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Abstract. Given a bipartite graph G = (A ∪ B, E) where each vertex ranks its neighbors
in a strict order of preference, the problem of computing a stable matching is classical and well
studied. A stable matching has size at least 1

2
|Mmax|, where Mmax is a maximum size matching in

G, and there are simple examples where this bound is tight. It is known that a stable matching is a
minimum size popular matching. A matching M is said to be popular if there is no matching where
more vertices are better off than in M . In this paper we show the first linear time algorithm for
computing a maximum size popular matching in G. A maximum size popular matching is guaranteed
to have size at least 2

3
|Mmax|, and this bound is tight. We then consider the following problem: is

there a maximum size matching M∗ that is popular within the set of maximum size matchings in G,
that is, |M∗| = |Mmax| and there is no maximum size matching that is more popular than M∗? We
show that such a matching M∗ always exists and can be computed in O(mn0) time, where m = |E|
and n0 = min(|A|, |B|). Though the above matching M∗ is popular restricted to the set of maximum
size matchings, in the entire set of matchings in G, its unpopularity factor could be as high as n0−1.
On the other hand, a maximum size popular matching could be of size only 2

3
|Mmax|. In between

these two extremes, we show there is an entire spectrum of matchings: for any integer k, where
2 ≤ k ≤ n0, there is a matching Mk in G of size at least k

k+1
|Mmax| whose unpopularity factor is at

most k − 1. Also, such a matching Mk can be computed in O(km) time by a simple generalization
of our maximum size popular matching algorithm.
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1. Introduction. An instance of the stable marriage problem is a bipartite
graph G = (A ∪ B, E) where each vertex ranks its neighbors in a strict order of
preference. Every vertex u ∈ A ∪ B seeks to be matched to one of its neighbors.
Preference lists can be incomplete, which means that a vertex may be adjacent to
only some of the vertices on the other side. Also, preference lists are symmetric, i.e.,
a belongs to b’s list if and only if b belongs to a’s list, for any pair of vertices a and b.
It is customary to refer to the vertices in A and B as men and women, respectively.
We will also refer to G as a bipartite graph with 2-sided strict preference lists. We
assume that no vertex is isolated, so m ≥ n/2, where |E| = m and |A ∪ B| = n.

A matching M is a set of edges, no two of which share an endpoint. For any
vertex x that is matched in M , let M(x) denote x’s partner in M . An edge (u, v) is a
blocking edge to M if both u and v prefer each other to their respective assignments
in M , i.e., u is either unmatched in M or prefers v to M(u) and, similarly, v is
either unmatched in M or prefers u to M(v). A matching M is stable if M has no
blocking edges. The existence of stable matchings in every instance G = (A ∪ B, E)
and the Gale–Shapley algorithm [4] for computing a stable matching are classical
results in graph algorithms. Though the original Gale–Shapley algorithm assumed
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A SIZE-POPULARITY TRADEOFF 53

that all preference lists are complete, it is straightforward to generalize this algorithm
to incomplete lists [7].

A stable matching has usually been considered the best way of matching vertices
in G = (A ∪ B, E). However, stability is a very strong condition, and it has been
shown that all stable matchings in G have the same size and they all leave the same
vertices unmatched [5]. It is easy to see that every stable matching S has size at least
1
2 |Mmax|, where Mmax is a maximum matching in G—otherwise, there would be an
edge (a, b) ∈ Mmax \ S such that S leaves a and b unmatched; in other words, (a, b)
would be a blocking edge to S.

There are simple examples where this bound is tight. Consider the following
instance with A = {x1, x2} and B = {y0, y1}, and let the preference lists be as shown
in Figure 1.

x1 y1 y0

x2 y1

y0 x1

y1 x1 x2

Fig. 1. Here x1’s top choice is y1 and second choice is y0, while x2 has a single neighbor y1.
Similarly, the vertex y0 has a single neighbor x1, while y1’s top choice is x1 and second choice is x2.

The matching S = {(x1, y1)} is the only stable matching here, while there exists
a perfect matching Mmax = {(x1, y0), (x2, y1)}. Thus |S| = 1

2 |Mmax| in this instance.
This example can be easily generalized to 4t vertices, for any integer t ≥ 1, where a
stable matching has size t while the instance admits a perfect matching of size 2t.

There are many applications where it is desirable to have matchings whose size is
larger than that of a stable matching—for instance, in allocating projects to students,
where the total absence of blocking edges is not necessary and a more relaxed notion of
stability suffices. The notion of popularity captures a natural relaxation of the notion
of stability: blocking edges are permitted in a popular matching M ; nevertheless,
M has overall stability. That is, in popular matchings, pairwise stability gets replaced
by global stability.

1.1. Popular matchings. For any two matchings M0 and M1, we say that
vertex u prefers M0 to M1 if u is better off in M0 than in M1, i.e., u is either matched
in M0 and unmatched in M1 or matched in both and prefers M0(u) to M1(u). Let
φ(M0,M1) equal the number of vertices that prefer M0 to M1. We say that M0 is
more popular than M1 if φ(M0,M1) > φ(M1,M0).

Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for all match-
ings M ′.

Thus a matching M is popular if there is no matching that is more popular than
M . Popularity captures global stability since there is no matching where more vertices
are better off than in M , where M is a popular matching. Gärdenfors [6] introduced
the notion of popularity in the context of stable matchings. Every stable matching
is popular: when comparing a stable matching S to any matching M ′, note that for
any edge e ∈ M ′, both endpoints of e cannot prefer M ′ to S—if they do, then it
contradicts the stability of S. Hence if one endpoint of e prefers M ′ to S, then the
other endpoint has to prefer S to M ′. Thus the number of votes in favor of M ′ is
at most the number of votes in favor of S, and hence M ′ cannot be more popular
than S.

Since stable matchings always exist in a stable marriage instance, popular match-
ings also always exist in a stable marriage instance. In the example described in
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54 TELIKEPALLI KAVITHA

Figure 1, it is easy to see that Mmax = {(x1, y0), (x2, y1)} is also popular. Thus there
are instances where a maximum size popular matching can be twice as large as a
stable matching. It has been shown that a stable matching is a minimum size popular
matching [8].

So in problems where we are ready to substitute stability with popularity for the
sake of obtaining a matching of larger size, the desired matching is a maximum size
popular matching. The only polynomial time algorithm known for computing such a
matching is an O(mn0) algorithm from [8], where n0 = min(|A|, |B|) and m = |E|.
We show the following result here.

Theorem 1. A maximum size popular matching in G = (A∪ B, E) with 2-sided
strict preference lists can be computed in O(m) time, where m = |E|.

Thus we have a linear time algorithm for computing a maximum size popular
matching in a stable marriage instance G = (A ∪ B, E), so the complexity of com-
puting a maximum size popular matching is the same as that of computing a stable
matching. The size of a maximum size popular matching need not be better than
2
3 |Mmax|, as shown by this example. Let A = {a1, a2, a3} and B = {b0, b1, b2}, and
the preference lists are given in Figure 2.

a1 b1 b0

a2 b2 b1

a3 b2

b0 a1

b1 a1 a2

b2 a2 a3

Fig. 2. An example where a maximum size popular matching has size 2
3
|Mmax|.

There is only one popular matching in the above instance, {(a1, b1), (a2, b2)}.
However, the instance admits a perfect matching {(a1, b0), (a2, b1), (a3, b2)} (see Fig-
ure 3). The above example can be easily generalized to 6t vertices, for any integer
t ≥ 1, by making t copies of the above graph with no edges between any of the copies,
so that the maximum size popular matching has size 2t while the instance admits a
perfect matching of size 3t.

b0 a1 b1 a2 b2 a3

1 11 11 1 2222

Fig. 3. The bold edges form the maximum size popular matching and the dashed edges form
a perfect matching. The preferences of the vertices are indicated on the edges: 1 is the top choice
while 2 is the second choice.

