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Abstract We first consider the problem of finding a maximum size stable matching
if incomplete lists and ties are both allowed, but ties are on one side only. For this
problem we give a simple, linear time 3/2-approximation algorithm, improving on
the best known approximation factor 5/3 of Irving and Manlove (J. Comb. Optim.,
doi:10.1007/s10878-007-9133-x, 2007). Next, we show how this extends to the Hos-
pitals/Residents problem with the same ratio if the residents have strict orders. We
also give a simple linear time algorithm for the general problem with approxima-
tion factor 5/3, improving the best known 15/8-approximation algorithm of Iwama,
Miyazaki and Yamauchi (SODA ’07: Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 288–297, 2007). For the cases con-
sidered in this paper it is NP-hard to approximate within a factor of 21/19 by the
result of Halldórsson et al. (ACM Transactions on Algorithms 3(3):30, 2007).

Our algorithms not only give better approximation ratios than the cited ones, but
are much simpler and run significantly faster. Also we may drop a restriction used
in (J. Comb. Optim., doi:10.1007/s10878-007-9133-x, 2007) and the analysis is sub-
stantially more moderate.
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1 Introduction

An instance of the stable marriage problem consists of a set U of N men, a set V of
N women, and a preference list for each person, that is a weak linear order (ties are
allowed) on some members of the opposite gender. A pair (m ∈ U, w ∈ V ) is called
acceptable if m is on the list of w and w is on the list of m. We model acceptable pairs
with a bipartite graph G = (U,V,E), (where E is the set of acceptable pairs; we may
assume that if w is not on the list of m then m is also missing from the list of w).
A matching in this graph consists of mutually disjoint acceptable pairs. A matching
M is stable if there is no blocking pair, where an acceptable pair is blocking if they
strictly prefer each other to their current partners (the exact definition is given below).
It is well-known that a stable matching always exists and can be found in linear time.
An interesting problem, motivated by applications, is to find a stable matching of
maximum size. This problem is known to be NP-hard for even very restricted cases
[7, 12]. Moreover, it is APX-hard [2] and cannot be approximated within a factor of
strictly less than 21/19, even if ties occur only in the preference lists on one side only,
furthermore if every list is either totally ordered or consists of a single tied pair [3].
Moreover, refining the ideas of [3], Yanagisawa [14] proved that an approximation
within a factor of 4/3 − ε implies 2 − ε approximation of vertex cover, and this
applies for the case when each tie has length two. If, moreover, ties occur only in the
preference lists on one side only, he proved that an approximation within a factor of
5/4 − ε implies 2 − ε approximation of vertex cover. We note that interestingly the
minimization version (where we are looking for a stable matching of minimum size)
is also APX-hard [2].

As the applications of this problem are important, researchers started to develop
good approximation algorithms in the last decade. We say that an algorithm is approx-
imating with factor r if it gives a stable matching M with size |M| ≥ (1/r) · |Mopt|
where Mopt is a stable matching of maximum size. It is easy to give a 2-approximating
algorithm, as running Algorithm GS of Gale and Shapley (see later) after an arbitrary
tie-breaking gives a stable matching, and it evidently has size at least a half of any
matching. The first non-trivial approximation algorithm was given by Halldórsson
et al. [3] and was recently improved by Iwama, Miyazaki and Yamauchi [8] to a
15/8-approximation. This was later improved for the special case, where ties are al-
lowed on one side only and moreover only at the ends of the lists, by Irving and
Manlove [5]. (We must emphasize that the second restriction is not needed for our
results.) They gave a 5/3-approximating algorithm for this special case. Their algo-
rithm also applies for the Hospitals/Residents problem (see later) if residents have
strictly ordered lists. If, moreover, ties are of size 2, Halldórsson et al. [3] gave an
8/5-approximation and in [4] they described a randomized algorithm for this special
case with expected factor of 10/7. The paper of Irving and Manlove [5] also gives a
detailed list of known and possible applications that motivate investigating approxi-
mation algorithms.
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We think that our results also have some didactic importance. People teaching
approximation algorithms usually look for a nice example, such that

– it is a simple and fast approximation algorithm,
– it solves an interesting and APX-hard problem,
– it gives the best known approximation factor for that problem,
– its correctness is straightforward, and
– it has a simple proof for the approximation ratio.

We have some nice examples (like Christofides’ algorithm for metric TSP), but not
too many of them. Section 2 offers a new example of this type.

We store the weak order of lists as priorities. For an acceptable pair (m,w) let
pri(m,w) be an integer from 1 up to d(m) representing the priority of w for m, where
d(m) denotes the degree of m, i.e., the size of the m’s list. We say that m ∈ U strictly
prefers w ∈ V to w′ ∈ V if pri(m,w) > pri(m,w′). Ties are represented by the same
number, e.g., if m equally prefers w1,w2 and w3 then pri(m,w1) = pri(m,w2) =
pri(m,w3). Of course, pri(m,w) is not related to pri(w,m). We represent these pri-
orities in the figures by writing pri(m,w) and pri(w,m) close to the correspond-
ing endvertex of edge mw (pri(m,w) is written near m, while pri(w,m) is written
near w).

