Counting

CS1200, CSE IIT Madras

Meghana Nasre

March 31, 2020

Counting (without counting)

- Basic Counting Techniques \checkmark
- Pigeon Hole Principle (revisited) \checkmark
- Permutations and Combinations \checkmark
- Combinatorial Identities

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.
We now see a simple identity and a technique called combinatorial proof.

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.
We now see a simple identity and a technique called combinatorial proof.
Claim: For any positive integer n and $0 \leq r \leq n$, we have

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.
We now see a simple identity and a technique called combinatorial proof.
Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.
We now see a simple identity and a technique called combinatorial proof.
Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Note that the claim can be easily verified by substituting the formula. We show two proofs of the same without using the formula.

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.
We now see a simple identity and a technique called combinatorial proof.
Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Note that the claim can be easily verified by substituting the formula. We show two proofs of the same without using the formula.

- Double Counting proof: Use counting arguments to show that both sides of the identity count the same objects but in two different ways.

Combinations again

We have seen $\binom{n}{r}$ denotes the number of r-sized subsets of a n-sized set.
We now see a simple identity and a technique called combinatorial proof.
Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Note that the claim can be easily verified by substituting the formula. We show two proofs of the same without using the formula.

- Double Counting proof: Use counting arguments to show that both sides of the identity count the same objects but in two different ways.
- Bijective proof: Establish a bijection (one-to-one onto map) between the objects counted by two sides of the identity.

A double counting proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We give a double counting proof first. Let S be a set with size n and $A \subseteq S$ where $|A|=r$.

A double counting proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We give a double counting proof first. Let S be a set with size n and $A \subseteq S$ where $|A|=r$.

- By definition, $\binom{n}{r}$ is the number of subsets of S containing r elements.

A double counting proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We give a double counting proof first. Let S be a set with size n and $A \subseteq S$ where $|A|=r$.

- By definition, $\binom{n}{r}$ is the number of subsets of S containing r elements.
- Consider the subset A.

A double counting proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We give a double counting proof first. Let S be a set with size n and $A \subseteq S$ where $|A|=r$.

- By definition, $\binom{n}{r}$ is the number of subsets of S containing r elements.
- Consider the subset A. Note that A can be determined (uniquely) by specifying the elements which are not in A. That is, by specifying the subset \bar{A}.

A double counting proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We give a double counting proof first. Let S be a set with size n and $A \subseteq S$ where $|A|=r$.

- By definition, $\binom{n}{r}$ is the number of subsets of S containing r elements.
- Consider the subset A. Note that A can be determined (uniquely) by specifying the elements which are not in A. That is, by specifying the subset \bar{A}.
- Since \bar{A} contains $n-r$ elements (as A contains r elements), there are exactly $\binom{n}{n-r}$ subsets of size r.

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n.

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n. Let T be the set of subsets of S of size r. Let Q be the set of subsets of size $n-r$.

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n. Let T be the set of subsets of S of size r. Let Q be the set of subsets of size $n-r$.

- Let us define a function f from T to Q.

$$
f(A)=S \backslash A=\bar{A}
$$

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n. Let T be the set of subsets of S of size r. Let Q be the set of subsets of size $n-r$.

- Let us define a function f from T to Q.

$$
f(A)=S \backslash A=\bar{A}
$$

- Verify that f is one-to-one and onto.

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n. Let T be the set of subsets of S of size r. Let Q be the set of subsets of size $n-r$.

- Let us define a function f from T to Q.

$$
f(A)=S \backslash A=\bar{A}
$$

- Verify that f is one-to-one and onto.
- Thus, f defines a bijection between the set T and Q, the sizes of which are given by the left hand side and right hand side of the identity we wish to prove.

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n. Let T be the set of subsets of S of size r. Let Q be the set of subsets of size $n-r$.

- Let us define a function f from T to Q.

$$
f(A)=S \backslash A=\bar{A}
$$

- Verify that f is one-to-one and onto.
- Thus, f defines a bijection between the set T and Q, the sizes of which are given by the left hand side and right hand side of the identity we wish to prove.
- Since we have established a bijection between two finite sets, they have the same number of elements.

A bijective proof

Claim: For any positive integer n and $0 \leq r \leq n$, we have

$$
\binom{n}{r}=\binom{n}{n-r}
$$

We now give a bijective proof. Let S be a set of size n. Let T be the set of subsets of S of size r. Let Q be the set of subsets of size $n-r$.