In some applications, for instance, assigning training positions to trainees, we
cannot compromise on the size of the matching, so a maximum size popular matching
may not always be the best matching in such applications. Here the matching has
to be of maximum cardinality in G, and among such matchings, we want a “best”
matching. So what we seek here is a maximum matching M∗ such that for any
maximum matching Mmax, we have φ(M∗,Mmax) ≥ φ(Mmax,M

∗). In other words,
there is no maximum matching where more vertices are better off than in M∗. It is
not clear whether such a matching M∗ always exists. Let M be the set of maximum
matchings in G. We show the following result.

Theorem 2. In any bipartite graph G = (A∪B, E) with 2-sided strict preference
lists, there always exists a maximum matching M∗ that is popular within the set M
of maximum matchings, and M∗ can be computed in O(mn0) time, where m = |E|
and n0 = min(|A|, |B|).
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Though M∗ is popular within the set M, note that M∗ could be quite unpopular
in the set of all matchings in G. In order to measure the unpopularity of a matching,
we use the following definition from [15]. In any instance G, the function Δ measures
how much one matching (say, M1) can be more popular than another (say, M0):

Δ(M0,M1) =
φ(M1,M0)

φ(M0,M1)
if φ(M0,M1) �= 0.

Otherwise (i.e., φ(M0,M1) = 0), define Δ(M0,M1) to be ∞.
Let X denote the set of all matchings in G. The unpopularity factor ofM , denoted

by u(M), is defined as

u(M) = max
M ′∈X\{M}

Δ(M,M ′).

A matching M is popular if and only if u(M) ≤ 1. We show in section 3 that
u(M∗) ≤ n0 − 1, where n0 = min(|A|, |B|), and the following simple example shows
that this bound is tight.

This is a generalization of the instance on six vertices given in Figure 3. There are
2n0 vertices here, where A = {a1, . . . , an0} and B = {b0, . . . , bn0−1} (see Figure 4).
For each 1 ≤ i ≤ n0 − 1, the preference list of ai is bi (top choice) followed by bi−1

(second choice). The vertex an0 has only one neighbor, which is bn0−1. The vertex b0
has only one neighbor, which is a1. For each 1 ≤ i ≤ n0 − 1, the preference list of bi
is ai (top choice) followed by ai+1 (second choice).

b0 a1 b1 an0−1 bn0−1 an0

11 1 1 11 22

Fig. 4. The example in Figure 3 extended to 2n0 vertices.

There is only one maximum size matching here, which is the perfect matching
M∗ = ∪n0−1

i=0 {(ai+1, bi)}. Consider the matching M = {(ai, bi), where 1 ≤ i ≤ n0−1}.
We have φ(M,M∗) = 2n0 − 2 since all the 2n0 − 2 vertices ai, bi for i = 1, . . . , n0 − 1
preferM toM∗. The two vertices b0 and an0 preferM

∗ toM since they are unmatched
in M but matched in M∗. So φ(M∗,M) = 2. Thus Δ(M∗,M) = n0 − 1, so u(M∗) ≥
n0 − 1.

Summarizing, the solution given by Theorem 1 is a maximum size matching within
the set of popular matchings, and the solution given by Theorem 2 is a matching of
size |Mmax| that is popular within the set of maximum matchings. The size of the
former matching could be as low as 2

3 |Mmax|, while the unpopularity factor of the
latter matching could be as high as n0 − 1. It is natural to ask whether there are
matchings sandwiched in size and popularity between these two extremes. We show
that there is an entire spectrum of such matchings and that these can be computed
efficiently.

Theorem 3. For every integer k ≥ 2, there exists a matching Mk in G =
(A ∪ B, E) such that |Mk| ≥ k

k+1 |Mmax| and u(Mk) ≤ k − 1; moreover, no matching
whose size is at least |Mk| is more popular than Mk. Also, Mk can be computed in
O(km) time, where m = |E|.

When k = 2, Theorem 3 promises a matching M2 such that u(M2) ≤ 1, i.e.,
M2 is popular. It will be shown in section 2 that this matching M2 is a maximum
size popular matching—thus this is the matching described in Theorem 1. When the
parameter k = n0, Theorem 3 promises a matching Mn0 of size |Mmax| that is popular
among maximum size matchings—thus this is the matching described in Theorem 2.
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1.2. Background and related results. Several variants of the popular match-
ings problem have been studied in the model where only vertices of A have preferences
while vertices of B have no preferences [1, 10, 11, 13, 14, 15, 16, 17]. This is the model
of 1-sided preference lists. Here each edge e = (a, b) in G has a rank associated with it
(the rank that a assigns to b) and it is only vertices in A that cast their votes. There
are simple examples in this model that admit no popular matching. Abraham et al.
[1] gave efficient algorithms for determining whether a given instance admits a popular
matching or not and, if so, for computing one of maximum size. McCutchen [15] intro-
duced two measures of unpopularity, unpopularity factor and unpopularity margin,
and he showed that the problem of computing a matching in the domain of 1-sided
preference lists that minimized either of these measures is NP-hard.

Gärdenfors [6], who introduced the notion of popular matchings, considered this
problem in the domain of 2-sided preference lists, i.e., in an instance of the stable
marriage problem. When ties are allowed in preference lists, it was shown by Biró,
Irving, and Manlove [2] that the problem of computing an arbitrary popular matching
in a stable marriage instance is NP-hard. Biró, Manlove, and Mittal [3] showed that
the problem of computing a maximum size matching with the minimum number of
blocking edges in a stable marriage instance is NP-hard to approximate to within
n1−ε
0 , for any ε > 0, where n0 = min(|A|, |B|).

As mentioned earlier, the first polynomial time algorithm for computing a maxi-
mum size popular matching in a stable marriage instance with strict preference lists
was given in [8]. The running time of this algorithm is O(mn0). Here a set L ⊂ A∪B
is computed in an iterative manner such that when the Gale–Shapley stable matching
algorithm is run with vertices of L proposing to those in R = (A∪B)\L, every vertex
in R gets matched and no neighbor in L is preferred to its partner by any u ∈ L.
It was shown that such a matching has to be a maximum size popular matching.
In order to construct an L that satisfies the above properties, this algorithm may
take Θ(n0) iterations, where n0 = min(|A|, |B|). Thus there are instances where this
algorithm takes Θ(mn0) time.

2. A linear time algorithm for a maximum size popular matching. Our
input here is a bipartite graph G = (A∪ B, E) where each vertex ranks its neighbors
in a strict order of preference. We assume without loss of generality that |A| ≤ |B|,
so n0 = min(|A|, |B|) = |A|.

Our algorithm partitions the vertex set A ∪ B into two layers: bottom and top.
Initially the top layer is empty. At any point in time, the vertices of A (call them
men) in the top layer are there because they could not find partners by being in the
bottom layer. In this algorithm, the top layer men get preferential treatment—in each
iteration, the top layer men first make their proposals and the vertices of B (call them
women) that they seek are confined to the top layer. Only the women not sought
after by them are available to the bottom layer men.

So in each iteration, the Gale–Shapley stable matching algorithm is first run with
the top layer men proposing and all the women who received proposals disposing; let
S1 denote this matching. All the women who are matched in S1 move to the top
layer. The men in the bottom layer then run the stable matching algorithm with the
women left in the bottom layer to yield a matching S0. See Figure 5. If all the bottom
layer men get matched in S0, then S1 ∪ S0 is returned. Else the unmatched men in
the bottom layer are promoted to the top layer and the next iteration begins.