Let M be a matching. If m is matched in M , or in other words m is not single, we
denote m’s partner by M(m). Similarly we use M(w) for the partner of woman w.

Definition 1 A pair (m,w) is blocking if mw ∈ E \ M (they are an acceptable pair
and they are not matched) and

– m is either single or pri(m,w) > pri(m,M(m)), and
– w is either single or pri(w,m) > pri(w,M(w)).

Definition 2 A matching is called stable if there is no blocking edge.

The famous algorithm of Gale and Shapley [1] for finding a stable matching is the
following. Initially every man is active and, by breaking ties arbitrarily, makes any
strict order of acceptable women according to the priorities (higher priority comes
before lower).

Each active man m proposes to the next woman w on his strict list if w exists,
otherwise (if he has processed the whole list) m inactivates himself. If the proposal
was (temporarily) accepted then m inactivates himself, otherwise, if m was rejected,
m keeps on proposing to the next woman from his list.

Each woman w who got some proposals keeps the best man as a partner and
rejects all other men. More precisely, the first man m who proposed to w will be
her first partner (M(w) := m). Later if w gets a new proposal from another man m′,
she rejects m′ if pri(w,m′) ≤ pri(w,M(w)); otherwise w rejects M(w), then M(w)

is re-activated, and finally w keeps M(w) := m′ as a new partner. The algorithm
finishes if every man is inactive (either has a partner or has searched over his strict
list). This algorithm runs in O(|E|) time if G is given by edge-lists and sorting is
done by bucket sort.



6 Algorithmica (2011) 60: 3–20

Theorem 1 (Gale-Shapley) Algorithm GS defined above always ends in a stable
matching M .

Proof Let mw ∈ E \ M . If m never made a proposal to w then in the end he has a
partner w′ who precedes w on m’s strict list, consequently pri(m,w′) ≥ pri(m,w).
Otherwise, w rejected m at some point, when w had a partner m′ not worse than m.
Observe that after w received a proposal, she will always have a partner. Moreover,
when w changes partner, she always chooses a (strictly) better one. Thus in the end
pri(w,M(w)) ≥ pri(w,m′) ≥ pri(w,m), so mw is not blocking. �

Observe that after a run of GS no single man and single woman can form an
acceptable pair. Consequently Algorithm GS gives a 2-approximation, and in the
case, when the bipartite graph is complete (every woman-man pair is acceptable), it
gives a stable matching of size N , i.e., the optimum.

In what follows, we will use not only the statement of this theorem (as most of the
previous results do), but the Algorithm GS itself with some modifications/extensions.

In the Hospitals/Residents problem the roles of women are played by hospitals
and the roles of men are played by residents. Moreover, each hospital w has a positive
integer capacity c(w), the number of free positions. Instead of matchings we consider
assignments, that is a subgraph F of G, such that all residents have degree at most
one in F , and each hospital w has degree at most c(w) in F , i.e., dF (w) ≤ c(w).
For a resident m, who is assigned, F(m) denotes the corresponding hospital. For a
hospital w, F(w) denotes the set of residents assigned to it. We say that hospital w is
full if |F(w)| = c(w) and otherwise under-subscribed. Here a pair (m,w) is blocking
if mw ∈ E \ F (they are an acceptable pair and they are not assigned to each other)
and

– m is either single or pri(m,w) > pri(m,F (m)), and
– w is either under-subscribed or pri(w,m) > pri(w,m′) for at least one resident

m′ ∈ F(w).

An assignment is stable if there is no blocking pair. It is easy to modify Algorithm
GS to give a stable assignment for the Hospitals/Residents problem (for the details
see Sect. 3).

In the next section we consider the special case of the maximum stable marriage
problem, where each man’s list is strictly ordered. We allow arbitrary number of
arbitrarily long ties for each woman. We give a simple algorithm running in time
O(|E|). First we run Algorithm GS, then we give extra scores to single men, that
raise their priorities. These men are re-activated and start making proposals from the
beginning of their lists. A simple proof shows that this slightly modified algorithm
gives a 3/2-approximation to the maximum stable marriage problem.

In Sect. 3 we show that this algorithm applies to the Hospitals/Residents problem
as well in the (practically plausible) case when residents have strictly ordered lists,
also giving 3/2-approximation for the maximum assignment in time O(|E|).

Section 4 contains a slightly more complicated algorithm for the general case.
First we run the algorithm of Sect. 2, then change the roles of men and women. In
the second phase women get extra scores and make proposals to men. This algorithm
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still runs in linear-time, and gives a 5/3-approximation. Finally we propose some
open problems and review some results obtained since the first version.