- Let us define a function f from T to Q.

$$
f(A)=S \backslash A=\bar{A}
$$

- Verify that f is one-to-one and onto.
- Thus, f defines a bijection between the set T and Q, the sizes of which are given by the left hand side and right hand side of the identity we wish to prove.
- Since we have established a bijection between two finite sets, they have the same number of elements.

This completes the proof.

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

$$
(x+y)^{n}=
$$

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

To see the correctness, we note the following.

- The terms in the product are of the form $x^{n-j} y^{j}$ for $0 \leq j \leq n$.

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

To see the correctness, we note the following.

- The terms in the product are of the form $x^{n-j} y^{j}$ for $0 \leq j \leq n$.
- The number of terms of the form $x^{n-j} y^{j}$ is exactly selecting $(n-j) x$ s from the n sums or equivalently selecting $j y$'s from the n sums.

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

To see the correctness, we note the following.

- The terms in the product are of the form $x^{n-j} y^{j}$ for $0 \leq j \leq n$.
- The number of terms of the form $x^{n-j} y^{j}$ is exactly selecting $(n-j) x$ s from the n sums or equivalently selecting $j y$'s from the n sums.
- Thus the coefficient of $x^{n-j} y^{j}$ is exactly $\binom{n}{n-j}$ which is also equal to $\binom{n}{j}$.

Binomial Theorem and its applications

We now revisit the familiar binomial theorem and see interesting applications.
Binomial Theorem: Let x and y be variables and n be a positive integer.

$$
(x+y)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
$$

To see the correctness, we note the following.

- The terms in the product are of the form $x^{n-j} y^{j}$ for $0 \leq j \leq n$.
- The number of terms of the form $x^{n-j} y^{j}$ is exactly selecting $(n-j) x$ s from the n sums or equivalently selecting $j y$'s from the n sums.
- Thus the coefficient of $x^{n-j} y^{j}$ is exactly $\binom{n}{n-j}$ which is also equal to $\binom{n}{j}$.

Note that this is a combinatorial proof.

Some corollaries

Ex: Prove the following:

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

$$
\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots
$$

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

Some corollaries

Ex: Prove the following:

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

$$
\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\ldots
$$

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

For each of them give a proof via

- Algebraic manipulation
- A combinatorial argument.

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

We give a double counting proof.

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

We give a double counting proof. Let S be a set of n elements. We consider counting the pairs of the form (x, A) where A is a subset of S and $|A|=k$ and $x \in A$.

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

We give a double counting proof. Let S be a set of n elements. We consider counting the pairs of the form (x, A) where A is a subset of S and $|A|=k$ and $x \in A$.

- To see that the left hand side of the identity counts this number, we note that we can select a subset of k size in $\binom{n}{k}$ ways. Once the subset is selected, there are k choices for the item x. Thus the left hand side is justified.

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

We give a double counting proof. Let S be a set of n elements. We consider counting the pairs of the form (x, A) where A is a subset of S and $|A|=k$ and $x \in A$.

- To see that the left hand side of the identity counts this number, we note that we can select a subset of k size in $\binom{n}{k}$ ways. Once the subset is selected, there are k choices for the item x. Thus the left hand side is justified.
- Another way to select the pair (x, A) is to first select an element x from S. This can be done in n ways.

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

We give a double counting proof. Let S be a set of n elements. We consider counting the pairs of the form (x, A) where A is a subset of S and $|A|=k$ and $x \in A$.

- To see that the left hand side of the identity counts this number, we note that we can select a subset of k size in $\binom{n}{k}$ ways. Once the subset is selected, there are k choices for the item x. Thus the left hand side is justified.
- Another way to select the pair (x, A) is to first select an element x from S. This can be done in n ways. Once x is selected, we wish to select a k sized subset containing x. We have only $n-1$ remaining elements from which we can select a $k-1$ sized subset

Solution to one of the exercises

For $1 \leq k \leq n$

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

We give a double counting proof. Let S be a set of n elements. We consider counting the pairs of the form (x, A) where A is a subset of S and $|A|=k$ and $x \in A$.

- To see that the left hand side of the identity counts this number, we note that we can select a subset of k size in $\binom{n}{k}$ ways. Once the subset is selected, there are k choices for the item x. Thus the left hand side is justified.
- Another way to select the pair (x, A) is to first select an element x from S. This can be done in n ways. Once x is selected, we wish to select a k sized subset containing x. We have only $n-1$ remaining elements from which we can select a $k-1$ sized subset (recall, x is already in the set A). Thus, we have $\binom{n-1}{k-1}$ ways of selecting the set A containing x.