Suppose we run the above algorithm on the example given in Figure 1 where
x1 and y1 are each other’s top choices while x2’s only neighbor is y1 and y0’s only
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A1
B1

A0 B0

A B

S1

S0

Fig. 5. Let A1 (similarly, A0) denote the set of men in the top (resp., bottom) layer, and let
B1 (similarly, B0) denote the set of women in the top (resp., bottom) layer. The returned matching
is S1 ∪ S0, where S1 (similarly, S0) is stable in the graph induced on A1 ∪ B (resp., A0 ∪B0).

neighbor is x1. Initially all the vertices are in the bottom layer. Though top layer
men propose first in every iteration, however, since the top layer is empty in the first
iteration, we have S1 = ∅ in the first iteration and we compute a stable matching in
the bottom layer with all the men proposing and women disposing, so S0 = {(x1, y1)}.
Then the vertex x2, which is unmatched in S0, gets promoted to the top layer. In the
second iteration, the vertex x2 gets to propose first and this yields S1 = {(x2, y1)}.
The bottom layer vertices are x1 and y0. Since there is an edge between x1 and y0, we
get S0 = {(x1, y0)}. The termination condition is now satisfied. Thus the matching
{(x1, y0), (x2, y1)} is returned (see Figure 6).

A1
B1

A0
B0

A B

x2

x1

y1

y0

Fig. 6. The matching {(x1, y0), (x2, y1)} is computed by the 2-layer algorithm. It has a blocking
edge (x1, y1).

Note that the idea of “promoting” an unmatched man is reminiscent of a simi-
lar step in Király’s approximation algorithm [12] for a maximum size weakly stable
matching in G = (A∪B, E) where vertices have ties in their preference lists. However,
since the goal in Király’s algorithm is to compute a matching that admits no blocking
edges, the promotion step there is only to break ties in the preference lists, whereas
in our algorithm, the promotion of an unmatched man from the bottom layer to the
top layer may create blocking edges. Nevertheless, the resulting matching will be
popular.
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Before we show the correctness of this algorithm, we will first show a simple linear
time implementation of this algorithm. This involves calling a modified Gale–Shapley
stable matching algorithm just once in an augmented graph G̃2 = (Ã2 ∪ B, Ẽ2). The
set of women in G̃2 is the same as the set B of women in G. The fact that the vertex
set of G gets partitioned into two layers is implemented by having two copies of every
man ai ∈ A in the graph G̃2. So Ã2 = {a01, . . . , a0n0

, a11, . . . , a
1
n0
}, where {a1, . . . , an0}

is the set A of men in the given graph G. The preference list of each a�i ∈ Ã2, for
� = 0, 1, is the same as that of ai ∈ A in G.

The superscript � in a�i refers to the layer number: � = 0 denotes the bottom layer
while � = 1 denotes the top layer. At the beginning, for all i, only a0i participates in
the algorithm since the top layer is empty at the start of the algorithm. For any i,
if a0i is rejected by all his neighbors, then a0i exits and a1i starts participating in the
algorithm. The replacement of a0i by a1i captures ai getting promoted from bottom to
top. The fact that in every iteration the top layer men propose first to all women and
the bottom layer men can propose only to those women who do not receive proposals
from top layer men is captured by the women’s preference lists.

– The preference list of each woman b in G̃2 is as follows: if b’s preference list in
G is 〈ai1 , . . . , ait〉, then b’s preference list in G̃2 is 〈a1i1 , . . . , a1it , a0i1 , . . . , a0it〉.
Thus deg(b) in G̃2 is 2 degG(b).

– The top layer copies of all the neighbors of b in G (in the same order of
preference as in G) are the most preferred degG(b) neighbors of b in G̃2.

– Then come the bottom layer copies of all the neighbors of b in the same
order of preference.

So if a woman b receives a proposal from a top layer neighbor, she will henceforth
reject proposals from all bottom layer neighbors. In fact, we can say that in the Gale–
Shapley stable matching algorithm, when a woman receives an offer, she immediately
deletes edges between her and worse ranked neighbors since such offers will henceforth
never be accepted by her. So as soon as a woman receives a proposal from a top layer
neighbor, she deletes all edges incident to bottom layer neighbors, and thus the bottom
layer men can propose only to those women who have not yet received proposals from
top layer men.

Our algorithm for constructing the desired matching in G̃2 = (Ã2∪B, Ẽ2) is given
as Algorithm 1. This algorithm is essentially the same as running the Gale–Shapley
algorithm in G̃2, except for some modifications. In the Gale–Shapley algorithm, all
the men in Ã2 should propose. However, at the very beginning, we want only the
bottom layer men to propose since the top layer is empty. So our initialization step
initializes the queue Q of active men to the bottom layer men {a01, . . . , a0n0

}.
In the Gale–Shapley algorithm, every man who has not yet found a partner will

propose in decreasing order of preference until he is accepted by some neighbor or he
gets rejected by all his neighbors. Any offer that a woman receives is always from
a better neighbor than her current partner since she deletes edges to worse ranked
neighbors upon receiving a proposal. So when a woman receives a proposal, if she is
already matched, she rejects her current partner and he is inserted into Q, since he
has to find a new partner now. If a man gets rejected by all his neighbors, then he
will be unmatched in the final matching output by the Gale–Shapley algorithm.

In our algorithm the modification is that once a bottom layer man a0i has been
rejected by all his neighbors, then a0i exits and a1i enters the picture. (This is the
new step in our algorithm when compared to the Gale–Shapley algorithm.) Hence
a1i is inserted into Q. When it is a1i ’s turn, he starts proposing from the top of his
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preference list. If a1i also gets rejected by all his neighbors, then it means that ai
will remain unmatched in our final matching. Algorithm 1 returns S̃ in G̃2, and this
translates in a straightforward manner to a matching M2 in G: (a, b) ∈ M2 if and
only if S̃(b) is a0 or a1.

Algorithm 1. Input: G̃2 = (Ã2 ∪ B, Ẽ2); Output: S̃

1. Initialize the queue Q to {a01, . . . , a0n0
} and S̃ to the empty matching.

2. while Q is not empty do
3. delete the first element a� from Q.

4. if a�’s list of neighbors in the current graph is nonempty then
5. – let b be the most preferred neighbor of a� in this list.
6. – if S̃(b) exists then add this man S̃(b) to Q.

{Since the current graph has no edges between b and neighbors ranked worse
than S̃(b), the existence of (a�, b) in this graph implies b prefers a� to S̃(b).}

7. – set S̃(b) = a�. {So a� becomes b’s current partner.}
8. – delete from the current graph edges between b and neighbors worse than

a�.

9. else if � = 0 then
10. – add a1 to Q.

{At this point a0 has been rejected by all his neighbors; hence a0 exits and
a1 enters.}

11. end if
12. end while

13. Return S̃.

Building the graph G̃2 takes O(n+m) time. The running time of Algorithm 1 is
the same as the running time of the Gale–Shapley algorithm on G̃2, which is linear
in the size of G̃2. The number of edges in G̃2 is 2

∑n0

i=1 degG(ai). Thus the running
time of Algorithm 1 is O(n + m). So the time taken to compute M2 is O(n + m),
which is O(m).

We now show that the matching M2 is a maximum size popular matching in G.
The following definition partitions A into the set A0 of bottom layer men and the set
A1 of top layer men and, similarly, B into the set B0 of bottom layer women and the
set B1 of top layer women.

Definition 2. Let A0 consist of those men ai ∈ A such that there exists some
b ∈ B that satisfies S̃(b) = a0i , and let A1 = A \ A0. Let B1 ⊆ B be the set of women
matched in M2 to the men in A1, and let B0 = B \B1.

Thus we have M2 ⊆ (A0 ×B0) ∪ (A1 ×B1). Claim 1 follows from the definitions
of the sets A0 and B1.

Claim 1. All the men unmatched in M2 belong to A1 and all the women un-
matched in M2 belong to B0.