Several people asked the author, why did he presume to think that such a simple
algorithmic idea might work? A partial answer can be found in the Appendix, where
an unpublished preliminary work of the present author can be found about finding
maximum matching in bipartite graphs. This was worked out in 2007 for educational
purposes.

2 Men Have Strictly Ordered Lists

In this section we suppose that the lists of men are strictly ordered. We are going
to define extra scores, π(m) for every man with the following properties. Initially
π(m) = 0 and at any time 0 ≤ π(m) < 1 for each man. We also define adjusted
priorities: pri′(m,w) := pri(m,w) and pri′(w,m) := pri(w,m) + π(m) for each ac-
ceptable pair (m,w). It is straightforward to see that if M is stable with respect to pri′
then it is also stable with respect to pri.

We define a modification of Algorithm GS, that is called rmGS (reduced men-
proposal GS), as follows. This algorithm starts with a stable matching, given extra
scores and a set of active men. Run the original GS algorithm (active men make
proposals; at the beginning of the algorithm they start from the beginning of their
lists), where women use pri′ to decide rejections. Stop when every man is inactive.

If some men with zero extra score remained single, we increase the score of those
men to ε and re-activate them. In the next round they start making proposals from
the beginning of their strict list. At any time let SM denote the set of single men, and
Π0 := {m ∈ U : π(m) = 0}. We fix ε = 1/2.

Our approximation algorithm is as follows:

ALGORITHM GSA1
run GS
FOR m ∈ U π(m) := 0
WHILE SM ∩ Π0 �= ∅

FOR m ∈ SM ∩ Π0
π(m) := ε

re-activate m

run rmGS

This simple algorithm runs in O(|E|) time, as there are at most 2|E| proposals
altogether. It is easy to see that Algorithm GSA1 gives a stable matching M with
respect to the adjusted priority, hence M is stable for the original problem as well.

Let Mopt denote any maximum size stable matching (stable for the original prior-
ities).
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Fig. 1 A short augmenting path

Theorem 2 If men have strictly ordered preference lists, M is the output of Algorithm
GSA1 and Mopt is a maximum size stable matching then

|Mopt| ≤ 3

2
· |M|.

Proof We use an idea of Iwama, Miyazaki and Yamauchi [8]. Take the union of M

and Mopt. We consider common edges as a two-cycle. Each component of M ∪Mopt is
either an alternating cycle (of even length) or an alternating path. An alternating path
component is called augmenting path if both end-edges are in Mopt. An augmenting
path is called short, if it consists of 3 edges (see Fig. 1). It is enough to prove that in
each component there are at most 3/2 times as many Mopt-edges as M-edges. This is
clearly true for each component except for a short augmenting path.

We claim that a short augmenting path cannot exist. Suppose that M(m) = w,
Mopt(m) = w′ �= w, Mopt(w) = m′ �= m and that m′ and w′ are single in M . Observe
first that w′ never got a proposal during Algorithm GSA1. Consequently π(m) = 0
at the end, as otherwise he would have proposed to each acceptable woman. We may
also conclude that pri(m,w) > pri(m,w′) because there are no ties in the men’s lists.
When the algorithm finishes, π(m′) = ε, and m′ proposed to every acceptable woman
with this extra score, but w rejected him. This means that pri(w,m) = pri′(w,m) ≥
pri′(w,m′) = pri(w,m′) + ε consequently pri(w,m) > pri(w,m′). However, in this
case edge mw blocks Mopt, a contradiction. �

We have an example (see Fig. 2) showing that for our algorithm this bound
is tight (a possible order of proposals and extra score increases is the following:
mw,m′w,m′w′′,m′′w′′, π(m′′) = ε, m′′w′′).

3 Hospitals/Residents with Strictly Ordered Residents’ Lists

First we show that Algorithm GS with a slight modification always gives a stable
assignment in linear time. Each hospital w manages to keep a set of buckets indexed
by integers up to d(w), containing each assigned resident m in the bucket indexed by
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Fig. 2 An example where GSA1 gives |M| = (2/3) · |Mopt|

pri(w,m); and w also stores the number of assigned residents, and if w is full then
it also stores wpri(w), the priority of the worst assigned resident. If hospital w gets
a new proposal from resident m then it accepts him either if w is under-subscribed
or if pri(w,m) > wpri(w). When hospital w is full and accepts, it rejects an arbitrary
assigned resident m′ with pri(w,m′) = wpri(w). Apart from these, the algorithm is
the same. It clearly gives a stable assignment, and it is easy to see that also runs
in O(|E|) time (decision can be made in constant time, and updating the data at w

needs constant time per operation plus total time d(w) for finding the next nonempty
bucket). We call this modified GS algorithm HRGS. As before, we are interested
in giving a maximum size assignment, i.e., a stable assignment F with maximum
number of edges (that is a maximum number of assigned residents).

