Counting

CS1200, CSE IIT Madras

Meghana Nasre

March 26, 2020

Counting (without counting)

- Basic Counting Techniques \checkmark
- Pigeon Hole Principle (revisited)
- Permutations and Combinations
- Combinatorial Identities

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

For a positive integer k, if $k+1$ objects are placed into k boxes, then there is at least one box with two or more objects.

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

For a positive integer k, if $k+1$ objects are placed into k boxes, then there is at least one box with two or more objects.

Note: This does not mean that every box contains at least one object. In fact, many boxes may be left empty.

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

For a positive integer k, if $k+1$ objects are placed into k boxes, then there is at least one box with two or more objects.

Note: This does not mean that every box contains at least one object. In fact, many boxes may be left empty.

Generalization: If N objects are placed in k boxes then there is at least one box containing at least $\left\lceil\frac{N}{k}\right\rceil$ objects.

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

For a positive integer k, if $k+1$ objects are placed into k boxes, then there is at least one box with two or more objects.

Note: This does not mean that every box contains at least one object. In fact, many boxes may be left empty.

Generalization: If N objects are placed in k boxes then there is at least one box containing at least $\left\lceil\frac{N}{k}\right\rceil$ objects.

Qn: If a drawer contains red, blue, green and black socks, how many socks should you pull out (without looking at the socks) so that you are guaranteed a pair (of some color)?

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

For a positive integer k, if $k+1$ objects are placed into k boxes, then there is at least one box with two or more objects.

Note: This does not mean that every box contains at least one object. In fact, many boxes may be left empty.

Generalization: If N objects are placed in k boxes then there is at least one box containing at least $\left\lceil\frac{N}{k}\right\rceil$ objects.

Qn: If a drawer contains red, blue, green and black socks, how many socks should you pull out (without looking at the socks) so that you are guaranteed a pair (of some color)?

Sol: Note that if we are lucky we can get a pair by pulling two socks.

Pigeonhole principle

A surprisingly simple principle with varied applications. Also known as Dirichlet drawer principle.

For a positive integer k, if $k+1$ objects are placed into k boxes, then there is at least one box with two or more objects.

Note: This does not mean that every box contains at least one object. In fact, many boxes may be left empty.

Generalization: If N objects are placed in k boxes then there is at least one box containing at least $\left\lceil\frac{N}{k}\right\rceil$ objects.

Qn: If a drawer contains red, blue, green and black socks, how many socks should you pull out (without looking at the socks) so that you are guaranteed a pair (of some color)?

Sol: Note that if we are lucky we can get a pair by pulling two socks. However, in the worst case, we may pull out 4 socks and all of them may be of different colors. Thus if we pull out 5 or more socks, we will always be guaranteed a pair of some color.

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Try some examples.

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Try some examples. Say $1,3,6,7,8$. Yes, there is a pair $(3,6)$

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Try some examples. Say $1,3,6,7,8$. Yes, there is a pair $(3,6)$ and in fact another pair (1, 8).

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Try some examples. Say $1,3,6,7,8$. Yes, there is a pair $(3,6)$ and in fact another pair (1, 8).

Before you see the proof, think about what are the holes and what are the pigeons

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Try some examples. Say $1,3,6,7,8$. Yes, there is a pair $(3,6)$ and in fact another pair (1, 8).

Before you see the proof, think about what are the holes and what are the pigeons
Sol: Note that every integer from $1,2, \ldots, 8$ has a unique "partner" which ensures that their sum is 9 . Lets make four holes, one per pair. Now since we select 5 integers there is at least one hole in which both the elements of the pair are selected. This completes the proof.

Example 1

Qn: Consider the integers $1,2,3, \ldots, 8$ and let us select any 5 integers from this set. The goal is to show that there is a pair of integers that sum upto 9 .

Try some examples. Say $1,3,6,7,8$. Yes, there is a pair $(3,6)$ and in fact another pair (1, 8).

Before you see the proof, think about what are the holes and what are the pigeons
Sol: Note that every integer from $1,2, \ldots, 8$ has a unique "partner" which ensures that their sum is 9 . Lets make four holes, one per pair. Now since we select 5 integers there is at least one hole in which both the elements of the pair are selected. This completes the proof.

Ex: In our example selection, we saw two pairs. Can we strengthen our claim that there are always two pairs that sum upto 9? If yes, modify the proof. If no, construct a counter example.

Example 2

Qn: There are 51 houses on a street. Each house has a distinct number between 1000 and 1099, both inclusive. Show that there are at least two houses that have numbers which are consecutive integers.

Example 2

Qn: There are 51 houses on a street. Each house has a distinct number between 1000 and 1099, both inclusive. Show that there are at least two houses that have numbers which are consecutive integers.