Two important identities

Pascal's Identity

For two positive integers n and k, where $n \geq k$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Pascal's Identity

For two positive integers n and k, where $n \geq k$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

You should try a proof by algebraic manipulation.

Pascal's Identity

For two positive integers n and k, where $n \geq k$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

You should try a proof by algebraic manipulation.
We give a combinatorial proof. The LHS is clearly the number of subsets of size k of an $n+1$ sized set.

Pascal's Identity

For two positive integers n and k, where $n \geq k$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

You should try a proof by algebraic manipulation.
We give a combinatorial proof. The LHS is clearly the number of subsets of size k of an $n+1$ sized set. To justify that right hand side counts exactly the same, let x be some element of the $n+1$ sized set. The k sized subsets either contain x or do not contain x.

Pascal's Identity

For two positive integers n and k, where $n \geq k$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

You should try a proof by algebraic manipulation.
We give a combinatorial proof. The LHS is clearly the number of subsets of size k of an $n+1$ sized set. To justify that right hand side counts exactly the same, let x be some element of the $n+1$ sized set. The k sized subsets either contain x or do not contain x.

- The number of subsets that contain x is $\binom{n}{k-1}$. Note that x is selected and therefore we have only n elements to select the $k-1$ elements from.

Pascal's Identity

For two positive integers n and k, where $n \geq k$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

You should try a proof by algebraic manipulation.
We give a combinatorial proof. The LHS is clearly the number of subsets of size k of an $n+1$ sized set. To justify that right hand side counts exactly the same, let x be some element of the $n+1$ sized set. The k sized subsets either contain x or do not contain x.

- The number of subsets that contain x is $\binom{n}{k-1}$. Note that x is selected and therefore we have only n elements to select the $k-1$ elements from.
- The number of subsets that do not contain x is $\binom{n}{k}$, since we have n elements left (excluding x) to choose from and all of k elements to select.

Vandermonde's Identity

For three non-negative integers m, n, r where r is at most minimum of m and n, we have

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}
$$

Vandermonde's Identity

For three non-negative integers m, n, r where r is at most minimum of m and n, we have

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}
$$

- View the LHS as selecting r items from the union of two sets one containing m items and another containing n items.

Vandermonde's Identity

For three non-negative integers m, n, r where r is at most minimum of m and n, we have

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}
$$

- View the LHS as selecting r items from the union of two sets one containing m items and another containing n items.
- Ex: Interpret the RHS appropriately.

An example

An example

We show a useful application of the identities discussed.

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n).

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up.

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.
Take an example instance of $(3,2)$ grid

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.
Take an example instance of $(3,2)$ grid

- A possible path could be

$$
(0,0) \rightarrow(1,0), \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,1) \rightarrow(3,2)
$$

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.
Take an example instance of $(3,2)$ grid

- A possible path could be $(0,0) \rightarrow(1,0), \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,1) \rightarrow(3,2)$
The same path can be written as R, U, R, R, U.
R denotes a right move, U denotes a move upwards.

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.
Take an example instance of $(3,2)$ grid

- A possible path could be $(0,0) \rightarrow(1,0), \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,1) \rightarrow(3,2)$
The same path can be written as R, U, R, R, U.
R denotes a right move, U denotes a move upwards.
- Write down another path in the above two ways.

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.
Take an example instance of $(3,2)$ grid

- A possible path could be $(0,0) \rightarrow(1,0), \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,1) \rightarrow(3,2)$
The same path can be written as R, U, R, R, U.
R denotes a right move, U denotes a move upwards.
- Write down another path in the above two ways.
- What are the properties of any valid path?

An example

We show a useful application of the identities discussed.
Qn: We are given an $m \times n$ grid starting at $(0,0)$ and ending at (m, n). Assume that we are at $(0,0)$ and would like to reach (m, n). The goal is to compute the number of distinct paths. Each path is made up distinct steps and a step is either a move one unit right or a move one unit up. Note that you cannot move left or down.
Take an example instance of $(3,2)$ grid

- A possible path could be

$$
(0,0) \rightarrow(1,0), \rightarrow(1,1) \rightarrow(2,1) \rightarrow(3,1) \rightarrow(3,2)
$$

The same path can be written as R, U, R, R, U.
R denotes a right move, U denotes a move upwards.

- Write down another path in the above two ways.
- What are the properties of any valid path?

Any path must contain exactly m Rs and n Us.
Now write down your answer for the number of distinct paths.

Summary

- A new technique of proving identities.
- Gives insight rather than only algebriac manipulations.
- Important Identities like the Pascal's Identity and Vandermonde's Identity.
- References: Section 6.4[KR]