We consider the Hospitals/Residents problem with the restriction that residents
have strict orders on acceptable hospitals. Note, that for real-life applications of this
scheme, this assumption is realistic. Here, as appropriate, residents get extra scores.
The adjusted priorities are defined as in Sect. 2.

For a reader familiar with this topic it is straightforward that after “cloning” of
hospitals the previous algorithm runs with the same approximation ratio. However,
we describe an algorithm for this problem in some detail for not only to newcomers,
but for three more reasons: (i) the cloning is not well defined in the literature, (ii) we
give a linear time algorithm, and (iii) for showing an example and a theorem at the
end of this section.

We modify GSA1 by replacing GS by HRGS and define rmHRGS as a modifica-
tion of HRGS analogously to the derivation of rmGS from GS. Here SM denotes the
set of unassigned residents and again Π0 := {m ∈ U : π(m) = 0}.

ALGORITHM HRGSA1
run HRGS
FOR m ∈ U π(m) := 0
WHILE SM ∩ Π0 �= ∅

FOR m ∈ SM ∩ Π0
π(m) := ε

re-activate m

run rmHRGS
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Algorithm HRGSA1 also runs in time O(|E|) (hospital w need to have 2d(w)

buckets), and gives a stable assignment F .

Theorem 3 If residents have strictly ordered preference lists, F is the output of Al-
gorithm HRGSA1 and Fopt is any maximum size stable assignment then

|Fopt| ≤ 3

2
· |F |.

Proof We suppose that positions at hospital w are numbered by 1, . . . , c(w). For the
proof we make an auxiliary bipartite graph G′ = (U,V ′,E′) and new preference lists
as follows. The set U of residents remains unchanged. The set V ′ consists of the
positions, i.e., V ′ = {wi : w ∈ V, 1 ≤ i ≤ c(w)}. An edge connects resident m and
position wi if (m,w) was an acceptable pair (if hospital w was acceptable to m then
all positions at w are acceptable to m). Each position wi inherits the preference list
of hospital w. For resident m we have to make a new (and also strict) preference list.
Take the original list, and replace each w by w1 > w2 > · · · > wc(w) (thus if w1 was
preferred by m to w2 then all positions of w1 will be preferred to all positions of w2;
and w1’s first position is preferred to the second, etc.). If F is an assignment in G

then it defines a matching M in G′ by distributing edges of F incident to a hospital w

to distinct positions w1,w2, . . . ,wdF (w), paying attention to the following. If m and
m′ are assigned to w by F and pri(w,m) > pri(w,m′) then m is matched to a smaller
position number than m′.

And, conversely, any matching M of G′ defines an assignment in G. The crucial
observation is that if assignment F is stable in G then the associated matching M

is stable in G′, and if matching M is stable in G′ then the associated assignment F

is stable in G (this can be considered as a “folklore” theorem, widely used in the
literature). Moreover, if we imagine running Algorithm GSA1 on G′, the resulting
matching M corresponds to the assignment F given by Algorithm HRGSA1. Using
these observations Theorem 2 implies this one. �

We show that the example on Fig. 2 can be easily modified to show that this
algorithm cannot achieve better approximation ratio than 3/2, not even if all hospi-
tals have large capacities and if each hospital has an absolutely unordered list (i.e.,
pri(w,m) = 1 for every acceptable resident m).

We make c copies of the example shown in Fig. 3, one for each i = 1, . . . , c.
Then glue together the c copies of wi

1, the c copies of wi and the c copies of wi
2.

Assign capacity c to each hospital (w1, w and w2). The following is a possible run
of Algorithm HRGSA1 yielding an assignment F with |F | = 2c, while |Fopt| = 3c.
First every resident m′′

i proposes to hospital w2. Next, every resident mi proposes to
hospital w; now hospitals w and w2 are full. Then every resident m′

i proposes first
to w2 and then to w, but they are always rejected. So every resident m′

i gets an extra
score. They propose again to hospital w2 and they succeed. Now every resident m′′

i

gets an extra score, and proposes again to w2 but they are rejected.
However, with a different type of restriction we are able to prove a stronger the-

orem. For a hospital w, let τ(w) denote the length of the longest tie for w, and let
λ := maxw∈V τ(w)/c(w).
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Fig. 3 A building block of the example where HRGSA1 gives |F | = (2/3) · |Fopt|

Fig. 4 A 5-path

Theorem 4 Algorithm HRGSA1 gives approximation ratio not worse than

4

3
+ λ

6
.

Proof Again, we examine the components of the union of M and Mopt in G′. Call an
augmenting path component a k-path, if it has k edges. By the proofs of Theorem 2
and Theorem 3, a 3-path cannot exist. First we need a technical lemma.

Lemma 1 If wi is the central vertex of a 5-path: w
j

1mwim′wk
2m

′′, then w,w1,w2
are three distinct hospitals, hospital w is full and pri(w,m) = pri(w,m′) = wpri(w)

(see Fig. 4).