The following definition will be useful in showing the properties satisfied by M2.
Definition 3. For any u ∈ A ∪ B and neighbors x and y of u, define u’s vote

between x and y, denoted by voteu(x, y), as follows: it is 1 if u prefers x to y, and it
is −1 if u prefers y to x; else, it is 0 (i.e., x = y).

Label each e = (u, v) in E \ M2 by (αe, βe), where αe = voteu(v,M2(u)) and
βe = votev(u,M2(v)); in case x is unmatched in M2, then votex(y,M2(x)) = 1 for any
neighbor y of x since every vertex prefers being matched with any of its neighbors to
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being unmatched. Note that an edge is a blocking edge with respect to M2 if and only
if it is labeled (1, 1). Lemmas 1 and 2 show crucial properties of our vertex partition.

Lemma 1. Every edge (a, b) ∈ A1 ×B0 is labeled (−1,−1).
Proof. Let (a, b) be an edge in A1 × B0. We first claim that a must be matched

in M2. Otherwise, a1 would have proposed to b. However, b ∈ B0, which means that
b never received a proposal from a top layer neighbor during the entire course of the
algorithm; otherwise, b would have accepted such a proposal. So a1 has to be matched
in S̃ to a woman that a ranks better than b. So votea(b,M2(a)) = −1.

The man a0 was rejected by all his neighbors in Algorithm 1; that is why he got
promoted to the top layer. So at some point a0 must have been rejected by b. When b
rejected a0, b was matched to a man ranked better than a0 in b’s preference list in G̃2.
Also, b never received a proposal from a top layer neighbor (since b ∈ B0). Thus the
final partner of b in S̃ is a bottom layer man z0 whom b prefers to a0; in other words,
b ranks her partner M2(b) = z better than a. So we have voteb(a,M2(b)) = −1. This
proves the lemma.

Lemma 2. Every edge labeled (1, 1) has to be in A0 ×B1.
Proof. During the entire course of Algorithm 1, no woman in B0 ever receives

a proposal from a top layer neighbor; otherwise, she would be matched to some a1i
in S̃. Thus the matching M2 restricted to the vertex set A0 ∪B0 is stable since these
women receive proposals only from the bottom layer men and they dispose according
to their preference lists in G. Hence there are no blocking edges in A0 ×B0.

The men in A1 propose according to their preference lists in G, and the women
who receive their proposals prefer one top layer man to another according to their
preference lists in G. Thus M2 has no blocking edges in A1 × B1. We know from
Lemma 1 that every edge in (A1 ×B0) is labeled (−1,−1). Since M2 has no blocking
edges in A1 × (B0 ∪B1) or in A0 ×B0, it follows that every edge labeled (1, 1) has to
be in A0 ×B1.

Let GM2 denote the subgraph of G obtained by deleting from G all edges that are
labeled (−1,−1). We now show the following lemma in the graph GM2 . A path (sim-
ilarly, cycle) where alternate edges belong to M2 is called an alternating path (resp.,
cycle) with respect to M2. If the endpoints of the alternating path are unmatched in
M2, then such a path is also called an augmenting path with respect to M2.

Lemma 3. Let ρ = 〈y0, x1, y1, x2, y2, . . .〉 be an alternating path in GM2 , where
(xi, yi) ∈ M2 for i ≥ 1.

(i) If y0 ∈ A1 ∪B0, then there is no edge labeled (1, 1) in ρ.
(ii) If y0 ∈ A0 ∪B1, then there can be at most one edge labeled (1, 1) in ρ.
Proof. We first show (i). Suppose y0 ∈ A1. There are no edges in GM2 between

A1 and B0 (by Lemma 1). So y0’s neighbor in ρ, i.e., the vertex x1, has to be in B1.
Since the matched partners of all vertices in B1 have to be in A1, M2(x1) = y1 ∈ A1.
Thus it follows that xi ∈ B1 and yi ∈ A1 for all i ≥ 1. So every edge of the path ρ is
in A1 ×B1. As all the edges labeled (1, 1) are in A0 × B1 (by Lemma 2), there is no
edge labeled (1, 1) in ρ.

Suppose y0 ∈ B0. Since there are no edges between B0 and A1 in GM2 , and
because the matched partners of all vertices in A0 are in B0, it follows that xi ∈ A0

and yi ∈ B0 for all i ≥ 1. So every edge of the path ρ is in A0 × B0. Hence there is
no edge labeled (1, 1) in ρ.

We now show (ii). Suppose y0 ∈ A0. There are edges (some of them possibly
labeled (1, 1)) between A0 and B1. However, once an edge of A0×B1 is traversed in ρ,
the path ρ gets stuck in A1 ∪ B1. This is so by the same argument as in the earlier
case. Once ρ reaches a vertex xi ∈ B1, its matched partner yi ∈ A1 and thereafter all
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the vertices have to be in A1 ∪ B1 as there are no edges between A1 and B0 in GM2

and because the matched partners of all vertices in B1 are in A1.
Supposing y0 ∈ B1, a similar argument holds: though there are edges (possibly

labeled (1, 1)) between B1 and A0, once an edge of B1×A0 is traversed in ρ, the path
ρ gets stuck in A0 ∪B0 because every vertex in A0 is matched to a vertex in B0 and
there are no edges between B0 and A1 in GM2 . So once ρ reaches a vertex xi ∈ A0,
thereafter all the vertices have to be in A0 ∪ B0. Thus we have shown that in both
cases of (ii), there can be at most one edge labeled (1, 1) in ρ.

We will refer to an alternating path 〈y0, x1, y1, . . .〉 in GM2 where y0 ∈ A1 ∪B0 as
a type (i) alternating path and one where y0 ∈ A0 ∪B1 as a type (ii) alternating path.

Let M ′ be any matching in G. In order to compare M2 and M ′ with respect to
popularity, we can assume that M ′ belongs to the subgraph GM2 . This is because if
(u, v) is an edge of M ′ that is labeled (−1,−1), then we can assume as well that M ′

leaves u and v unmatched; i.e., we can delete the edge (u, v) from M ′ since this makes
no difference to voteu(M

′(u),M2(u)) or votev(M
′(v),M2(v)): both these values were

−1 when (u, v) was in M ′ and they both remain −1 after assuming that u and v are
unmatched in M ′.

So for the purpose of evaluating φ(M2,M
′) and φ(M ′,M2), we can assume that

M ′ is in GM2 . Hence M2 ⊕ M ′ is in GM2 . The set M2 ⊕ M ′ is a collection of
alternating paths and alternating cycles with respect to M2. Theorem 4 will imply
that φ(M ′,M2) ≤ φ(M2,M

′).
Theorem 4. For any matching M ′ in GM2 , the following three statements hold:
1. If ρ is an alternating cycle in M2⊕M ′, then φ(M2⊕ρ,M2) ≤ φ(M2,M2⊕ρ).
2. If ρ is an alternating path in M2 ⊕M ′ such that at least one endpoint of ρ is

unmatched in M2, then φ(M2 ⊕ ρ,M2) ≤ φ(M2,M2 ⊕ ρ).
3. If ρ is an alternating path in M2 ⊕ M ′ such that both endpoints of ρ are

matched in M2, then φ(M2 ⊕ ρ,M2) ≤ φ(M2,M2 ⊕ ρ).
Proof. Let ρ be any alternating path or cycle in M2 ⊕M ′. So ρ is in GM2 . We

will now show that φ(M2 ⊕ ρ,M2) ≤ φ(M2,M2 ⊕ ρ). The value φ(M2 ⊕ ρ,M2) −
φ(M2,M2 ⊕ ρ) is

∑
u∈ρ voteu(M

′(u),M2(u)), where the sum is over all the vertices u
in ρ. This can be written as

(1) φ(M2 ⊕ ρ,M2)− φ(M2,M2 ⊕ ρ) =
∑
u∈ρ

unmatched in M ′

−1 +
∑

e∈ρ∩M ′
(αe + βe),

where αe = voteu(v,M2(u)) and βe = votev(u,M2(v)) for edge e = (u, v) in ρ ∩M ′.
We will bound the right-hand side of (1) now.