Before you see the proof, think about what are the holes and what are the pigeons.

Example 2

Qn: There are 51 houses on a street. Each house has a distinct number between 1000 and 1099, both inclusive. Show that there are at least two houses that have numbers which are consecutive integers.

Before you see the proof, think about what are the holes and what are the pigeons.
Sol: There are 100 total addresses, lets have 50 holes so that each hole corresponds to two consecutive addresses. That is, 1000, 1001 are one hole and so on.

Example 2

Qn: There are 51 houses on a street. Each house has a distinct number between 1000 and 1099, both inclusive. Show that there are at least two houses that have numbers which are consecutive integers.

Before you see the proof, think about what are the holes and what are the pigeons.
Sol: There are 100 total addresses, lets have 50 holes so that each hole corresponds to two consecutive addresses. That is, 1000, 1001 are one hole and so on. Now since there are 51 houses, there is at least one hole containing two houses, implying that there are at least two houses with consecutive integers as their numbers. This completes the proof.

A clever application of the principle

Example 3: Increasing / decreasing subsequences

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.
- A subsequence of the above sequence is of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.
- A subsequence of the above sequence is of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.

For example $S_{1}=5,3,2,8$ is a subsequence of the above sequence. Another subsequence is $S_{2}=3,8,15$.

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.
- A subsequence of the above sequence is of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.

For example $S_{1}=5,3,2,8$ is a subsequence of the above sequence. Another subsequence is $S_{2}=3,8,15$.

- A subsequence is called strictly increasing if each term is larger than the one preceding it.
S_{1} is not strictly increasing, however S_{2} is strictly increasing.

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.
- A subsequence of the above sequence is of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.

For example $S_{1}=5,3,2,8$ is a subsequence of the above sequence. Another subsequence is $S_{2}=3,8,15$.

- A subsequence is called strictly increasing if each term is larger than the one preceding it.
S_{1} is not strictly increasing, however S_{2} is strictly increasing.
- A subsequence is called strictly decreasing if each term is smaller than the one preceding it.
S_{1} and S_{2} are both not strictly decreasing.

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.
- A subsequence of the above sequence is of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.

For example $S_{1}=5,3,2,8$ is a subsequence of the above sequence. Another subsequence is $S_{2}=3,8,15$.

- A subsequence is called strictly increasing if each term is larger than the one preceding it.
S_{1} is not strictly increasing, however S_{2} is strictly increasing.
- A subsequence is called strictly decreasing if each term is smaller than the one preceding it.
S_{1} and S_{2} are both not strictly decreasing.
Qn: Identify a decreasing subseq. in the given sequence.

Example 3: Increasing / decreasing subsequences

We are given a sequence of N distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

- In general the sequence is $a_{1}, a_{2}, \ldots, a_{N}$.
- A subsequence of the above sequence is of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq N$.

For example $S_{1}=5,3,2,8$ is a subsequence of the above sequence. Another subsequence is $S_{2}=3,8,15$.

- A subsequence is called strictly increasing if each term is larger than the one preceding it.
S_{1} is not strictly increasing, however S_{2} is strictly increasing.
- A subsequence is called strictly decreasing if each term is smaller than the one preceding it.
S_{1} and S_{2} are both not strictly decreasing.
Qn: Identify a decreasing subseq. in the given sequence. Does every sequence have an increasing as well as decreasing subsequence?

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large?

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.
- Is there a 4 length increasing subsequence?

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.
- Is there a 4 length increasing subsequence? Yes! 5, 8, 12, 15.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.
- Is there a 4 length increasing subsequence? Yes! 5, 8, 12, 15.
- Is there a 4 length deceasing subsequence?

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.
- Is there a 4 length increasing subsequence? Yes! 5, 8, 12, 15.
- Is there a 4 length deceasing subsequence? Yes! 5, 3, 2, 1 .

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.
- Is there a 4 length increasing subsequence? Yes! 5, 8, 12, 15.
- Is there a 4 length deceasing subsequence? Yes! 5, 3, 2, 1 .
- Finally, note the or. That is, we are content with either a large increasing subsequence or a large decreasing subsequence.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Our goal: To show that either a "large" increasing subsequence or a "large" decreasing subsequence exists.

Some remarks

- What is large? We say $n+1$ is large for an input sequence of length $n^{2}+1$.
- Note that in our example $n^{2}+1=3^{2}+1=10$ that is, we are interested in 4 length subsequences.
- Is there a 4 length increasing subsequence? Yes! 5, 8, 12, 15.
- Is there a 4 length deceasing subsequence? Yes! 5, 3, 2, 1 .
- Finally, note the or. That is, we are content with either a large increasing subsequence or a large decreasing subsequence.
- Note that if you have a monotonically increasing sequence as your input, you cannot find even a 2 length decreasing subsequence (forget large!).

