
CS2700: Programming and Data Structures

July Nov 2021
C Slot; Slots: Mon (10.00am – 10.50am); Tue (9.00am – 9.50am);

Wed (8.00am – 8.50am); Fri (12.00pm – 12.50pm)
Meghana Nasre

Email: meghana@iitm.ac.in

Updated on August 11, 2021

1 Course objectives

The objective of the course is to teach programming
(with an emphasis on problem solving) and introduce el-
ementary data structures. The student should, at a rudi-
mentary level, be able to prove correctness (loop invari-
ants, conditioning, etc) and analyze efficiency (using the
‘O’ notation).

2 Learning Outcomes

• Design correct programs to solve problems.

• Choose efficient data structures and apply them to
solve problems.

• Analyze the efficiency of programs based on time
complexity.

• Prove the correctness of a program using loop in-
variants, pre-conditions and post-conditions in pro-
grams.

3 Mode of Teaching

Live Lectures which are also recorded. The lectures are
conducted on Cisco Webex.

4 Textbooks

Data Structures and Algorithm Analysis in C / C++ by
Mark Allen Weiss.

5 Course Requirements

You are required to attend all the lectures. Class partici-
pation is strongly encouraged to demonstrate an appro-
priate level of understanding of the material being dis-

cussed in the class. Regular feedback from the class re-
garding the lectures will be very much appreciated.

6 Planned Syllabus

• Review of Problem Solving using computers, Ab-
straction, Elementary Data Types. Algorithm
design- Correctness via Loop invariants as a way
of arguing correctness of programs, preconditions,
post conditions associated with a statement.

• Complexity and Efficiency via model of compu-
tation (notion of time and space), mathematical
preliminaries, Elementary asymptotics (big-oh, big-
omega, and theta notations).

• ADT Array – searching and sorting on arrays:Linear
search, binary search on a sorted array. Bubble sort,
Insertion sort, Merge Sort and analysis; Emphasis
on the comparison based sorting model. Counting
sort, Radix sort, bucket sort.

• ADT Linked Lists, Stacks, Queues:List manipula-
tion, insertion, deletion, searching a key, reversal of
a list, use of recursion to reverse/search. Doubly
linked lists and circular linked lists.

• Stacks and queues as dynamic data structures im-
plemented using linked lists. Analyse the ADT op-
erations when implemented using arrays. ADT Bi-
nary Trees:Tree representation, traversal, applica-
tion of binary trees in Huffman coding. Introduc-
tion to expression trees: traversal vs post/pre/infix
notation. Recursive traversal and other tree param-
eters (depth, height, number of nodes etc.)

• ADT Dictionary: Binary search trees, balanced bi-
nary search trees - AVL Trees. Hashing - collisions,
open and closed hashing, properties of good hash
functions.

• ADT Priority queues: Binary heaps with application
to in-place sorting

1



• Graphs: Representations (Matrix and Adjacency
List), basic traversal techniques: Depth First Search
+ Breadth First Search (Stacks and Queues)

7 Tentative Grading Policy

The following allocation of points is tentative.

Quiz 1 : Sept 4, 2021, Saturday 25%
Quiz 2 : Oct 9, 2021, Saturday 25%
Quiz 3 : Nov 21, 2021, Sunday 25%
Tutorials (6 : best 5 out of 6): 25%
(Aug 16, Aug 27, Sept 17, Oct 1, Oct 22, Nov 5).

All tutorials are in class. The tutorial dates may be
moved and announced based on a logical break in the
topics covered.

8 Academic Honesty

Academic honesty is expected from each student partic-
ipating in the course. NO sharing (willing, unwilling,
knowing, unknowing) of assignment code between stu-
dents, submission of downloaded code (from the Inter-
net, geeksforgeeks, or anywhere else) is allowed.

Academic violations will be handled by IITM Senate
Discipline and Welfare (DISCO) Committee. Typically,
the first violation instance will result in ZERO marks for
the corresponding component of the Course Grade and
a drop of one- penalty in overall course grade. The sec-
ond instance of code copying will result in a ’U’ Course
Grade and/or other penalties. The DISCO Committee
can also impose additional penalties.

2