Let ρ be an alternating cycle in M2 ⊕ M ′. Since every edge of M2 is either in
A0×B0 or in A1×B1, there has to exist a vertex x ∈ A1∪B0 in ρ. Thus ρ\{(x,M2(x))}
is a type (i) alternating path. Lemma 3 tells us that there can be no (1, 1) edge in
such an alternating path. Hence αe+βe ≤ 0 for each e ∈ ρ∩M ′. Thus the right-hand
side of (1) is at most 0 here, and hence φ(M2 ⊕ ρ,M2) ≤ φ(M2,M2 ⊕ ρ) in this case.

Let ρ be an alternating path in M2 ⊕ M ′. In part 2, there is an endpoint of ρ
that is unmatched in M2 and this vertex has to be in A1 ∪ B0 (by Claim 1). So ρ
is a type (i) alternating path. There can be no (1, 1) edge in ρ by Lemma 3. Hence
αe + βe ≤ 0 for each e ∈ ρ ∩M ′. Thus the right-hand side of (1) is again at most 0,
and hence φ(M2 ⊕ ρ,M2) ≤ φ(M2,M2 ⊕ ρ) in this case also.

In part 3, ρ is an alternating path with respect to M2 in GM2 such that both
endpoints of ρ are matched in M2. So neither endpoint is matched in M ′ and both
these vertices prefer M2 to M ′. So these two vertices contribute −1 each to the first
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term on the right-hand side of (1). We know by Lemma 3 that there can be at most
one edge labeled (1, 1) in ρ. Hence

∑
e∈ρ∩M ′(αe+βe) ≤ 2. Thus the sum on the right-

hand side of (1) is at most −2 + 2 = 0. So we have φ(M2 ⊕ ρ,M2) ≤ φ(M2,M2 ⊕ ρ)
here also.

For any matching M ′ in G, we have (let M ′ ∩ GM2 denote M ′ ∩ the edge set of
GM2)

φ(M ′,M2) =
∑

ρ∈M2 ⊕ (M ′∩GM2 )

φ(M2 ⊕ ρ,M2)

≤
∑

ρ∈M2 ⊕ (M ′∩GM2 )

φ(M2,M2 ⊕ ρ) {by Theorem 4}

= φ(M2,M
′).

Thus M2 is popular. We now show (via Lemmas 4 and 5) that M2 is a maximum
size popular matching. Recall that an augmenting path with respect to M2 is an
alternating path p where both endpoints of p are unmatched in M2.

Lemma 4. There is no augmenting path with respect to M2 in GM2 .
Proof. Let p = 〈b0, a1, b1, . . . , bt, at+1〉 be an augmenting path with respect to M2

in GM2 , where b0 ∈ B0 and at+1 ∈ A1 (by Claim 1). Since M2 uses only edges of
(A0 × B0) ∪ (A1 × B1), p has to contain an edge between a vertex bj−1 ∈ B0 and a
vertex aj ∈ A1. However, we know there is no such edge in GM2 (by Lemma 1). Thus
there exists no augmenting path with respect to M2 in GM2 .

Lemma 5. If M ′ is a matching in G such that |M ′| > |M2|, then φ(M2,M
′) >

φ(M ′,M2).
Proof. Let M ′ be a matching in G such that |M ′| > |M2|. Then there is an

augmenting path p ∈ M2⊕M ′ with respect toM2 inG. In order to evaluate φ(M2,M
′)

and φ(M ′,M2), recall that we can restrict M ′ to GM2 . Since there is no augmenting
path with respect toM2 inGM2 (by Lemma 4), the augmenting path p inG breaks into
subpaths p1, p2, . . . , ps in GM2 , where p1 and ps have one endpoint each unmatched
in M2. Such an endpoint has to be in A1 ∪ B0 (by Claim 1), and thus there is no
(1, 1) edge in either p1 or ps by Lemma 3.

So all edges of M ′ in p1 (say, there are t of them) are only (1,−1) and (−1, 1)
edges. Also, p1 has another endpoint u that is unmatched in M ′ (restricted to GM2)
but is matched in M2, so u prefers M2 to M ′. So p1 has 2t+1 vertices, where t+1 of
these prefer M2 to M ′ and the remaining t prefer M ′ to M2, i.e., φ(M2,M2 ⊕ p1) =
φ(M2 ⊕ p1,M2) + 1.

Let ρ be any other alternating path or cycle inM2⊕M ′, including one of p2, . . . , ps
(the other subpaths that p gets split into in GM2). We have φ(M2,M2⊕ρ) ≥ φ(M2⊕
ρ,M2) by Theorem 4. Hence it follows that φ(M2,M

′) > φ(M ′,M2).
Thus no matching of size larger than |M2| can be popular since M2 is more

popular than such a matching. So M2 is a maximum size popular matching in G.
This completes the proof of Theorem 1 stated in section 1.

3. The generalized algorithm. We know there are instances (Figure 3) where
a maximum size popular matching has size 2

3 |Mmax|, where Mmax is a maximum
matching in G. In order to obtain matchings of larger size, we now generalize our
algorithm on 2 layers to an algorithm on k layers, for any k ≥ 2.

As in the case for k = 2, initially all the men are in layer 0. In each iteration, run
the proposal/disposal algorithm between the men in the topmost layer (layer k − 1)
and all women—call this matching Sk−1. Then run the proposal/disposal algorithm
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between the men in layer k − 2 and the women left unmatched in Sk−1—call this
matching Sk−2. In decreasing order, for every i ≥ 0, run the proposal/disposal
algorithm between the men in layer i and the women left unmatched in ∪j>iSj . If
all the men, except possibly those in layer k − 1, are matched in S = ∪k−1

i=0 Si, then S
is returned; otherwise, the unmatched men of layer i are promoted to layer i+ 1, for
each 0 ≤ i ≤ k − 2, and the next iteration begins.

A1
B1

A0
B0

A B

a3

a2

a1

b2

b1

b0

Fig. 7. The bold edges form the matching {(a1, b1), (a2, b2)} computed by the 2-layer algorithm.

Figure 7 has the matching and partition computed by the maximum size popular
matching on the instance in Figure 3. Here k = 2 and we have A0 = {a1}, A1 =
{a2, a3}, B0 = {b0, b1}, and B1 = {b2}. When k = 3, the vertex a3 (unmatched in
level 1 by the 2-layer algorithm) gets promoted one layer higher, i.e., to level 2. When
b2 receives a proposal from a3 , she accepts this proposal and S2 = {(a3, b2)}. Now
a2, who is in level 1, proposes to b1, who accepts him and S1 = {(a2, b1)}. Then a1
(in level 0) proposes to b0, who accepts him and S0 = {(a1, b0)}. The termination
condition is satisfied, and hence we get the matching S = {(a1, b0), (a2, b1), (a3, b2)}.
Thus using 3 layers gives us the partition shown in Figure 8 and the resulting perfect
matching.

A1 B1

A2 B2

A0 B0

A B

a3

a2

a1

b2

b1

b0

Fig. 8. The bold edges form the matching {(a1, b0), (a2, b1), (a3, b2)} computed by the 3-layer
algorithm.

Just as Algorithm 1 was an efficient implementation of the idea of partitioning the
vertex set into two layers, bottom and top, we now show an efficient implementation of
the generalized algorithm that partitions the vertex set into k layers, for any integer
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k ≥ 2. Let the k layers be layer 0, layer 1, . . . , layer k − 1, where layer 0 is the
bottommost layer and layer k−1 is the topmost layer. We want the men in layer k−1
to get the most preferential treatment, then the men in layer k − 2, and so on.

