))  if log* Y (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log™(n) ‘: This is the smallest non-negative integer k such

that log®(n) < 1.

Ex: What is log*(4) and what is log*(22%4%)?
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A slow growing function: iterated logarithm

log¥(n) = n if k=0
log(log* ™ V(n))  if log* Y (n) is defined and is positive

= undefined otherwise

Note: log®(n) is NOT log(n) - log(n)...log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log™(n) ‘: This is the smallest non-negative integer k such

that log®(n) < 1.

Ex: What is log*(4) and what is log*(22%4%)?
Justify the title of the slide: slow growing function!
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Summary

e Some well-known and not so well-known recursive functions.
e Use of induction to prove formulas.
o Reference: Section 5.3 [KT].

To iterate is human, to recurse is divine. L. peter Deutsch
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