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
Attempt a proof. If not pigeon hole principle, any other method.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
Attempt a proof. If not pigeon hole principle, any other method.
Do try a proof on your own else you will not appreciate the clever idea.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
Attempt a proof. If not pigeon hole principle, any other method.
Do try a proof on your own else you will not appreciate the clever idea.
Note that if a desired (inc.) subsequence exists, it must start at some a_{s} and has length say $i_{s} \geq n+1$. How about asking what is the longest inc. subsequence starting at every element?

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
Attempt a proof. If not pigeon hole principle, any other method.
Do try a proof on your own else you will not appreciate the clever idea.
Note that if a desired (inc.) subsequence exists, it must start at some a_{s} and has length say $i_{s} \geq n+1$. How about asking what is the longest inc. subsequence starting at every element?

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
Attempt a proof. If not pigeon hole principle, any other method.
Do try a proof on your own else you will not appreciate the clever idea.
Note that if a desired (inc.) subsequence exists, it must start at some a_{s} and has length say $i_{s} \geq n+1$. How about asking what is the longest inc. subsequence starting at every element?

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
Attempt a proof. If not pigeon hole principle, any other method.
Do try a proof on your own else you will not appreciate the clever idea.
Note that if a desired (inc.) subsequence exists, it must start at some a_{s} and has length say $i_{s} \geq n+1$. How about asking what is the longest inc. subsequence starting at every element?

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Side Question: How do we compute i_{k} and d_{k} algorithmically? It is not needed for this proof, but interesting on its own.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Lets write some i_{k}, d_{k} values for the example above.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Lets write some i_{k}, d_{k} values for the example above.

- $i_{1}=5$ since we have a 5 length increasing subsequence starting at $a_{1}=5$. The subsequence is $5,7,8,12,15$.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Lets write some i_{k}, d_{k} values for the example above.

- $i_{1}=5$ since we have a 5 length increasing subsequence starting at $a_{1}=5$. The subsequence is $5,7,8,12,15$. Further there is no 6 length increasing subsequence starting at a_{1}.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Lets write some i_{k}, d_{k} values for the example above.

- $i_{1}=5$ since we have a 5 length increasing subsequence starting at $a_{1}=5$. The subsequence is $5,7,8,12,15$. Further there is no 6 length increasing subsequence starting at a_{1}.
- $d_{1}=4$ since we have a 4 length decreasing subsequence starting at $a_{1}=5$. The subsequence is $5,3,2,1$.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Lets write some i_{k}, d_{k} values for the example above.

- $i_{1}=5$ since we have a 5 length increasing subsequence starting at $a_{1}=5$. The subsequence is $5,7,8,12,15$. Further there is no 6 length increasing subsequence starting at a_{1}.
- $d_{1}=4$ since we have a 4 length decreasing subsequence starting at $a_{1}=5$. The subsequence is $5,3,2,1$. Further there is no 5 length decreasing subsequence starting at a_{1}.

Example 3: Increasing / decreasing subsequences

We are given a sequence of $n^{2}+1$ distinct integers say as below.

$$
5,7,3,2,1,8,12,15,13,6
$$

We will associate two integers i_{k} and d_{k} with an element a_{k} in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Lets write some i_{k}, d_{k} values for the example above.

- $i_{1}=5$ since we have a 5 length increasing subsequence starting at $a_{1}=5$. The subsequence is $5,7,8,12,15$. Further there is no 6 length increasing subsequence starting at a_{1}.
- $d_{1}=4$ since we have a 4 length decreasing subsequence starting at $a_{1}=5$. The subsequence is $5,3,2,1$. Further there is no 5 length decreasing subsequence starting at a_{1}.
- Write down i_{2}, d_{2}.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

If our claim is false, each of i_{k} and d_{k} is at most n

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

If our claim is false, each of i_{k} and d_{k} is at most n (because if any one was $n+1$ we are done).

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

If our claim is false, each of i_{k} and d_{k} is at most n (because if any one was $n+1$ we are done).

The smallest value that i_{k} and d_{k} can take is 1 . Thus we have pairs (i_{k}, d_{k}) and possible values for each of them is $1, \ldots n$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

If our claim is false, each of i_{k} and d_{k} is at most n (because if any one was $n+1$ we are done).

The smallest value that i_{k} and d_{k} can take is 1 . Thus we have pairs (i_{k}, d_{k}) and possible values for each of them is $1, \ldots \mathrm{n}$. Thus we can form at most n^{2} pairs.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

If our claim is false, each of i_{k} and d_{k} is at most n (because if any one was $n+1$ we are done).

