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Recursion Continued

e Familiar recursive functions v
e Some important recursive functions v

e Proving closed form solutions using
induction v/

o Defining objects and sequences using
recursion
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Recursive Sets

We have seen different ways of defining sets. Lets see some sets which can be
recursively defined.
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Recursive Sets

We have seen different ways of defining sets. Lets see some sets which can be
recursively defined.

§=1{1,3,9,81,...}

Attempt to give a recursive definition for the set above.
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Recursive Sets

We have seen different ways of defining sets. Lets see some sets which can be
recursively defined.

5=1{1,3,9,81,...}
Attempt to give a recursive definition for the set above.

Basis Step: 1eS.
Recursive Step: ifac S, then3a€S.
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Recursive Sets

We have seen different ways of defining sets. Lets see some sets which can be
recursively defined.

5=1{1,3,9,81,...}
Attempt to give a recursive definition for the set above.

Basis Step: 1eS.
Recursive Step: ifac S, then3a€S.

Claim: The set S is the set of all non-negative powers of 3.
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Recursive Sets

We have seen different ways of defining sets. Lets see some sets which can be
recursively defined.

5=1{1,3,9,81,...}
Attempt to give a recursive definition for the set above.

Basis Step: 1eS.
Recursive Step: ifac S, then3a€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof: Let A be the set of all non-negative powers of 3. Show that S = A.
Note that A={3" | n€ Zx>o}

e Show that AC S
e Show that SC A
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Recursive Sets

$=1{1,3,9,81,..}
Basis Step: les.

Recursive Step:  ifa€ S, then3a € S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 1: AC S.
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Recursive Sets

$=1{1,3,9,81,..}
Basis Step: les.

Recursive Step:  ifa€ S, then3a € S.

Claim: The set S is the set of all non-negative powers of 3.
Proof Part 1: AC S.

Use induction on n. Let P(n): 3" belongs to S.

e Base case: n=0. This is true since 3 =1 € S.
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Recursive Sets

$=1{1,3,9,81,..}
Basis Step: les.

Recursive Step:  ifa€ S, then3a € S.

Claim: The set S is the set of all non-negative powers of 3.
Proof Part 1: AC S.

Use induction on n. Let P(n): 3" belongs to S.

e Base case: n=0. This is true since 3 =1 € S.

e Inductive step: Assume P(k) is true, that is, 3 € S.
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Recursive Sets

$=1{1,3,9,81,..}
Basis Step: les.

Recursive Step:  ifa€ S, then3a € S.

Claim: The set S is the set of all non-negative powers of 3.
Proof Part 1: AC S.

Use induction on n. Let P(n): 3" belongs to S.

e Base case: n=0. This is true since 3 =1 € S.

e Inductive step: Assume P(k) is true, that is, 3 € S.
e 3¥ € S and by Recursive Step, we know that 3-3 € § = 31 ¢ S,
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Recursive Sets

$=1{1,3,9,81,..}
Basis Step: les.

Recursive Step:  ifa€ S, then3a € S.

Claim: The set S is the set of all non-negative powers of 3.
Proof Part 1: AC S.

Use induction on n. Let P(n): 3" belongs to S.

e Base case: n=0. This is true since 3 =1 € S.

e Inductive step: Assume P(k) is true, that is, 3 € S.
e 3¥ € S and by Recursive Step, we know that 3-3 € § = 31 ¢ S,

Thus, we know that all non-negative powers of 3 belong to S. Thatis, AC S.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
o Observe that basis step 1 = 3% is a power of 3. Thus, 3 € A.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
o Observe that basis step 1 = 3% is a power of 3. Thus, 3 € A.

o We need to show that all integers generated by recursive step are in A.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
o Observe that basis step 1 = 3% is a power of 3. Thus, 3 € A.

o We need to show that all integers generated by recursive step are in A.
e We need to show that if x € S and x € A, then 3x € A.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
Observe that basis step 1 = 3° is a power of 3. Thus, 3 € A.

We need to show that all integers generated by recursive step are in A.
We need to show that if x € S and x € A, then 3x € A.
Since x € A, we know x = 3' for some i > 0.
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
Observe that basis step 1 = 3° is a power of 3. Thus, 3 € A.

We need to show that all integers generated by recursive step are in A.
We need to show that if x € S and x € A, then 3x € A.

Since x € A, we know x = 3’ for some i > 0.

Thus, 3x =3 -3 =31 And 3! c A,
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Recursive Sets

§=1{1,3,9,81,...}
Basis Step: l1eS.