Proof As noted before, M is the same what we get, if we run algorithm GSA1 on G′.

(i) As w
j

1 remained single, it never got a proposal. We have, as m never proposed to

w
j

1 , that π(m) = 0 and m prefers wi to w
j

1 in G′. We also conclude that m′′wj

1 is
not an edge of G′, so, by the construction of G′, w1 �= w2. Observe that hospital
w1 is under-subscribed.

(ii) As m′′ remained single, he proposed to wk
2 with his extra score π(m′′) = ε, but

was refused.



12 Algorithmica (2011) 60: 3–20

(iii) If m′ never proposed to wi then π(m′) = 0 and m′ prefers wk
2 to wi . Edge

m′wk
2 is not a blocking edge for Mopt, so pri(w2,m

′′) ≥ pri(w2,m
′), and this

contradicts to (ii).
(iv) Therefore m′ proposed to wi , but was rejected, consequently pri(w,m) ≥

pri(w,m′). If pri(w,m) > pri(w,m′) then, by (i), mwi is a blocking edge for
Mopt. So we have pri(w,m) = pri(w,m′), and that hospital w is full. By (i), w1
is under-subscribed, therefore w �= w1.

(v) Suppose that w = w2. By the construction of G′, m′′wi is also an edge, so m′′
proposed to wi by his extra score, and he was refused. As π(m) = 0 by (i), we
conclude that pri(w2,m) > pri(w2,m

′′). By (i), w1 �= w2 = w and pri(m,w) >

pri(m,w1), therefore edge mwk
2 of G′ is blocking for Mopt. So w �= w2.

(vi) As pri(w,m) = pri(w,m′) by (iv), and m is assigned to w, but m′ unsuccessfully
proposed to w (he is assigned to w2 �= w), clearly pri(w,m) = wpri(w).

�

Let Kr denote the number of r-paths, and L denote the number of M-edges in
other components (i.e., in alternating cycles and in non-augmenting paths). More-
over, let W denote the set of hospitals w, such that there exists a position wi which
is a middle position of a 5-path. For a hospital w ∈ W , let φ(w) denote the num-
ber of 5-paths where wi is the middle hospital position for some i. On one hand,
K5 = ∑

w∈W φ(w), on the other hand 2K5 + 3K7 + 4K9 + · · · + L ≥ ∑
w∈W c(w),

because all hospitals in W are full (using Lemma 1), so their every position takes
part in a component as an end of an M-edge. By Lemma 1, for each w ∈ W we have
φ(w) ≤ τ(w)/2 (a 5-path with center wi contains two men with priority wpri(w)),
so K5 ≤ ∑

w∈W τ(w)/2 ≤ λ
2 · ∑w∈W c(w) ≤ λ

2 · (2K5 + 3K7 + 4K9 + · · · + L).

|Mopt|
|M| ≤ 3K5 + 4K7 + 5K9 + · · · + L

2K5 + 3K7 + 4K9 + · · · + L

≤ 4

3
+ (1/3) · K5

2K5 + 3K7 + 4K9 + · · · + L
≤ 4

3
+ λ

6
. �

Corollary 1 If for each hospital the length of any tie is not more than half of the

hospital’s capacity then the approximation ratio of our algorithm is at most 17
12 . If

every tie has length at most three, and every hospital has capacity at least 100, then
the approximation ratio is better than 1.339.

4 General Stable Marriage

Now we consider the general maximum stable marriage problem. First we will run
the algorithm of Sect. 2, then we will change the roles of men and women. In the
second phase women will get extra scores and they will propose to men.

Accordingly, we also use extra scores π(w) for women: initially π(w) = 0 and
at any time 0 ≤ π(w) < 1 for each woman w. We also re-define adjusted priorities:
pri′(m,w) := pri(m,w)+π(w) and pri′(w,m) := pri(w,m)+π(m) for each accept-
able pair (m,w). It is straightforward to see that if M is stable with respect to pri′
then it is also stable with respect to pri.
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In the first phase we run Algorithm GSA1, using the convention made in the de-
scription of algorithm GS, i.e., first each man breaks the ties on his list arbitrarily
making a strict order for using proposals. Women do not get extra scores in this
phase, but at the end men forget these strict orders and use pri′ to decide later. In
the second phase, where we change the roles of men and women, we increase ex-
tra scores of women only. At the beginning of the second phase each woman makes
any strict order of acceptable men according to the adjusted priorities (higher priority
comes before lower), we call these lists as “strict lists” of women.

We define Algorithm rwGS (reduced woman-proposal GS) similarly to Algorithm
rmGS. The algorithm starts with a stable matching, given extra scores and a set of
active women. Run the original GS algorithm with interchanged roles: active women
make proposals, and men use pri′ to decide rejections. But here we have a major
difference. If a woman w with π(w) = 0 is rejected by her actual partner at any
time during the process then she gets π(w) := ε/2 extra scores, activates herself, and
starts making proposals from the beginning of her strict list. Stop when every woman
is inactive.