To implement this idea efficiently, we will work with the augmented graph G̃k =
(Ãk ∪B, Ẽk), where the set Ãk of men is ∪k−1

�=0 {a�1, . . . , a�n0
} (recall that {a1, . . . , an0}

is the set A of men in G). The set of women in G̃k is the same as the set B of women
in G.

The preference list of each a�i ∈ Ãk, for � = 0, . . . , k − 1, is the same as that
of ai ∈ A in G. The preference list of each woman b in G̃k is as follows: if b’s
preference list in G is 〈ai1 , . . . , ait〉, then deg(b) in G̃k is k · degG(b) and b’s neighbors
are ∪k−1

�=0 {a�i1 , . . . , a�it}.
• In b’s preference list in G̃k, we have a�1i preferred to a�2j if and only if either
�1 > �2, or �1 = �2 and b ranks ai better than aj in her preference list in G.

• Thus for any b ∈ B, layer k − 1 neighbors are the most preferred, then come
the layer k − 2 neighbors, and so on, and at the bottom come the layer 0
neighbors in b’s preference list in G̃k.

We now present Algorithm 2, whose code is the same as that of Algorithm 1,
except for lines 9–10, where “if � = 0” becomes “if � < k − 1” here (since there are k
layers now). For any a�i where � < k − 1, if a�i gets rejected by all his neighbors, then
a�i has to get promoted to the next higher layer: this is achieved in our algorithm by
the exit of a�i and the arrival of a�+1

i . The vertex a�+1
i is inserted into Q and starts

proposing from the top of his preference list when he gets deleted from Q.

Algorithm 2. Input: G̃k = (Ãk ∪ B, Ẽk); Output: S̃

1. Initialize the queue Q to {a01, . . . , a0n0
} and S̃ to the empty matching.

2. while Q is not empty do
3. delete the first element a� from Q.
4. if a�’s list of neighbors in the current graph is nonempty then

5. – let b be the most preferred neighbor of a� in this list.
6. – if S̃(b) exists then add this man to Q. {This is because b prefers a� to

S̃(b).}
7. – set S̃(b) = a�. {So a� becomes b’s current partner.}
8. – delete from the current graph edges between b and neighbors worse than

a�.
9. else if � < k − 1 then
10. – add a�+1 to Q. {At this point, a� exits and a�+1 enters.}
11. end if
12. end while
13. Return S̃.

Algorithm 2 returns a matching S̃ in the graph G̃k, and this translates in a
straightforward manner to a matching Mk in G: (a, b) ∈ Mk if and only if S̃(b) = a�

for some � ∈ {0, . . . , k − 1}.
It is straightforward to see that the time taken to constructMk is O(|G̃k|), which is

O(km). We will first bound the size ofMk from below and then bound its unpopularity
factor from above. Definition 4 partitions A and B into layers.

Definition 4. For 0 ≤ � ≤ k − 2, let A� ⊆ A consist of those men ai such that
S̃(b) = a�i for some b ∈ B, and let Ak−1 = A \ (A0 ∪ · · · ∪ Ak−2). For 1 ≤ � ≤ k − 1,
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let B� ⊆ B be the set of women matched in Mk to the men in A�, and let B0 =
B \ (B1 ∪ · · · ∪Bk−1).

Thus we have Mk ⊆ ∪k−1
�=0 (A�×B�). Claim 2 is straightforward from Definition 4.

Claim 2. All the men unmatched in Mk are in Ak−1 and all the women un-
matched in Mk are in B0.

Lemma 6 shows an important property of the partitioning of A∪B into the layers
as given by Definition 4.

Lemma 6. For every 2 ≤ � ≤ k− 1, there is no edge between any man in A� and
any woman in ∪�−2

t=0Bt.
Proof. Consider any a ∈ A� for � ≥ 2. The fact that a ∈ A� implies that a�−1 was

rejected by all his neighbors in B. Consider any b ∈ ∪j≤�−2Bj . If there had been an
edge (a, b) in G, then a�−1 would have proposed to b. However, we know that b could
not have received any proposal from a man zt with t ≥ �− 1; otherwise, b would have
accepted such a proposal since a neighbor in layer � − 1 or higher is ranked better
than any neighbor in layer � − 2 or lower, and so b would not be in ∪j≤�−2Bj . Thus
if (a, b) had been an edge in G, then a�−1 would have proposed to b and b would have
accepted a�−1, contradicting that a�−1 was rejected by all his neighbors. Hence there
is no edge (a, b) in G, where a ∈ A� and b ∈ ∪�−2

t=0Bt.
Label every edge e = (u, v) ∈ E \ Mk by (αe, βe), where αe = voteu(v,Mk(u))

and βe = votev(u,Mk(v)). If u is unmatched in Mk, then voteu(v,Mk(u)) = 1 for any
neighbor v.

Lemma 7. For each 1 ≤ � ≤ k − 1, every edge (a, b) ∈ A� × B�−1 is labeled
(−1,−1).

The proof of Lemma 7 is analogous to that of Lemma 1. We now show an
important property of Mk in Lemma 8, and this property will allow us to bound |Mk|
from below.

Lemma 8. Any augmenting path with respect to Mk in G has length at least
2k + 1.

Proof. Let p = 〈b0, a1, b1 . . . , bt, at+1〉 be an augmenting path with respect to Mk

in G. We know from Claim 2 that b0 ∈ B0 and at+1 ∈ Ak−1, and we also know
that Mk uses only edges of ∪k−1

�=0 (A� × B�). In the first place, there is no edge in G
between an unmatched b0 ∈ B0 and any a1 ∈ A1, since such an edge would not be a
(−1,−1) edge (because b0 prefers being matched to a1 to being unmatched in Mk),
contradicting Lemma 7. Also, there is no edge between Bi and ∪j≥i+2Aj for any
i ≥ 0 (by Lemma 6).

At the other end, there is no edge between an unmatched vertex in Ak−1 and any
vertex bt in Bk−2, as bt would accept such a proposal and then not be in Bk−2. So the
first edge of p has to be from B0 ×A0 and the last edge has to be from Bk−1 ×Ak−1

(see Figure 9). Thus the shortest augmenting path that is possible is the following:

b0 − (x0, y0)− (x1, y1) · · · (xk−2, yk−2)− (xk−1, yk−1)− at+1,

where for 0 ≤ i ≤ k − 1, the vertex xi is in Ai, the edge (xi, yi) is in Mk, and
thus the vertex yi is in Bi. So there have to be at least k edges of Mk in p. Hence
|p| ≥ 2k + 1.

Corollary 1. |Mk| ≥ k
k+1 |Mmax|, where Mmax is a maximum size matching

in G.
Proof. Every path in Mk ⊕ Mmax that is augmenting with respect to Mk has

length at least 2k+1 (by Lemma 8). So every such path has t edges of Mk and t+1
edges of Mmax, for some t ≥ k. Hence |Mk| ≥ k

k+1 |Mmax|.
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Ak−1

Ak−2

A1

A0

at+1 bt

a1 b0

A B

Bk−1

Bk−2

B1

B0

Fig. 9. In any augmenting path 〈b0, a1, b1, . . . , bt, at+1〉 with respect to Mk, the vertices b0 and
a1 have to be in B0 and A0, respectively; similarly, the vertices at+1 and bt have to be in Ak−1 and
Bk−1, respectively.

This proves the lower bound on the size of Mk. We now bound its unpopularity
factor from above via Theorem 5. First, we show the following simple lemma.

Lemma 9. Every edge labeled (1, 1) has to be in ∪k−2
�=0 (A� × ∪j>�Bj).