Recursive Step: ifac S, then3ac€S.

Claim: The set S is the set of all non-negative powers of 3.

Proof Part 2: S C A.

Note: This implies S contains only those integers which are non-negative powers of 3.

We use the recursive definition of the set S.
Observe that basis step 1 = 3° is a power of 3. Thus, 3 € A.

We need to show that all integers generated by recursive step are in A.
We need to show that if x € S and x € A, then 3x € A.

Since x € A, we know x = 3’ for some i > 0.

Thus, 3x =3 -3 =31 And 3! c A,

Thus, S contains only those integers that are non-negative powers of 3, i.e.,
SCA.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € S?
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € S?

Ex:

o Give a recursive definition for the set of even integers.
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € S?

Ex:

o Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € 57

Ex:

o Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € 57

Ex:
o Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

o Consider the following definition of a set S.

Basis Step: (0,0) € S.
Recursive Step:  if (a,b) € S, then (a+2,b+3) € S and
(a+3,b+2)€S.
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € 57

Ex:
o Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

o Consider the following definition of a set S.

Basis Step: (0,0) € S.

Recursive Step:  if (a,b) € S, then (a+2,b+3) € S and
(a+3,b+2)€S.

Write down at least 5 elements in the set S.
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Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € 57

Ex:
o Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

o Consider the following definition of a set S.

Basis Step: (0,0) € S.

Recursive Step:  if (a,b) € S, then (a+2,b+3) € S and
(a+3,b+2)€S.

Write down at least 5 elements in the set S. Show that if (a, b) € S, then 5 divides a + b?

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Recursive Sets

§=1{1,3,9,81,...}

Recap and ponder

o A simple recursively defined set.
e Part 1 of the proof uses induction on n.
e Part 2 of the proof uses structural definition of the set.

Revisit the proof.

For instance, does the claim go through if Basis Step was 2 € S instead of 1 € 57

Ex:
o Give a recursive definition for the set of even integers.

Write down your definition on a sheet of paper. Does it cover only positive even integers? If yes, correct it.

o Consider the following definition of a set S.

Basis Step: (0,0) € S.

Recursive Step:  if (a,b) € S, then (a+2,b+3) € S and
(a+3,b+2)€S.

Write down at least 5 elements in the set S. Show that if (a, b) € S, then 5 divides a + b? Is the converse true?
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Recursive Structures

In CS you will encounter many recursively defined (data) structures. In fact you
have seen some of them already.
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Recursive Structures

In CS you will encounter many recursively defined (data) structures. In fact you
have seen some of them already.

Lets define a linked list recursively.
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Recursive Structures

In CS you will encounter many recursively defined (data) structures. In fact you
have seen some of them already.

Lets define a linked list recursively.

Basis Step: A null node is a linked list.
Recursive Step: A linked list is a node (containing data and) pointing to a
linked list.
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Recursive Structures

In CS you will encounter many recursively defined (data) structures. In fact you
have seen some of them already.

Lets define a linked list recursively.

Basis Step: A null node is a linked list.
Recursive Step: A linked list is a node (containing data and) pointing to a
linked list.

A linked list is either

or

A node pointing |
) i1tem ; )
o a linked lipt: T I. linked list
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Recursive Structures

In CS you will encounter many recursively defined (data) structures. In fact you
have seen some of them already.

Lets define a linked list recursively.

Basis Step: A null node is a linked list.
Recursive Step: A linked list is a node (containing data and) pointing to a
linked list.

A linked list ism pither

v ~
to a linked ligk: item |1 o | linked list

. -~

A node pointing

Ex: Define length of a linked list recursively.
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Trees defined recursively
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Trees defined recursively

L ]
» . L ] )
* e 9 LN B B
L » » L
] . L]
L 3
L L » B
L] L]
L LI L L]
e & @ @
L LI a

Trees are drawn upside down in CS!
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Trees defined recursively

Lets define trees (in mathematics and CS) using recursion. We start with
binary trees.
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Trees defined recursively

Lets define trees (in mathematics and CS) using recursion. We start with
binary trees.

Def.1: Binary trees ‘

Basis Step: A null node represents an empty binary tree.
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Trees defined recursively

Lets define trees (in mathematics and CS) using recursion. We start with
binary trees.

’ Def.1: Binary trees‘

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T; and T are disjoint binary trees then we can get a binary
tree (denoted as T1 - T2) with a root r together with edges connecting r to the
roots of the left subtree T; and right subtree To.
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Trees defined recursively

Lets define trees (in mathematics and CS) using recursion. We start with
binary trees.