If some women with less than ε extra score remained single, we increase the score
of those women to ε and re-activate them. In the next round they start making propos-
als from the beginning of their strict list. At any time let SW denote the set of single
women and Π := {w ∈ V : π(w) ≤ ε/2}. We use again ε = 1/2.

Our approximation algorithm is as follows.

ALGORITHM GSA2
Phase 1
run GSA1
Phase 2
FOR w ∈ V π(w) := 0
WHILE SW ∩ Π �= ∅

FOR w ∈ SW ∩ Π

π(w) := ε

re-activate w

run rwGS

First we claim that the algorithm runs in time O(|E|). To see this we must consider
two things. In Phase 2, every woman processes her strict list at most twice, so there
are at most 2|E| proposals in the second phase. The strict lists of women can be
calculated in O(|E|) time altogether using bucket sort.

Lemma 2 The matching M given by Algorithm GSA2 is stable with respect to pri′,
consequently it is stable with respect to pri.

Proof We use the facts that in Phase 1 the positions of women do not decline,
while during Phase 2 the positions of men do not decline. Let mw be any edge in
E \ M . First suppose that at the end π(w) > 0. After woman w got her final ex-
tra score, she started to propose to men: either w did not propose to m, in this case
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Fig. 5 Partitioning of single men

pri′(w,m) ≤ pri′(w,M(w)); or else w proposed to m but m rejected her, in this case
pri′(m,w) ≤ pri′(m,M(m)). In both cases we get that the edge mw is not blocking.
Now suppose that at the end π(w) = 0. In this case w is matched in M , and also
matched in M ′, where M ′ denotes the matching at the end of Phase 1. Moreover
M(w) = M ′(w) = m′ �= m. In Phase 1, after man m got his final score, either m did
not propose to w, in this case pri′(m,M(m)) ≥ pri(m,M(m)) ≥ pri(m,M ′(m)) ≥
pri(m,w) = pri′(m,w); or else m proposed to w but w rejected him, in this case
pri′(w,M(w)) = pri′(w,M ′(w)) ≥ pri′(w,m). In both cases we get again that the
edge mw is not blocking. �

Theorem 5 If M is the output of Algorithm GSA2 and Mopt is any maximum size
stable matching then

|Mopt| ≤ 5

3
· |M|.

Proof Consider components of M ∪Mopt as before. Here short augmenting path may
exist. Let M ′ denote the matching given at the end of Phase 1. First, the technical
Lemma 3 claims, that a single woman in a short augmenting path was matched in M ′.
After proving the lemma we will partition the men remained single at the end. (Actu-
ally we must consider the components of M ∪ M ′ ∪ Mopt, but if we do this directly,
it would lead to untreatable case analysis.) The most important class will be SM1,
consisting of single men, who are endvertex of a path starting with Mopt-M-Mopt
edges (see Fig. 5). Our central Lemma 4 will state that |SM1| ≤ (2/3)|M|. Using this
lemma it will be easy to finish the proof of the theorem.

We will prove Lemma 4 by the following argument. By Lemma 3 such a path
either continues with an M-edge or with an M ′-edge. If more than the half continues
by an M-edge, then we assign the two M-matched men on the path to the single man,
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Fig. 6 A path of length three in
M ∪ Mopt

who is the starting vertex (we assign m′ and m′′ to m on upper left part of Fig. 5).
Otherwise we assign the two M ′-neighbors of women on the path (we assign m′ and
m′′ to m on lower left part of Fig. 5).

Lemma 3 Suppose M ∪ Mopt has a component that is an alternating path of length
three, with the M-edge mw in the middle. Then w′ = Mopt(m) is matched in M ′.

Proof Let m′ = Mopt(w) (see Fig. 6) and suppose w′ was single at the end of Phase 1
(i.e., w′ is single in M ′). As this is a component of M ∪ Mopt, clearly both m′ and w′
are single in M , and moreover, as matched men never become single in Phase 2, m′
is also single in M ′.

First we observe that as w′ is single in M ′, m did not propose to her during Phase 1,
so π(m) = 0. However m′ remained single, so π(m′) = ε at the end of Phase 1.

In Phase 2, w did not propose to m′ (m′ remained single, thus he did not receive
any proposals), so π(w) ≤ ε/2. We will use the fact, that M(w) = m. We consider
two cases. If M ′(w) = m then in Phase 1, when w rejected m′ the last time, she had
pri′(w,m) ≥ pri′(w,m′) = pri(w,m′)+ε, so that in this case pri(w,m) > pri(w,m′).
Otherwise, if M ′(w) �= m then in Phase 2, woman w started to make proposals from
the beginning of her strict list (that was made with respect to pri′ after Phase 1), but
she did not propose to m′, so pri′(w,m) ≥ pri′(w,m′) also implying pri(w,m) >

pri(w,m′).
At the beginning of Phase 2, π(w′) was set to ε, and w′ remained single.

