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Recursion

Drawing Hands by M. C. Escher

• Familiar recursive functions

• Some important recursive functions

• Proving closed form solutions using
induction
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Some familiar examples

Factorial Function

fact(n) = 1 if n = 1

= n · fact(n − 1) otherwise

Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, . . .

f (n) = n if n = 0 or n = 1

= f (n − 1) + f (n − 2) otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction



Some familiar examples

Factorial Function

fact(n) = 1 if n = 1

= n · fact(n − 1) otherwise

Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, . . .

f (n) = n if n = 0 or n = 1

= f (n − 1) + f (n − 2) otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction



Some more examples of recursive functions

gcd(a, b) : assume a ≥ b

gcd(a, b) = a if b = 0

= gcd(b, a mod b) otherwise

∑n
i=0 i

n∑
i=0

i = 0 if n = 0

= n +
n−1∑
i=0

i otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction



Some more examples of recursive functions

gcd(a, b) : assume a ≥ b

gcd(a, b) = a if b = 0

= gcd(b, a mod b) otherwise

∑n
i=0 i

n∑
i=0

i = 0 if n = 0

= n +
n−1∑
i=0

i otherwise

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction



Proving bounds on recursive formulas using induction
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An upper bound on f (n)

Claim: The n-th fibonacci number f (n) < 2n.

Base Case: n = 0, n = 1 verify

Ind Hyp: Assume that the claim holds for i = 0, . . . , k.

f (n) = f (n − 1) + f (n − 2)

< 2n−1 + 2n−2 by strong induction

< 2n−1 + 2n−1 = 2 · 2n−1 = 2n.

Tighter Bounds

• f (n) ≤ 2n−1 for all n ≥ 1

• f (n) ≤ φn−1 for all n ≥ 1; φ = 1+
√

5
2

≈ 1.618
Does the same technique as above suffice to prove the second bound?
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Another upper bound on f (n)

Claim: The n-th fibonacci number f (n) ≤ φn−1 for n ≥ 2.

Base Case: n = 2, n = 3

f (2) = 1 ≤ φ1 ≈ 1.618
f (3) = 2 ≤ φ2 ≈ 2.618

Ind Hyp: Assume that the claim holds for i = 2, . . . , k.

f (n) = f (n − 1) + f (n − 2)

≤ φn−1 + φn−2 by strong induction

≤ 2 · φn−1 similar to above proof

!! However the above does not help to prove the claim.
Hence we use some properties of φ.
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Another upper bound on f (n)

Claim: The n-th fibonacci number f (n) ≤ φn−1 for n ≥ 2.

Ind Hyp: Assume that the claim holds for all values i = 2, . . . k.

f (n) = f (n − 1) + f (n − 2)

≤ φn−2 + φn−3 by strong induction

Note that φ (golden ratio) is a root of the equality

x2 − x − 1 = 0

Thus we have φ+ 1 = φ2.
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Another upper bound on f (n)

Claim: The n-th fibonacci number f (n) ≤ φn−1 for n ≥ 2.
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A lower bound on f (n)

Claim: The n-th fibonacci number f (n) ≥ φn−2 for n ≥ 2.

Ex: complete the proof.

Ex: Read here about the Golden Ratio φ.

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction

https://www.mathsisfun.com/numbers/golden-ratio.html


Recursively defined functions

A recursively defined function for non-negative integers as its domain:

• Basis step: Define the function for first k positive integers.

• Recursive step: Define the function for i > k using function value at
smaller integers.

Recursive functions are well-defined.
That is, value of the function at any integer is determined unambiguously.

Ex: For the functions below, determine if they are well-defined and if yes, find a
(non-recursive) formula for them and prove your formula using induction.

• h(0) = 0; h(n) = 2h(n − 2) for n ≥ 1.

• g(0) = 0; g(n) = g(n − 1) − 1 for n ≥ 1.
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Some important recursive functions
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A fast growing function: Ackermann function

A(m, n) = 2n if m = 0

= 0 if m ≥ 1 and n = 0

= 2 if m ≥ 1 and n = 1

= A(m − 1,A(m, n − 1)) if m ≥ 1 and n ≥ 2

Ex: Solve the following.

• Compute A(1, 1) and A(2, 2).

• Guess a value for A(1, n) for n ≥ 1 and prove your answer using induction
on n.

• Can you compute A(2, 3)?
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A slow growing function: iterated logarithm

log(k)(n) = n if k = 0

= log(log(k−1)(n)) if log(k−1)(n) is defined and is positive

= undefined otherwise

Note: log(k)(n) is NOT log(n) · log(n) . . . log(n), k times.
Assume base of logarithm is 2.

Examples:

• log(2)(16) = 2 whereas log2(16) = log(16) · log(16) = 4 · 4 = 16.

• log(2)(200) < log(2)(256) = 3
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A slow growing function: iterated logarithm

log(k)(n) = n if k = 0

= log(log(k−1)(n)) if log(k−1)(n) is defined and is positive

= undefined otherwise

Note: log(k)(n) is NOT log(n) · log(n) . . . log(n), k times.
Assume base of logarithm is 2.

Iterated Logarithm: log∗(n) : This is the smallest non-negative integer k such

that log(k)(n) ≤ 1.

Ex: What is log∗(4) and what is log∗(22048)?
Justify the title of the slide: slow growing function!
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Summary

• Some well-known and not so well-known recursive functions.

• Use of induction to prove formulas.

• Reference: Section 5.3 [KT].

To iterate is human, to recurse is divine. L. Peter Deutsch
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