Recursion and Proofs by Induction – Part II

CS1200, CSE IIT Madras

Meghana Nasre

March 20, 2020

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction – Part II

Recursion Continued

Drawing Hands by M. C. Escher

- Familiar recursive functions \checkmark
- Some important recursive functions \checkmark
- Proving closed form solutions using induction \checkmark
- Defining objects and sequences using recursion

All images are courtsey Google Images

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

$$S = \{1, 3, 9, 81, ...\}$$

Attempt to give a recursive definition for the set above.

 $S = \{1, 3, 9, 81, ...\}$

Attempt to give a recursive definition for the set above.

Basis Step: $1 \in S$.Recursive Step:if $a \in S$, then $3a \in S$.

 $S = \{1, 3, 9, 81, ...\}$

Attempt to give a recursive definition for the set above.

Basis Step: $1 \in S$.Recursive Step:if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

 $S = \{1, 3, 9, 81, ...\}$

Attempt to give a recursive definition for the set above.

Basis Step: $1 \in S$.Recursive Step:if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof: Let A be the set of all non-negative powers of 3. Show that S = A. Note that $A = \{ 3^n \mid n \in \mathbb{Z}_{\geq 0} \}$

- Show that A ⊆ S
- Show that S ⊆ A

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 1: $A \subseteq S$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 1: $A \subseteq S$.

Use induction on *n*. Let P(n): 3^n belongs to *S*.

• Base case: n = 0. This is true since $3^0 = 1 \in S$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 1: $A \subseteq S$.

Use induction on *n*. Let P(n): 3^n belongs to *S*.

- Base case: n = 0. This is true since $3^0 = 1 \in S$.
- Inductive step: Assume P(k) is true, that is, $3^k \in S$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 1: $A \subseteq S$.

Use induction on *n*. Let P(n): 3^n belongs to *S*.

- Base case: n = 0. This is true since $3^0 = 1 \in S$.
- Inductive step: Assume P(k) is true, that is, $3^k \in S$.
- $3^k \in S$ and by Recursive Step, we know that $3 \cdot 3^k \in S \implies 3^{k+1} \in S$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 1: $A \subseteq S$.

Use induction on *n*. Let P(n): 3^n belongs to *S*.

- Base case: n = 0. This is true since $3^0 = 1 \in S$.
- Inductive step: Assume P(k) is true, that is, $3^k \in S$.
- $3^k \in S$ and by Recursive Step, we know that $3 \cdot 3^k \in S \implies 3^{k+1} \in S$.

Thus, we know that all non-negative powers of 3 belong to S. That is, $A \subseteq S$.

・ロット (日) (日) (日) (日) (日)

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

• Observe that basis step $1 = 3^0$ is a power of 3. Thus, $3 \in A$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

- Observe that basis step $1 = 3^0$ is a power of 3. Thus, $3 \in A$.
- We need to show that all integers generated by recursive step are in A.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

- Observe that basis step $1 = 3^0$ is a power of 3. Thus, $3 \in A$.
- We need to show that all integers generated by recursive step are in A.
- We need to show that if $x \in S$ and $x \in A$, then $3x \in A$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

- Observe that basis step $1 = 3^0$ is a power of 3. Thus, $3 \in A$.
- We need to show that all integers generated by recursive step are in A.
- We need to show that if $x \in S$ and $x \in A$, then $3x \in A$.
- Since $x \in A$, we know $x = 3^i$ for some $i \ge 0$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

- Observe that basis step $1 = 3^0$ is a power of 3. Thus, $3 \in A$.
- We need to show that all integers generated by recursive step are in A.
- We need to show that if $x \in S$ and $x \in A$, then $3x \in A$.
- Since $x \in A$, we know $x = 3^i$ for some $i \ge 0$.
- Thus, $3x = 3 \cdot 3^{i} = 3^{i+1}$. And $3^{i+1} \in A$.

Basis Step: $1 \in S$.

Recursive Step: if $a \in S$, then $3a \in S$.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: $S \subseteq A$.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.