’ Def.1: Binary trees‘

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T; and T are disjoint binary trees then we can get a binary
tree (denoted as T1 - T2) with a root r together with edges connecting r to the
roots of the left subtree T; and right subtree To.

Consider another definition of Trees.

’ Def.2: Full binary trees‘
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Trees defined recursively

Lets define trees (in mathematics and CS) using recursion. We start with
binary trees.

’ Def.1: Binary trees‘

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T; and T are disjoint binary trees then we can get a binary
tree (denoted as T1 - T2) with a root r together with edges connecting r to the
roots of the left subtree T; and right subtree To.

Consider another definition of Trees.

’ Def.2: Full binary trees‘

Basis Step: A single node is a full binary tree
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Trees defined recursively

Lets define trees (in mathematics and CS) using recursion. We start with
binary trees.
’ Def.1: Binary trees‘

Basis Step: A null node represents an empty binary tree.

Recursive Step: If T; and T are disjoint binary trees then we can get a binary
tree (denoted as T1 - T2) with a root r together with edges connecting r to the
roots of the left subtree T; and right subtree To.

Consider another definition of Trees.

’ Def.2: Full binary trees‘

Basis Step: A single node is a full binary tree

Recursive Step: If T; and T, are disjoint full binary trees then we can get a full
binary tree (denoted as Ti - T2) with a root r together with edges connecting r
to the roots of the left subtree T and right subtree To.
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0.
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0.

Recursive Step: If T = Ty - T is a full binary tree where T1 and T, are
themselves full binary trees then, h(T) = 1 + max{h(T1), h(T2)}.
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0.

Recursive Step: If T = Ty - T is a full binary tree where T1 and T, are
themselves full binary trees then, h(T) = 1 + max{h(T1), h(T2)}.

Ex:

e Write a similar definition for number of nodes n(T) for a full binary tree.
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Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0.

Recursive Step: If T = Ty - T is a full binary tree where T1 and T, are
themselves full binary trees then, h(T) = 1 + max{h(T1), h(T2)}.

Ex:

e Write a similar definition for number of nodes n(T) for a full binary tree.

Write down your answer. Do these functions h(T) and n(T) work for binary trees?

CS1200, CSE IT Madras Meghana Nasre Recursion and Proofs by Induction — Part 11



Binary Trees continued

Revisit the definitions on the previous slide and the picture on the even earlier
slide carefully.

Clearly an empty tree is not a full binary tree.

Ex:

o Is there any other tree that is a binary tree but not a full binary tree?

Write down your answer. If yes, construct an example tree, if no, attempt a proof.

Height of a full binary tree

Basis Step: If T consists of a single root node, then h(T) = 0.

Recursive Step: If T = Ty - T is a full binary tree where T1 and T, are
themselves full binary trees then, h(T) = 1 + max{h(T1), h(T2)}.

Ex:

e Write a similar definition for number of nodes n(T) for a full binary tree.

Write down your answer. Do these functions h(T) and n(T) work for binary trees? What is the change needed?
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step:
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step:
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) = 1 + n( T1) —+ n( T2) this answers last Ex: on prev. slide partly
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n(T)

1+ n( Tl) + n( T2) this answers last Ex: on prev. slide partly
h(T; h(T;
142 (T1) +2 (T2) by inductive hypothesis

IN
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n(T)

1+ n( Tl) + n( T2) this answers last Ex: on prev. slide partly
1+ 2h(Ty) + 2h(T2) by inductive hypothesis
142 max{2"(™) M2y o

IN N
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) 1 —+ n( T1) =+ n( T2) this answers last Ex: on prev. slide partly
1+ 2h(T) + 2h(72) by inductive hypothesis
142 max{2"(T) 2Ty

1+2. 2max{h(T1)+h(T2)} =1+ 21+max{h(T1)+h(T2)}

IN N
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) 1 —+ n( T1) =+ n( T2) this answers last Ex: on prev. slide partly
1+ 2h(T) + 2h(72) by inductive hypothesis
142 max{2"(T) 2Ty

1+2. 2max{h(T1)+h(T2)} =1+ 21+max{h(T1)+h(T2)}

IN N

142/
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) 1 —+ n( T1) =+ n( T2) this answers last Ex: on prev. slide partly
1+ 2h(T) + 2h(72) by inductive hypothesis
142 max{2"(T) 2Ty

1+2. 2max{h(T1)+h(T2)} =1+ 21+max{h(T1)+h(T2)}

IN N

142/

Hence proved!
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) 1 —+ n( T1) =+ n( T2) this answers last Ex: on prev. slide partly
1+ 2h(T) + 2h(72) by inductive hypothesis
142 max{2"M) 2Ty

1+2. 2max{h(T1)+h(T2)} =1+ 21+max{h(T1)+h(T2)}

IN N

142/

Hence proved!