This means that w′ proposed to m and m rejected her. Consequently pri′(m,w) ≥
pri′(m,w′), thus pri(m,w) > pri(m,w′). These arguments show that mw is blocking
for Mopt, a contradiction. �

We continue the proof of the theorem. Let SM denote the set of single men at the
end of the algorithm. First note, that men in SM were also single after Phase 1, since
in Phase 2 men’s positions do not decline. Let ŜM ⊆ SM denote the set of those single
men who are matched in Mopt. Observe that for each man m ∈ ŜM, woman Mopt(m)

exists and is matched in both M ′ and M (at the end of any Phase at least one person in
any acceptable pair is matched). We further partition ŜM: let SM1 consist of each man
m ∈ ŜM, for whom man M(Mopt(m)) is matched in Mopt; and SM2 := ŜM \ SM1. Fi-
nally we partition SM1: let SM1

1 := {m ∈ SM1 : Mopt(M(Mopt(m))) is matched in M}
and SM2

1 := SM1 \ SM1
1 (see Fig. 5). By Lemma 3, for every man m in SM2

1, woman
Mopt(M(Mopt(m))) is matched in M ′ (i.e., at the end of Phase 1). The next lemma
plays a crucial role in the proof of the theorem.
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Lemma 4

|SM1| ≤ 2

3
· |M|.

Proof
Case 1. |SM1

1| ≥ |SM1|/2.
We form clubs, every club is led by a man in SM1 and has one or two other

men who are matched in M . For every man m ∈ SM1 the second member of his
club is M(Mopt(m)). For each man m ∈ SM1

1, his club contains a third member:
M(Mopt(M(Mopt(m)))). We claim that these clubs are pairwise disjoint.

We formed one club for each man in SM1 so it is enough to prove that any man m′
who is matched in M belongs to at most one club. If M(m′) is single in Mopt then m′
is not a member of any club. If m = Mopt(M(m′)) ∈ SM, then either m ∈ SM1 and m′
belongs to m’s club or otherwise m′ has no club at all. In the other case (m �∈ SM),
m′ belongs to the club of m∗ = Mopt(M(Mopt(M(m′)))) as a third member if m∗
exists and m∗ ∈ SM1

1; and m′ has no club otherwise.
Let MM denote the set of men who are matched in M . We have

|M| = |MM| ≥ |SM1| + |SM1
1| ≥

3

2
· |SM1|.

Case 2. |SM2
1| > |SM1|/2.

In this case we form different clubs, here the non-leader members will be
men matched in M ′. For every man m ∈ SM1 the second member of his club
is M ′(Mopt(m)). For each man m ∈ SM2

1, his club contains a third member:
M ′(Mopt(M(Mopt(m)))). We claim that these clubs are also pairwise disjoint.

If M ′(m′) is single in Mopt then m′ is not a member of any club. If m =
Mopt(M

′(m′)) ∈ SM, then either m ∈ SM1 and m′ belongs to m’s club or
otherwise m′ has no club at all. Otherwise, m′ belongs to the club of m∗ =
Mopt(M(Mopt(M

′(m′)))) as a third member if m∗ exists and m∗ ∈ SM2
1; and m′ has

no club otherwise.
Let MM′ denote the set of men who are matched in M ′. As men matched after

Phase 1 remain matched till the end, we have

|M| = |MM| ≥ |MM′| ≥ |SM1| + |SM2
1| >

3

2
· |SM1|. �

We are ready to finish the proof of the theorem. Let MMopt denote the set of men
who are matched in Mopt. We claim that |MM ∩MMopt| ≤ |MM|− |SM2|. This is true
because |SM2| is the number of components of M ∪ Mopt isomorphic to a path with
two edges and with a woman in the middle; and for each such path the M-matched
man is single in Mopt.

|Mopt| = |MMopt| = |MM ∩ MMopt| + |SM ∩ MMopt|

≤ (|MM| − |SM2|) + (|SM1| + |SM2|) ≤ |M| + 2

3
· |M| = 5

3
· |M|. �
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Fig. 7 Example of sharpness by Yanagisawa

5 Conjectures, Open Problems and Related Results Obtained Thenceforth

In the previous versions [9–11] and also in the talks given at the MATCH-UP work-
shop in Reykjavík and at ESA in Karlsruhe we posed several questions, conjectures
and open problems. Two of them was solved meanwhile, we start now with these
conjectures.

Conjecture 1 The performance ratio given for GSA2 is sharp.