- Observe that basis step $1 = 3^0$ is a power of 3. Thus, $3 \in A$.
- We need to show that all integers generated by recursive step are in A.
- We need to show that if $x \in S$ and $x \in A$, then $3x \in A$.
- Since $x \in A$, we know $x = 3^i$ for some $i \ge 0$.
- Thus, $3x = 3 \cdot 3^{i} = 3^{i+1}$. And $3^{i+1} \in A$.

Thus, S contains only those integers that are non-negative powers of 3, i.e., $S \subseteq A$.

Recursive Sets

$$S = \{1, 3, 9, 81, ...\}$$

Recap and ponder

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction – Part II

$$S = \{1, 3, 9, 81, ...\}$$

• A simple recursively defined set.

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction – Part II

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on *n*.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper.

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

• Consider the following definition of a set S.

Basis Step: $(0,0) \in S$.Recursive Step:if $(a,b) \in S$, then $(a+2,b+3) \in S$ and
 $(a+3,b+2) \in S$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

• Consider the following definition of a set S.

Basis Step: $(0,0) \in S$.Recursive Step:if $(a,b) \in S$, then $(a+2,b+3) \in S$ and
 $(a+3,b+2) \in S$.

Write down at least 5 elements in the set S.

CS1200, CSE IIT Madras Meghana Nasre

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

• Consider the following definition of a set S.

Basis Step: $(0,0) \in S$.Recursive Step:if $(a,b) \in S$, then $(a+2,b+3) \in S$ and
 $(a+3,b+2) \in S$.

Write down at least 5 elements in the set S. Show that if $(a, b) \in S$, then 5 divides a + b? (a + b) + (a + b) + (a + b) = b

$$S = \{1, 3, 9, 81, ...\}$$

- A simple recursively defined set.
- Part 1 of the proof uses induction on n.
- Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 \in S instead of 1 \in S?

Ex:

• Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

• Consider the following definition of a set S.

Basis Step: $(0,0) \in S$.Recursive Step:if $(a,b) \in S$, then $(a+2,b+3) \in S$ and
 $(a+3,b+2) \in S$.

Write down at least 5 elements in the set S. Show that if $(a, b) \in S$, then 5 divides a + b? Is the converse true? = \sim

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Lets define a linked list recursively.

Lets define a linked list recursively.

Basis Step: A null node is a linked list. Recursive Step: A linked list is a node (containing data and) pointing to a linked list.

Lets define a linked list recursively.

Basis Step: A null node is a linked list. Recursive Step: A linked list is a node (containing data and) pointing to a linked list.

Lets define a linked list recursively.

Basis Step: A null node is a linked list. Recursive Step: A linked list is a node (containing data and) pointing to a linked list.

Ex: Define length of a linked list recursively.

CS1200, CSE IIT Madras Meghana Nasre

Recursion and Proofs by Induction – Part II

化白豆 化硼医化合医医化合医医二乙酮
Trees defined recursively

CS1200, CSE IIT Madras Meghana Nasre

Recursion and Proofs by Induction – Part II

Trees defined recursively

Trees are drawn upside down in CS!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction – Part II

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Def.1: Binary trees

Basis Step: A null node represents an empty binary tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Def.1: Binary trees

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T_1 and T_2 are disjoint binary trees then we can get a binary tree (denoted as $T_1 \cdot T_2$) with a root *r* together with edges connecting *r* to the roots of the left subtree T_1 and right subtree T_2 .

Def.1: Binary trees

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T_1 and T_2 are disjoint binary trees then we can get a binary tree (denoted as $T_1 \cdot T_2$) with a root *r* together with edges connecting *r* to the roots of the left subtree T_1 and right subtree T_2 .

Consider another definition of Trees.

Def.2: Full binary trees

Def.1: Binary trees

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T_1 and T_2 are disjoint binary trees then we can get a binary tree (denoted as $T_1 \cdot T_2$) with a root *r* together with edges connecting *r* to the roots of the left subtree T_1 and right subtree T_2 .

Consider another definition of Trees.