The smallest value that i_{k} and d_{k} can take is 1 . Thus we have pairs (i_{k}, d_{k}) and possible values for each of them is $1, \ldots n$. Thus we can form at most n^{2} pairs.

Here is where we use pigeon hole principle.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence. We will associate two integers with every element in the sequence. Those are i_{k} and d_{k}.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

If our claim is false, each of i_{k} and d_{k} is at most n (because if any one was $n+1$ we are done).

The smallest value that i_{k} and d_{k} can take is 1 . Thus we have pairs (i_{k}, d_{k}) and possible values for each of them is $1, \ldots \mathrm{n}$. Thus we can form at most n^{2} pairs.

Here is where we use pigeon hole principle.
However, we have $n^{2}+1$ elements in the input sequence. Thus there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
We will associate two integers i_{k} and d_{k} with every element in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

We have established that there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
We will associate two integers i_{k} and d_{k} with every element in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

We have established that there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$. Now, recall elements are distinct hence either $a_{s}<a_{t}$ or $a_{s}>a_{t}$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.
We will associate two integers i_{k} and d_{k} with every element in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

We have established that there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$.
Now, recall elements are distinct hence either $a_{s}<a_{t}$ or $a_{s}>a_{t}$.

- If $a_{s}<a_{t}$, then we can take the increasing sequence starting at a_{t} and append a_{s} to that to improve $i_{s}=i_{t}+1$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

We will associate two integers i_{k} and d_{k} with every element in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

We have established that there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$. Now, recall elements are distinct hence either $a_{s}<a_{t}$ or $a_{s}>a_{t}$.

- If $a_{s}<a_{t}$, then we can take the increasing sequence starting at a_{t} and append a_{s} to that to improve $i_{s}=i_{t}+1$.
- On the other hand, if $a_{s}>a_{t}$ we can improve the length of the decreasing sequence at a_{s} by prepending a_{s} to the d_{t} length decreasing sequence.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

We will associate two integers i_{k} and d_{k} with every element in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

We have established that there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$. Now, recall elements are distinct hence either $a_{s}<a_{t}$ or $a_{s}>a_{t}$.

- If $a_{s}<a_{t}$, then we can take the increasing sequence starting at a_{t} and append a_{s} to that to improve $i_{s}=i_{t}+1$.
- On the other hand, if $a_{s}>a_{t}$ we can improve the length of the decreasing sequence at a_{s} by prepending a_{s} to the d_{t} length decreasing sequence.
Thus, we cannot have a pair a_{s} and a_{t} with $i_{s}=i_{t}$ and $d_{s}=d_{t}$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

We will associate two integers i_{k} and d_{k} with every element in the sequence.

- i_{k} denotes the longest increasing subsequence starting at a_{k}.
- d_{k} denotes the longest decreasing subsequence starting at a_{k}.

We have established that there must be two elements a_{s} and a_{t} such that $i_{s}=i_{t}$ and $d_{s}=d_{t}$. Further note that we can assume a_{s} appears before a_{t} in the sequence. That is, $s<t$. Now, recall elements are distinct hence either $a_{s}<a_{t}$ or $a_{s}>a_{t}$.

- If $a_{s}<a_{t}$, then we can take the increasing sequence starting at a_{t} and append a_{s} to that to improve $i_{s}=i_{t}+1$.
- On the other hand, if $a_{s}>a_{t}$ we can improve the length of the decreasing sequence at a_{s} by prepending a_{s} to the d_{t} length decreasing sequence.
Thus, we cannot have a pair a_{s} and a_{t} with $i_{s}=i_{t}$ and $d_{s}=d_{t}$.
Note that this was true because all of i_{k} and d_{k} were at most n. However, there must be at least one which is $\geq n+1$.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

Remarks

- This is a non-trivial proof using pigeon hole principle.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

Remarks

- This is a non-trivial proof using pigeon hole principle.
- Revisit the proof and make sure you understand it completely.

Example 3: Increasing / decreasing subsequences

Theorem: Given any $n^{2}+1$ length sequence of distinct integers there is either an $n+1$ strictly increasing subsequence or an $n+1$ strictly decreasing subsequence.

Remarks

- This is a non-trivial proof using pigeon hole principle.
- Revisit the proof and make sure you understand it completely.
- Read Examples 11, 12, 13 of 6.2 [KR]

Summary

- Pigeonhole principle and its generalization.
- Simple and interesting applications.
- A non-trivial and elegant application to increasing / decreasing subsequences.
- Reference: Section 6.2 [KR].