But wait! Are we done? Is it the claim that we wanted to prove?
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) 1 —+ n( T1) =+ n( T2) this answers last Ex: on prev. slide partly
1+ 2h(T) + 2h(72) by inductive hypothesis
142 max{2"M) 2Ty

1+2. 2max{h(T1)+h(T2)} =1+ 21+max{h(T1)+h(T2)}

IN N

142/
Hence proved!
But wait! Are we done? Is it the claim that we wanted to prove?

In fact the claim is incorrect! Find simple counter examples
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n( T) 1 —+ n( T1) =+ n( T2) this answers last Ex: on prev. slide partly
1+ 2h(T) + 2h(72) by inductive hypothesis
142 max{2"M) 2Ty

1+2. 2max{h(T1)+h(T2)} =1+ 21+max{h(T1)+h(T2)}

IN N

142/

Hence proved!

But wait! Are we done? Is it the claim that we wanted to prove?
In fact the claim is incorrect! Find simple counter examples

Correct Claim:The number of nodes n(T) for a full binary tree is < 2/(T)+1 _ 1
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Binary Trees continued

Claim:The number of nodes n(T) for a full binary tree is < 2"(T)

Basis step: For a full binary tree T with a single root node, h(T) = 0.
2% = 1 is the number of nodes in T. Hence base case is true.

Recursive step: Assume T = Ty - To where T; and T, are full binary trees.

n(T)

1+ n( Tl) + n( T2) this answers last Ex: on prev. slide partly
h(T; h(T;
142 (T1) +2 (T2) by inductive hypothesis

142 max{2"M) 2Ty
142. 2max{h(T1)+h(T2)} =14+ 21+max{h(T1)+h(T2)}

IN N

142/

Hence proved!
But wait! Are we done? Is it the claim that we wanted to prove?

In fact the claim is incorrect! Find simple counter examples

Correct Claim:The number of nodes n(T) for a full binary tree is < 2/(T)+1 _ 1
Complete the proof of the correct claim — see Theorem 2, Section 5.3 [KR]
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Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence
r,n,rn,...,
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Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence
r,n,rn,...,

Basis Step: n=-1 n=-14
Recursive Step: th=7th—1 —10r,—» n>2

Ex:
e Find r, r3.
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Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence
r,n,rn,...,

Basis Step: n=-1 n=-14
Recursive Step: th=7th—1 —10r,—» n>2

Ex:
e Find r, r3.
o We would like a closed form expression for r,.
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Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence
r,n,rn,...,

Basis Step: n=-1 n=-14
Recursive Step: th=7th—1 —10r,—» n>2

Ex:
e Find r, r3.
o We would like a closed form expression for r,.
Since the closed form is non-trivial, we provide some hints and ask you
guess parts of it.

Guess the values of ¢; and f(n) to get a closed form for r, :

fm=c-2"—4.5
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Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence
r,n,rn,...,

Basis Step: n=-1 n=-14
Recursive Step: th=7th—1 —10r,—» n>2

Ex:
e Find r, r3.
o We would like a closed form expression for r,.
Since the closed form is non-trivial, we provide some hints and ask you
guess parts of it.

Guess the values of ¢; and f(n) to get a closed form for r, :

fm=c-2"—4.5

e Does your guess work for all of ry, ri, r2, 137
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Recursive Sequences

We have already seen the fibonacci sequence in the last class.

Consider the following recursive sequence
r,n,rn,...,

Basis Step: n=-1 n=-14
Recursive Step: th=7th—1 —10r,—» n>2

Ex:
e Find r, r3.
o We would like a closed form expression for r,.
Since the closed form is non-trivial, we provide some hints and ask you
guess parts of it.

Guess the values of ¢; and f(n) to get a closed form for r, :

fm=c-2"—4.5

e Does your guess work for all of ry, ri, r2, 137
e The answer is c; = 3 and f(n) = n. Now prove that these values are
indeed correct by using induction on n.
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Summary

Recursive Sets and proofs using induction and structure of the set.
Recursively defined objects, specifically trees and their properties.
Recursive sequences.

left as reading exercise: Recursion and strings.

Reference: Section 5.3 [KT].
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