Def.2: Full binary trees

Basis Step: A single node is a full binary tree

Def.1: Binary trees

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T_1 and T_2 are disjoint binary trees then we can get a binary tree (denoted as $T_1 \cdot T_2$) with a root *r* together with edges connecting *r* to the roots of the left subtree T_1 and right subtree T_2 .

Consider another definition of Trees.

Def.2: Full binary trees

Basis Step: A single node is a full binary tree

Recursive Step: If T_1 and T_2 are disjoint full binary trees then we can get a full binary tree (denoted as $T_1 \cdot T_2$) with a root r together with edges connecting r to the roots of the left subtree T_1 and right subtree T_2 .

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Clearly an empty tree is not a full binary tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree? Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0.

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree? Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0. **Recursive Step:** If $T = T_1 \cdot T_2$ is a full binary tree where T_1 and T_2 are themselves full binary trees then, $h(T) = 1 + \max\{h(T_1), h(T_2)\}$.

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree? Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0. **Recursive Step:** If $T = T_1 \cdot T_2$ is a full binary tree where T_1 and T_2 are themselves full binary trees then, $h(T) = 1 + \max\{h(T_1), h(T_2)\}$.

Ex:

• Write a similar definition for number of nodes n(T) for a full binary tree.

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree? Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0. **Recursive Step:** If $T = T_1 \cdot T_2$ is a full binary tree where T_1 and T_2 are themselves full binary trees then, $h(T) = 1 + \max\{h(T_1), h(T_2)\}$.

Ex:

• Write a similar definition for number of nodes n(T) for a full binary tree.

Write down your answer. Do these functions h(T) and n(T) work for binary trees?

Clearly an empty tree is not a full binary tree.

Ex:

• Is there any other tree that is a binary tree but not a full binary tree? Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0. **Recursive Step:** If $T = T_1 \cdot T_2$ is a full binary tree where T_1 and T_2 are themselves full binary trees then, $h(T) = 1 + \max\{h(T_1), h(T_2)\}$.

Ex:

• Write a similar definition for number of nodes n(T) for a full binary tree.

Write down your answer. Do these functions h(T) and n(T) work for binary trees? What is the change needed?

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

CS1200, CSE IIT Madras Meghana Nasre Recursion and Proofs by Induction – Part II

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step:

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

 $n(T) = 1 + n(T_1) + n(T_2)$

this answers last Ex: on prev. slide partly

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$n(T) = 1 + n(T_1) + n(T_2)$$

$$\leq 1 + 2^{h(T_1)} + 2^{h(T_2)}$$

this answers last Ex: on prev. slide partly

by inductive hypothesis

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{array}{ll} n(T) &=& 1+n(T_1)+n(T_2) & \mbox{this answers last Ex: on prev. slide partly} \\ &\leq& 1+2^{h(T_1)}+2^{h(T_2)} & \mbox{by inductive hypothesis} \\ &\leq& 1+2\cdot \max\{2^{h(T_1)},2^{h(T_2)}\} & \mbox{x}+y\leq 2\cdot \max\{x,y\} \end{array}$$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & \times + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \end{split}$$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & x + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \\ &= 1 + 2^{h(T)} \end{split}$$

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & x + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \\ &= 1 + 2^{h(T)} \end{split}$$

Hence proved!

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & x + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \\ &= 1 + 2^{h(T)} \end{split}$$

Hence proved!

But wait! Are we done? Is it the claim that we wanted to prove?

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$ [false claim!

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & x + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \\ &= 1 + 2^{h(T)} \end{split}$$

Hence proved!

But wait! Are we done? Is it the claim that we wanted to prove?

In fact the claim is incorrect! Find simple counter examples

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$ [alse claim!

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & x + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \\ &= 1 + 2^{h(T)} \end{split}$$

Hence proved!

But wait! Are we done? Is it the claim that we wanted to prove?

In fact the claim is incorrect! Find simple counter examples

Correct Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)+1} - 1$

Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)}$ [alse claim!

Basis step: For a full binary tree T with a single root node, h(T) = 0. $2^0 = 1$ is the number of nodes in T. Hence base case is true.