This conjecture was proved to be true by Hiroki Yanagisawa [15], who gave a
simple example where GSA2 really gives a matching of size 3

5 · Mopt, see Fig. 7. In
the first phase, m1 proposes to w1, m3 to w2 and m4 to w5. Then m2 unsuccessfully
proposes to w1 and w2, and m5 unsuccessfully proposes to w5. Then π(m2) and
π(m5) are set to ε, and m2 successfully proposes to w1, but m5 unsuccessfully to w5.
Now π(m1) is also set to ε, and he unsuccessfully proposes to w1. After Phase 1 the
matching M ′ = {m2w1,m3w2,m4w5} arises. In Phase 2, first π(w3) = π(w4) = ε

are set, and w4 successfully proposes to m3, after that w3 unsuccessfully proposes to
m3. Finally π(w2) is set to ε/2 and then to ε and she unsuccessfully proposes to m3
and m2, resulting M = {m2w1,m3w4,m4w5}.

Conjecture 2 Repeating GSA2 n times gives 3/2 approximation (use ε < 1/(n + 1)

instead of 1/2 and in the repetitions raise extra scores of singles by ε).

Answered (partially) by Eric McDermid [13], who gave a 3/2 approximation algo-
rithm for the general case. He uses our algorithm, but not with simple repetitions, and
uses novel and rather complicated techniques (and gives an O(N

√
N |E|) algorithm

rather than a linear one). Consequently, the original conjecture about the repetitions
remained open.

Irwing and Manlove [6] implemented a basic version of our algorithm for the one-
sided-ties Hospitals/Residents problem and gave a detailed comparison with their
best heuristic. They tested carefully the algorithms with real-life and artificial data.
We can summarize their result: for the most cases their best heuristic executed the
best, but, on the average, our algorithm also gave a stable assignment of size at least
99.41% of their best one. We do not know too many other examples, where an algo-
rithm with a guaranteed approximation ratio is so close to the best heuristic.
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Conjecture 3 For the One-sided-ties case if someone gives 3/2 − ε approximation,
then it implies something “surprising” (for example 3 − ε approximation for vertex
cover in 3-uniform hypergraphs).

Open Problem 1 Is it possible to improve the performance of GSA2 if we use the
method of Halldórsson et al. [3], or the method of Iwama, Miyazaki and Yamauchi [8]
after GSA2? And if this guarantee is not possible theoretically, can it be useful prac-
tically?

Acknowledgement I am grateful to Tamás Fleiner for his invaluable advice. I am also indebted to the
referees, whose valuable remarks helped us to improve the quality of the present paper.

Appendix

In this appendix we show, how a similar Gale-Shapley based algorithm can be
used for the maximum matching problem. Here the input is a bipartite graph G =
(U,V,E), where U is a set of N men, and V is a set of N women, there are no prior-
ities (or, equivalently, all priorities are set to zero), and we are looking for a matching
of maximum size.

At any time let SM denote the set of single men, and Π := {m ∈ U : π(m) ≤ N},
and ΠN+ := {m ∈ U : π(m) = N + 1}. We will call a natural number 0 ≤ i < N a
whole, if no man has extra score exactly i, but some men have extra score > i, but
≤ N . If there exists a whole then i∗ denotes the least one.

Our algorithm is as follows:

ALGORITHM GSMAX
run GS
FOR m ∈ U π(m) := 0
WHILE SM ∩ Π �= ∅

IF ∃ whole THEN
i∗ := the least whole
FOR m ∈ Π

IF π(m) > i∗ THEN π(m) := N + 1
FOR m ∈ SM ∩ Π

π(m) := π(m) + 1 (1)
re-activate m

run rmGS

Theorem 6 When Algorithm GSMAX finishes with a stable matching M , then M is
a maximum size matching in G.

Proof We begin with stating a lemma.
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Lemma 5 For a man m, let Γ (m) = {w ∈ V | mw ∈ E}. At any end of the WHILE
loop, if m ∈ ΠN+ then every woman in Γ (m) is matched to a man in ΠN+.

Proof It is enough to prove the statement for the loop when π(m) was set to N + 1,
because the positions of women do not decline. Let m be a man and consider the time
when π(m) was set to N + 1, and let mw be any edge.

First we claim that π(m) > i∗ held that time, i.e., it is impossible that π(m) = N

and was incremented by one in line (1). This is because there are N men and N + 1
numbers from zero up to N , so there must be a whole.

Once before m had extra score π(m) = i∗, and with this extra score he proposed
to w, and was refused. This means that at the time of refusal, w had a partner with
extra score at least i∗, and this still holds now, when no man has score i∗, and every
man m′ with higher score set to π(m′) = N + 1. �

Let Γ (ΠN+) = {w ∈ V | ∃m ∈ ΠN+,mw ∈ E}. We claim that at the end of the
algorithm all men in Π and all women in Γ (ΠN+) are matched by M . The first
statement follows from the halting criterion, while the second one follows from the
lemma. Consequently, using the lemma again, there are |ΠN+| − |Γ (ΠN+)| single
men, so M is maximum. �

This algorithm runs in time O(N |E|).
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