Proof. There is no blocking edge in A� × ∪j≤�Bj for any �, since Mk restricted
to edges in A� ×∪j≤�Bj is obtained by running the Gale–Shapley algorithm on these
vertices, with the men in A� proposing and the women in ∪j≤�Bj disposing. Thus
every blocking edge to Mk has to be in ∪k−2

�=0 (A� × ∪j>�Bj).
Theorem 5. Let ρ = 〈y0, x1, y1, . . . , xt−1, yt−1, xt〉 be an alternating path with

respect to Mk in G, where (xi, yi) ∈ Mk for i ≥ 1. Then the number of edges labeled
(1, 1) in ρ is at most h − � plus the number of edges labeled (−1,−1) in ρ, where
y0 ∈ A� and xt ∈ Bh.

Proof. Let ρ = 〈y0, x1, . . . , yt−1, xt〉 be an alternating path where each (xi, yi) ∈
Mk. We are given that y0 ∈ A� and xt ∈ Bh. The claim is that the number of (1, 1)
edges in ρ is at most h − � plus the number of (−1,−1) edges in ρ. We prove this
claim by induction on the number of (−1,−1) edges in ρ.

Suppose there are no (−1,−1) edges in ρ. Then we will show that the number of
(1, 1) edges in ρ is at most h − �. We know from Lemma 6 that there are no edges
between A� and ∪j<�−1Bj and from Lemma 7 that there are only (−1,−1) edges
between A� and B�−1. Thus the entire path ρ is stuck in layers greater than or equal
to �. There are no (1, 1) edges in A� × B�. So while the xi’s are in B� (which forces
the yi’s to be in A�), we do not encounter any (1, 1) edge in ρ. Hence it is necessary to
traverse an edge in ρ between some yj ∈ A� and xj+1 ∈ B�′ , for some �′ > �, so that
a (1, 1) edge is encountered (by Lemma 9). For any � and �′ > �, once we traverse an
edge between A� and B�′ , the rest of the path ρ gets stuck in layers greater than or
equal to �′. Once the path jumps to a higher layer, since there is no way it can come
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back to a lower layer (due to the absence of (−1,−1) edges in ρ), it follows that we
are allowed at most h− � jumps in layer numbers from y0 ∈ A� to xt ∈ Bh. Thus we
can traverse at most h− � edges labeled (1, 1) in ρ. This settles the base case.

We assume by induction hypothesis that the claim is true when the number of
(−1,−1) edges in any alternating path is at most i−1. Let ρ have i ≥ 1 edges labeled
(−1,−1), and let (yj−1, xj) be one of these (−1,−1) edges in ρ. Let yj−1 ∈ Ar and
xj ∈ Bs (see Figure 10). The subpath 〈xj−1, yj−1, xj , yj〉 consists of one (−1,−1) edge
and two edges of Mk. Deleting this subpath from ρ, we get two alternating subpaths
ρ1 and ρ2, where ρ1 = 〈y0, x1, . . . , xj−1〉 and ρ2 = 〈yj, xj+1, . . . , xt〉. Since the number
of (−1,−1) edges in ρ1 and in ρ2 is at most i−1, by applying the induction hypothesis
on ρ1 and on ρ2, it follows that the number of (1, 1) edges in ρ is at most the number
of (−1,−1) edges in ρ1 plus the number of (−1,−1) edges in ρ2 + (r − �) + (h− s),
where the (r − �) term comes from ρ1 and the (h− s) term comes from ρ2.

yj

xj−1yj−1

xj

Ar

Bs

(−1,−1)

Fig. 10. A subpath of ρ consisting of two matched edges and a (−1,−1) edge.

The number of (−1,−1) edges in ρ1 plus the number of (−1,−1) edges in ρ2 is
one less than the number of (−1,−1) edges in ρ. So the number of (1, 1) edges in ρ is
at most the number of (−1,−1) edges in ρ+ (r − �) + (h − s)− 1. Since there is an
edge between yj−1 ∈ Ar and xj ∈ Bs, it follows from Lemma 6 that s ≥ r− 1. Hence
h− � + r − s− 1 ≤ h− �. Thus the claim holds when the number of (−1,−1) edges
in ρ is i. This completes the proof of Theorem 5.

Observe that Theorem 5 does not have to impose any conditions on h and � to
ensure that “h − � plus the number of (−1,−1) edges in ρ” is nonnegative. In fact,
by Lemmas 6 and 7, there can be no alternating path ρ = 〈y0, x1, . . . , yt−1, xt〉 with
respect to Mk such that h − � plus the number of (−1,−1) edges in ρ is negative,
where y0 ∈ A� and xt ∈ Bh.

Theorem 6, stated below, uses Theorem 5 to generalize Theorem 4. Note that
parts 1 and 2 in this theorem are the same as parts 1 and 2 in Theorem 4, while part 3
involves multiplication by (k − 1) on its right-hand side.

Theorem 6. For any matching M ′ in G, the following three statements hold:
1. If ρ is an alternating cycle in Mk⊕M ′, then φ(Mk⊕ρ,Mk) ≤ φ(Mk,Mk⊕ρ).
2. If ρ is an alternating path in Mk ⊕M ′ such that at least one endpoint of ρ is

unmatched in Mk, then φ(Mk ⊕ ρ,Mk) ≤ φ(Mk,Mk ⊕ ρ).
3. If ρ is an alternating path in Mk ⊕ M ′ such that both endpoints of ρ are

matched in Mk, then φ(Mk ⊕ ρ,Mk) ≤ (k − 1) · φ(Mk,Mk ⊕ ρ).
Proof. Let ρ be an alternating cycle inMk⊕M ′. Every edge ofMk is in ∪k−1

�=0 (A�×
B�). Let (a, b) be an edge in Mk ∩ ρ. So ρ \ {(a, b)} is an alternating path 〈a, . . . , b〉
where a ∈ At and b ∈ Bt, for some t. Hence it follows from Theorem 5 that in ρ, the
number of edges labeled (1, 1) is at most the number of (−1,−1) edges. As the other
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edge labels are (−1, 1) or (1,−1), it follows that among the vertices of ρ, the number
of 1 votes (votes in favor of M ′) is at most the number of −1 votes (votes in favor of
Mk). Thus φ(Mk ⊕ ρ,Mk) ≤ φ(Mk,Mk ⊕ ρ) in part 1.

Let ρ be an alternating path in Mk ⊕M ′ that begins with a vertex unmatched in
Mk. Claim 2 states that every unmatched vertex has to be in Ak−1 ∪B0. Since either
h = 0 or � = k − 1 here, it follows from Theorem 5 that the number of edges labeled
(1, 1) in ρ is at most the number of edges labeled (−1,−1) in ρ. As the other edge
labels are (−1, 1) or (1,−1), it again follows that among the vertices of ρ, the number
of 1 votes is at most the number of −1 votes. Hence φ(Mk ⊕ ρ,Mk) ≤ φ(Mk,Mk ⊕ ρ)
in part 2.

Let ρ be an alternating path in Mk⊕M ′ where both endpoints of ρ are matched in
Mk. That means that neither endpoint is matched in M ′. Note that these two vertices
prefer Mk to Mk ⊕ ρ. Let the number of (−1,−1) edges in ρ be s. Theorem 5 tells us
that the number of (1, 1) edges in ρ is at most s+ k− 1. Each of the other edges (say,
there are t of these other edges) is labeled either (−1, 1) or (1,−1). Then among all
the vertices of ρ, we have at most 2k−2+2s+ t that prefer Mk⊕ρ to Mk and at least
2+ 2s+ t that prefer Mk to Mk ⊕ ρ. Hence φ(Mk ⊕ ρ,Mk) ≤ (k− 1) ·φ(Mk,Mk ⊕ ρ),
as k ≥ 2 and s, t ≥ 0. This finishes the proof of Theorem 6.

We are now ready to prove Theorems 2 and 3 stated in section 1.
Proof of Theorem 2. Consider the matchingMn0 obtained by running Algorithm 2

with k = n0. Corollary 1 gives us the following bound on the size of Mn0 :

(2) |Mn0 | ≥
n0

n0 + 1
|Mmax| =

(
1− 1

n0 + 1

)
|Mmax|.

Since |Mmax| ≤ min(|A|, |B|) = n0, (2) implies that |Mn0 | = |Mmax|. Thus Mn0

is a maximum size matching in G.
The matchings Mmax and Mn0 are both maximum matchings in G. So Mn0 ⊕

Mmax is a collection of alternating cycles and even length alternating paths. So each
alternating path has one endpoint unmatched in Mn0 . Hence part 3 of Theorem 6
does not apply here. Let ρ be any alternating path or cycle in Mn0 ⊕Mmax. We have
φ(Mn0 ⊕ ρ,Mn0) ≤ φ(Mn0 ,Mn0 ⊕ ρ) by parts 1 and 2 of Theorem 6. Thus

φ(Mmax,Mn0) =
∑

ρ∈Mn0⊕Mmax

φ(Mn0 ⊕ ρ,Mn0)

≤
∑

ρ∈Mn0⊕Mmax

φ(Mn0 ,Mn0 ⊕ ρ)

= φ(Mn0 ,Mmax).

Since φ(Mmax,Mn0) ≤ φ(Mn0 ,Mmax) for any maximum matching Mmax, it fol-
lows that Mn0 is popular within the set M of maximum matchings in G. Thus Mn0

satisfies all the properties claimed in Theorem 2. We know that the time taken to com-
pute Mn0 is O(mn0). This completes the proof of Theorem 2 stated in section 1.

Proof of Theorem 3. For any matchingM ′, considerMk⊕M ′. For any alternating
cycle/path ρ ∈ Mk ⊕M ′, we know from Theorem 6 that φ(Mk ⊕ ρ,Mk) ≤ (k − 1) ·
φ(Mk,Mk ⊕ ρ). So we have
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φ(M ′,Mk) =
∑

ρ∈Mk⊕M ′
φ(Mk ⊕ ρ,Mk)

≤
∑

ρ∈Mk⊕M ′
(k − 1) · φ(Mk,Mk ⊕ ρ)

= (k − 1) · φ(Mk,M
′).

Hence Δ(Mk,M
′) ≤ k − 1 for all matchings M ′ �= Mk, and thus u(Mk) ≤ k − 1.

We will now show that if |M ′| ≥ |Mk| for any matching M ′ in G, then φ(Mk,M
′) ≥

φ(M ′,Mk).
Let ρ be an alternating cycle or path in Mk ⊕M ′. If ρ is an alternating cycle or

an even length alternating path, then we know from parts 1 and 2 of Theorem 6 that
φ(Mk ⊕ ρ,Mk) ≤ φ(Mk,Mk ⊕ ρ). So what is left is the case when ρ is an odd length
alternating path.

We cannot claim that φ(Mk ⊕ ρ,Mk) ≤ φ(Mk,Mk ⊕ ρ) for an odd length al-
ternating path ρ. However, we will be able to show that

∑
ρ∈O φ(Mk ⊕ ρ,Mk) ≤∑

ρ∈O φ(Mk,Mk⊕ρ), whereO is the set of all odd length alternating paths inMk⊕M ′.
For any ρ ∈ Mk ⊕M ′,

(3) φ(Mk ⊕ ρ,Mk)− φ(Mk,Mk ⊕ ρ) =
∑
u∈ρ

unmatched in M ′

−1 +
∑

e∈ρ∩M ′
(αe + βe),

where αe = voteu(v,Mk(u)) and βe = votev(u,Mk(v)) for edge e = (u, v) in ρ ∩M ′.
Let ρ = 〈y0, . . . , xt〉. There are two subcases when ρ is an odd length alternating

path in Mk⊕M ′: (i) y0 and xt are unmatched in Mk, or (ii) y0 and xt are unmatched
in M ′.

Consider subcase (i). We know from Claim 2 that y0 ∈ Ak−1 and xt ∈ B0.
Theorem 5 tells us that the number of edges labeled (−1,−1) in ρ is at least (k − 1)
plus the number of edges labeled (1, 1) in ρ. So if there are r edges labeled (1, 1) in ρ,
then the number of edges labeled (−1,−1) in ρ is at least r+ k− 1. Every other edge
in ρ is labeled either (1,−1) or (−1, 1). Hence the right-hand side of (3) is at most
2r − 2(r + k − 1) = −2(k − 1).

Consider subcase (ii). Since the vertices y0 and xt are unmatched in M ′, the first
term on the right-hand side of (3) equals −2. Theorem 5 tells us that the number of
edges labeled (1, 1) in ρ is at most (k − 1) plus the number of edges labeled (−1,−1)
in ρ. Thus if there are s edges labeled (−1,−1) in ρ, then the number of edges labeled
(1, 1) in ρ is at most s + k − 1. Every other edge in ρ is labeled either (1,−1) or
(−1, 1). Hence the right-hand side of (3) is at most −2+ 2(s+ k− 1)− 2s = 2(k− 2).

Recall that O is the set of odd length alternating paths in Mk ⊕ M ′. Among
the paths in O, let there be t1 paths whose endpoints are unmatched in Mk, and let
there be t2 paths whose endpoints are unmatched in M ′. Since |M ′| ≥ |Mk|, we have
t1 ≥ t2:

∑
ρ∈O

φ(Mk ⊕ ρ,Mk) ≤
∑
ρ∈O

φ(Mk,Mk ⊕ ρ)− 2(k − 1)t1 + 2(k − 2)t2

≤
∑
ρ∈O

φ(Mk,Mk ⊕ ρ) {since t1 ≥ t2}.D
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Thus we have φ(M ′,Mk) ≤ φ(Mk,M
′) for any matching M ′ whose size is at least

|Mk|. We have |Mk| ≥ k
k+1 |Mmax| by Corollary 1. We also know that the time taken

to compute Mk is O(km). We can now conclude Theorem 3 stated in section 1.
Remark. Note that the matching Mk need not be popular among matchings of

size at least k
k+1 |Mmax|. Consider the following instance on 10 vertices by taking

a copy of the instance on four vertices described in Figure 1 along with a copy of
the instance on six vertices described in Figure 2; no new edges are added. M2 =
{(x1, y0), (x2, y1), (a1, b1), (a2, b2)} is a maximum size popular matching here and
M3 = {(x1, y0), (x2, y1), (a1, b0), (a2, b1), (a3, b2)}. So |M2| > 3

4 |M3|. Since M2 is
more popular than M3, the matching M3 is not popular among matchings of size at
least 3

4 |M3|.

4. Conclusions and open problems. We considered the problem of comput-
ing matchings with large size and low unpopularity factor in a stable marriage instance
G = (A∪B, E) with incomplete lists, where each vertex ranks its neighbors in a strict
order of preference. For any integer k ≥ 2, we extended the Gale–Shapley stable
matching algorithm to k layers, to show that a matching Mk whose size is at least
k

k+1 |Mmax| and whose unpopularity factor is at most k − 1 always exists. Moreover,
any matching whose size is at least the size of Mk cannot be more popular than Mk.
Such a matching Mk can be computed in O(km) time, where |E| = m. When k = 2,
we showed that the resulting matching M2 will be a maximum size popular matching
in G.

An open problem is to efficiently find a maximum size matching in G = (A ∪
B, E) whose unpopularity factor is the least among all maximum size matchings in G.
Another open problem is to settle the complexity of determining whether a general
graph G = (V,E) with strict preference lists, also called a roommates instance, admits
a popular matching or not.

Acknowledgment. Many thanks to the reviewers of the conference version of
this paper and an earlier draft of this paper for their helpful comments and suggestions.
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