Recursive step: Assume $T = T_1 \cdot T_2$ where T_1 and T_2 are full binary trees.

$$\begin{split} n(T) &= 1 + n(T_1) + n(T_2) & \text{this answers last Ex: on prev. slide partly} \\ &\leq 1 + 2^{h(T_1)} + 2^{h(T_2)} & \text{by inductive hypothesis} \\ &\leq 1 + 2 \cdot \max\{2^{h(T_1)}, 2^{h(T_2)}\} & x + y \leq 2 \cdot \max\{x, y\} \\ &= 1 + 2 \cdot 2^{\max\{h(T_1) + h(T_2)\}} = 1 + 2^{1 + \max\{h(T_1) + h(T_2)\}} \\ &= 1 + 2^{h(T)} \end{split}$$

Hence proved!

But wait! Are we done? Is it the claim that we wanted to prove?

In fact the claim is incorrect! Find simple counter examples

Correct Claim: The number of nodes n(T) for a full binary tree is $\leq 2^{h(T)+1} - 1$ Complete the proof of the correct claim – see Theorem 2, Section 5.3 [KR]

CS1200, CSE IIT Madras Meghana Nasre

Recursion and Proofs by Induction – Part II

Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence $r_0, r_1, r_2, \ldots,$

・ロト・日本・モト・モー シックの

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence $r_0, r_1, r_2, \ldots,$

Basis Step:
 $r_0 = -1$ $r_1 = -14$

Recursive Step:
 $r_n = 7r_{n-1} - 10r_{n-2}$ $n \ge 2$

Ex:

• Find r₂, r₃.

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence $r_0, r_1, r_2, \ldots,$

Basis Step:
 $r_0 = -1$ $r_1 = -14$

Recursive Step:
 $r_n = 7r_{n-1} - 10r_{n-2}$ $n \ge 2$

Ex:

- Find r₂, r₃.
- We would like a closed form expression for r_n .
We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence $r_0, r_1, r_2, \ldots,$

 Basis Step:
 $r_0 = -1$ $r_1 = -14$

 Recursive Step:
 $r_n = 7r_{n-1} - 10r_{n-2}$ $n \ge 2$

Ex:

- Find r₂, r₃.
- We would like a closed form expression for r_n.
 Since the closed form is non-trivial, we provide some hints and ask you guess parts of it.

Guess the values of c_1 and f(n) to get a closed form for r_n :

$$r_n = c_1 \cdot 2^n - 4 \cdot 5^{f(n)}$$

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence $r_0, r_1, r_2, \ldots,$

 Basis Step:
 $r_0 = -1$ $r_1 = -14$

 Recursive Step:
 $r_n = 7r_{n-1} - 10r_{n-2}$ $n \ge 2$

Ex:

- Find r₂, r₃.
- We would like a closed form expression for r_n.
 Since the closed form is non-trivial, we provide some hints and ask you guess parts of it.

Guess the values of c_1 and f(n) to get a closed form for r_n :

$$r_n = c_1 \cdot 2^n - 4 \cdot 5^{f(n)}$$

• Does your guess work for all of r_0, r_1, r_2, r_3 ?

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence $r_0, r_1, r_2, \ldots,$

 Basis Step:
 $r_0 = -1$ $r_1 = -14$

 Recursive Step:
 $r_n = 7r_{n-1} - 10r_{n-2}$ $n \ge 2$

Ex:

- Find r₂, r₃.
- We would like a closed form expression for r_n.
 Since the closed form is non-trivial, we provide some hints and ask you guess parts of it.

Guess the values of c_1 and f(n) to get a closed form for r_n :

$$r_n = c_1 \cdot 2^n - 4 \cdot 5^{f(n)}$$

- Does your guess work for all of r_0, r_1, r_2, r_3 ?
- The answer is c₁ = 3 and f(n) = n. Now prove that these values are indeed correct by using induction on n.

CS1200, CSE IIT Madras Meghana Nasre

Summary

- Recursive Sets and proofs using induction and structure of the set.
- Recursively defined objects, specifically trees and their properties.
- Recursive sequences.
- left as reading exercise: Recursion and strings.
- Reference: Section 5.3 [KT].

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで