Recursion and Proofs by Induction

CS1200, CSE IIT Madras

Meghana Nasre

March 20, 2020

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

(ロ)、(型)、(E)、(E)、 E、 のQの

Recursion

Drawing Hands by M. C. Escher

- Familiar recursive functions
- Some important recursive functions
- Proving closed form solutions using induction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Some familiar examples

Factorial Function

$$fact(n) = 1 if n = 1$$
$$= n \cdot fact(n-1) otherwise$$

(ロ)、(型)、(E)、(E)、 E、 のQの

Some familiar examples

Factorial Function

$$fact(n) = 1 if n = 1$$
$$= n \cdot fact(n-1) otherwise$$

Fibonacci Sequence

$$0, 1, 1, 2, 3, 5, 8, \ldots$$

$$f(n) = n \qquad \text{if } n = 0 \text{ or } n = 1$$
$$= f(n-1) + f(n-2) \qquad otherwise$$

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some more examples of recursive functions

$$gcd(a, b)$$
: assume $a \ge b$ $gcd(a, b)$ = a $gcd(a, b)$ = a $gcd(b, a \mod b)$ otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

(ロ)、(型)、(E)、(E)、 E) のQの

Some more examples of recursive functions

$$\boxed{\gcd(a, b)} : \text{ assume } a \ge b$$

$$\gcd(a, b) = a \qquad \text{if } b = 0$$

$$= \gcd(b, a \mod b) \qquad \text{otherwise}$$

$$\boxed{\sum_{i=0}^{n} i}$$

$$\sum_{i=0}^{n} i = 0 \qquad \text{if } n = 0$$

$$= n + \sum_{i=0}^{n-1} i$$
 otherwise

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

Proving bounds on recursive formulas using induction

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An upper bound on f(n)

Claim: The *n*-th fibonacci number $f(n) < 2^n$.

Recursion and Proofs by Induction

・ロト・日本・モト・モート ヨー うへで

Base Case: n = 0, n = 1

CS1200, CSE IIT Madras Meghana Nasre Recurs

Recursion and Proofs by Induction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Base Case: n = 0, n = 1

verify

・ロト・日本・モート・モー うへぐ

Ind Hyp: Assume that the claim holds for i = 0, ..., k.

Base Case:n = 0, n = 1verifyInd Hyp:Assume that the claim holds for $i = 0, \dots, k$.

f(n) = f(n-1) + f(n-2)

Base Case:n = 0, n = 1verifyInd Hyp:Assume that the claim holds for $i = 0, \dots, k$.f(n) = f(n-1) + f(n-2) $< 2^{n-1} + 2^{n-2}$ by strong induction

Claim: The *n*-th fibonacci number $f(n) < 2^n$. Base Case: n = 0, n = 1 verify Ind Hyp: Assume that the claim holds for i = 0, ..., k. f(n) = f(n-1) + f(n-2) $< 2^{n-1} + 2^{n-2}$ by strong induction $< 2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Claim: The *n*-th fibonacci number $f(n) < 2^n$. Base Case: n = 0, n = 1 verify Ind Hyp: Assume that the claim holds for i = 0, ..., k. f(n) = f(n-1) + f(n-2) $< 2^{n-1} + 2^{n-2}$ by strong induction $< 2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$.

Tighter Bounds

•
$$f(n) \leq 2^{n-1}$$
 for all $n \geq 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Claim: The *n*-th fibonacci number $f(n) < 2^n$. Base Case: n = 0, n = 1 verify Ind Hyp: Assume that the claim holds for i = 0, ..., k. f(n) = f(n-1) + f(n-2) $< 2^{n-1} + 2^{n-2}$ by strong induction $< 2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$.

Tighter Bounds

- $f(n) \leq 2^{n-1}$ for all $n \geq 1$
- f(n) ≤ φⁿ⁻¹ for all n ≥ 1; φ = 1+√5/2 ≈ 1.618
 Does the same technique as above suffice to prove the second bound?

Recursion and Proofs by Induction

(ロ)、(型)、(E)、(E)、 E) のQの

Base Case:

$$n = 2, n = 3$$

 $f(2) = 1 \le \phi^1 \approx 1.618$
 $f(3) = 2 \le \phi^2 \approx 2.618$

Ind Hyp:

Assume that the claim holds for $i = 2, \ldots, k$.

Base Case:

$$n = 2, n = 3$$

 $f(2) = 1 \le \phi^1 \approx 1.618$
 $f(3) = 2 \le \phi^2 \approx 2.618$

Ind Hyp:

Assume that the claim holds for $i = 2, \ldots, k$.

$$f(n) = f(n-1) + f(n-2)$$

Base Case:

$$n = 2, n = 3$$

 $f(2) = 1 \le \phi^1 \approx 1.618$
 $f(3) = 2 \le \phi^2 \approx 2.618$

Ind Hyp:

Assume that the claim holds for $i = 2, \ldots, k$.

$$\begin{array}{rcl} f(n) & = & f(n-1) + f(n-2) \\ & \leq & \phi^{n-1} + \phi^{n-2} \end{array} \qquad \qquad \mbox{by strong induction} \end{array}$$

Base Case:

Ind Hyp:

$$n = 2, n = 3$$

 $f(2) = 1 \le \phi^1 \approx 1.618$
 $f(3) = 2 \le \phi^2 \approx 2.618$

Assume that the claim holds for i = 2, ..., k.

$$\begin{array}{rcl} f(n) &=& f(n-1) + f(n-2) \\ &\leq& \phi^{n-1} + \phi^{n-2} & \text{by strong induction} \\ &\leq& 2 \cdot \phi^{n-1} & \text{similar to above proof} \end{array}$$

!! However the above does not help to prove the claim. Hence we use some properties of ϕ .

Ind Hyp: Assume that the claim holds for all values i = 2, ..., k.

$$f(n) = f(n-1) + f(n-2)$$

$$\leq \phi^{n-2} + \phi^{n-3} \qquad \text{by strong induction}$$

Ind Hyp: Assume that the claim holds for all values i = 2, ... k.

$$f(n) = f(n-1) + f(n-2)$$

$$\leq \phi^{n-2} + \phi^{n-3}$$
 by strong induction

Note that ϕ (golden ratio) is a root of the equality

$$x^2 - x - 1 = 0$$

Thus we have $\phi + 1 = \phi^2$.

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへぐ

Ind Hyp: Assume that the claim holds for all values i = 2, ... k.

$$f(n) = f(n-1) + f(n-2)$$

$$\leq \phi^{n-2} + \phi^{n-3} \qquad \text{by strong induction}$$

$$\leq \phi^{n-3}(\phi+1) = \phi^{n-3} \cdot \phi^2 = \phi^{n-1}$$

Note that ϕ (golden ratio) is a root of the equality

$$x^2 - x - 1 = 0$$

Thus we have $\phi + 1 = \phi^2$.

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへぐ

Ind Hyp: Assume that the claim holds for all values i = 2, ... k.

$$f(n) = f(n-1) + f(n-2)$$

$$\leq \phi^{n-2} + \phi^{n-3} \qquad \text{by strong induction}$$

$$\leq \phi^{n-3}(\phi+1) = \phi^{n-3} \cdot \phi^2 = \phi^{n-1}$$

Hence proved!

Note that ϕ (golden ratio) is a root of the equality

$$x^2 - x - 1 = 0$$

Thus we have $\phi + 1 = \phi^2$.

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

A lower bound on f(n)

Claim: The *n*-th fibonacci number $f(n) \ge \phi^{n-2}$ for $n \ge 2$.

Ex: complete the proof.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Ex: Read here about the Golden Ratio ϕ .

A recursively defined function for non-negative integers as its domain:

- Basis step: Define the function for first *k* positive integers.
- Recursive step: Define the function for *i* > *k* using function value at smaller integers.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A recursively defined function for non-negative integers as its domain:

- Basis step: Define the function for first *k* positive integers.
- Recursive step: Define the function for *i* > *k* using function value at smaller integers.

Recursive functions are well-defined.

That is, value of the function at any integer is determined unambiguously.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

A recursively defined function for non-negative integers as its domain:

- Basis step: Define the function for first *k* positive integers.
- Recursive step: Define the function for *i* > *k* using function value at smaller integers.

Recursive functions are well-defined.

That is, value of the function at any integer is determined unambiguously.

Ex: For the functions below, determine if they are well-defined and if yes, find a (non-recursive) formula for them and prove your formula using induction.

•
$$h(0) = 0$$
; $h(n) = 2h(n-2)$ for $n \ge 1$.

•
$$g(0) = 0; g(n) = g(n-1) - 1$$
 for $n \ge 1$.

Some important recursive functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$A(m, n)$$
 =
 $2n$
 if $m = 0$
 $=$
 0
 if $m \ge 1$ and $n = 0$
 $=$
 2
 if $m \ge 1$ and $n = 1$
 $=$
 $A(m-1, A(m, n-1))$
 if $m \ge 1$ and $n \ge 2$

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

(ロ)、(型)、(E)、(E)、 E、 のQの

$$\begin{array}{rcl} A(m,n) &=& 2n & \text{if } m=0 \\ &=& 0 & \text{if } m \ge 1 \text{ and } n=0 \\ &=& 2 & \text{if } m \ge 1 \text{ and } n=1 \\ &=& A(m-1,A(m,n-1)) & \text{if } m \ge 1 \text{ and } n\ge 2 \end{array}$$

Ex: Solve the following.

- Compute *A*(1,1) and *A*(2,2).
- Guess a value for A(1, n) for n ≥ 1 and prove your answer using induction on n.

$$\begin{array}{rcl} A(m,n) &=& 2n & & \text{if } m = 0 \\ &=& 0 & & \text{if } m \ge 1 \text{ and } n = 0 \\ &=& 2 & & \text{if } m \ge 1 \text{ and } n = 1 \\ &=& A(m-1,A(m,n-1)) & & \text{if } m \ge 1 \text{ and } n \ge 2 \end{array}$$

Ex: Solve the following.

- Compute A(1,1) and A(2,2).
- Guess a value for A(1, n) for n ≥ 1 and prove your answer using induction on n.
- Can you compute A(2,3)?

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

・ロト・日本・モート・モー うへぐ

$$log^{(k)}(n) = n \qquad \text{if } k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

Examples:

• $\log^{(2)}(16) = 2$ whereas $\log^2(16) = \log(16) \cdot \log(16) = 4 \cdot 4 = 16$.

•
$$\log^{(2)}(200) < \log^{(2)}(256) = 3$$

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

(ロ)、(型)、(E)、(E)、 E、 のQの

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

Let rated Logarithm: $\log^*(n)$: This is the smallest non-negative integer k such that $\log^{(k)}(n) \le 1$.

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

Letrated Logarithm: $\log^*(n)$: This is the smallest non-negative integer k such that $\log^{(k)}(n) \le 1$.

Ex: What is $\log^*(4)$ and what is $\log^*(2^{2048})$?

$$log^{(k)}(n) = n if k = 0$$

= log(log^(k-1)(n)) if log^(k-1)(n) is defined and is positive
= undefined otherwise

Iterated Logarithm: $\log^*(n)$: This is the smallest non-negative integer k such that $\log^{(k)}(n) \leq 1$.

Ex: What is log^{*}(4) and what is log^{*}(2²⁰⁴⁸)? Justify the title of the slide: slow growing function!

Summary

- Some well-known and not so well-known recursive functions.
- Use of induction to prove formulas.
- Reference: Section 5.3 [KT].

To iterate is human, to recurse is divine. L. Peter Deutsch

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで