
J Comb Optim (2014) 27:574–596
DOI 10.1007/s10878-012-9537-0

Popularity at minimum cost

Telikepalli Kavitha · Meghana Nasre ·
Prajakta Nimbhorkar

Published online: 21 August 2012
© Springer Science+Business Media, LLC 2012

Abstract We consider an extension of the popular matching problem in this paper.
The input to the popular matching problem is a bipartite graph G = (A ∪ B,E), where
A is a set of people, B is a set of items, and each person a ∈ A ranks a subset of items
in order of preference, with ties allowed. The popular matching problem seeks to
compute a matching M∗ between people and items such that there is no matching M

where more people are happier with M than with M∗. Such a matching M∗ is called
a popular matching. However, there are simple instances where no popular matching
exists.

Here we consider the following natural extension to the above problem: associated
with each item b ∈ B is a non-negative price cost(b), that is, for any item b, new
copies of b can be added to the input graph by paying an amount of cost(b) per
copy. When G does not admit a popular matching, the problem is to “augment” G

at minimum cost such that the new graph admits a popular matching. We show that
this problem is NP-hard; in fact, it is NP-hard to approximate it within a factor of

A preliminary version of this work appeared in 21st International Symposium on Algorithms and
Computation, ISAAC’10 (Kavitha et al. 2010).

This work was done when the second author was a student at the Indian Institute of Science,
Bangalore, India and the third author was a student at the Institute of Mathematical Sciences,
Chennai, India.

T. Kavitha
Tata Institute of Fundamental Research, Mumbai, India
e-mail: kavitha@tcs.tifr.res.in

M. Nasre (�)
Department of Computer Science, The University of Texas at Austin, 1616 Guadalupe, Suite 2.408,
Austin, TX 78701, USA
e-mail: meghana@cs.utexas.edu

P. Nimbhorkar
Chennai Mathematical Institute, Siruseri, India
e-mail: prajakta@cmi.ac.in

mailto:kavitha@tcs.tifr.res.in
mailto:meghana@cs.utexas.edu
mailto:prajakta@cmi.ac.in

J Comb Optim (2014) 27:574–596 575

√
n1/2, where n1 is the number of people. This problem has a simple polynomial

time algorithm when each person has a preference list of length at most 2. However,
if we consider the problem of constructing a graph at minimum cost that admits a
popular matching that matches all people, then even with preference lists of length 2,
the problem becomes NP-hard. On the other hand, when the number of copies of
each item is fixed, we show that the problem of computing a minimum cost popular
matching or deciding that no popular matching exists can be solved in O(mn1) time,
where m is the number of edges.

Keywords Bipartite graphs · Matchings · One-sided preference lists · NP-hardness

1 Introduction

The popular matching problem deals with matching people to items, where each
person ranks a subset of items in order of preference, with ties allowed. The input is
a bipartite graph G = (A ∪ B,E) where A is the set of people, B is the set of items
and the edge set E = E1 ∪ · · · ∪ Er (Ei is the set of edges of rank i). For any a ∈ A,
we say a prefers item b to item b′ if the rank of edge (a, b) is smaller than the rank
of edge (a, b′). If the ranks of (a, b) and (a, b′) are the same, then a is indifferent
between b and b′. The goal is to match people with items in an optimal manner,
where the definition of optimality will be a function of the preferences expressed
by the elements of A. The problem of computing such an optimal matching is a
well studied problem and several notions of optimality have been considered so far;
for instance, Pareto-optimality (Abraham et al. 2004), rank-maximality (Irving et al.
2006), and fairness.

One criterion that does not use the absolute values of the ranks is the notion of
popularity. Let M(a) denote the item to which a person a is matched in a match-
ing M . We say that a person a prefers matching M to M ′ if (i) a is matched in M

and unmatched in M ′, or (ii) a is matched in both M and M ′, and a prefers M(a) to
M ′(a).

Definition 1 M is more popular than M ′, denoted by M � M ′, if the number of
people who prefer M to M ′ is greater than those that prefer M ′ to M . A matching
M∗ is popular if there is no matching that is more popular than M∗.

The notion of popularity is an appealing notion of optimality since it does not use
absolute ranks and further no majority vote of people can force migration to another
matching. On the flip side, popularity does not provide a complete answer since there
exist simple instances that do not admit any popular matching. An example is the fol-
lowing: let A = {a1, a2, a3}, B = {b1, b2, b3}, and the preference lists of the people
over the items are as shown in Fig. 1. That is, each person prefers b1 to b2, and b2
to b3. Consider the three symmetrical matchings M1 = {(a1, b1), (a2, b2), (a3, b3)},
M2 = {(a1, b3), (a2, b1), (a3, b2)} and M3 = {(a1, b2), (a2, b3), (a3, b1)}. None of
these matchings is popular, since M1 ≺ M2, M2 ≺ M3, and M3 ≺ M1. Abraham et
al. (2007) designed efficient algorithms for determining if a given instance admits a
popular matching and computing one, if it exists.

576 J Comb Optim (2014) 27:574–596

Fig. 1 Example instance that
does not admit a popular
matching

a1 b1 b2 b3
a2 b1 b2 b3
a3 b1 b2 b3

The fact that popular matchings do not always exist has motivated several exten-
sions to the popular matching problem, see McCutchen (2008), Kavitha et al. (2011),
Kavitha and Nasre (2011). In this paper we study two further generalizations namely
min-cost augmentation problem and min-cost popular instance. In the min-cost aug-
mentation problem our goal is to augment the input graph such that then new graph
admits a popular matching. In the min-cost popular instance problem our goal is to
construct an instance that admits a popular matching.

1.1 Min-cost augmentation

Our input consists of G = (A ∪ B,E) and a function cost : B → R
+, where cost(b)

for any b ∈ B is the cost of making a new copy of item b. The set B is a set of items,
say books or DVDs, and new copies of any b ∈ B can be obtained by paying cost(b)

for each new copy of b. There is no restriction on the number of copies of any item
that can be made. The only criterion that we seek to optimize is the total cost of
augmenting G.

Going back to the earlier example on 3 people and 3 items (as shown in Fig. 1) that
did not admit a popular matching, it is easy to show that by making a new copy of
either b1 or b2, the resulting graph admits a popular matching. In order to minimize
the cost, we will make a new copy of that item in {b1, b2} which has lower cost.
Our starting graph G = (A ∪ B,E) comes for free, every addition that we make to
G comes at a price and our goal is to make these additions such that the new graph
admits a popular matching and the total cost of additions is minimized. We call this
the min-cost augmentation problem.

1.2 Min-cost popular instance

A related problem is the following: we do not have a starting graph G. We are given a
set A of people and their preference lists over a universe U of items where each item
b ∈ U has a price cost(b) ≥ 0 associated with it. The problem is to “construct” an
input graph G = (A ∪ B,E) where B is a multiset of some elements in U such that
G admits a popular matching and the cost of constructing G, that is,

∑
b∈B cost(b), is

as small as possible. Here we also have an extra condition that the popular matching
should leave no person unmatched, otherwise we have a trivial solution of B = ∅. We
call this problem the min-cost popular instance problem.

The above problem can also be regarded as a “gift buying” problem. Each person
in A has a preference list over gifts that she would like to receive. The problem is to
buy a gift for each person in A with the total cost as small as possible and assign each
person a gift such that this assignment is popular. That is, there is no reassignment of
gifts such that the number of people who are happier after the reassignment exceeds
the number who are unhappier.

J Comb Optim (2014) 27:574–596 577

1.3 Our results

We show the following results in this paper:

– The min-cost popular instance problem is NP-hard, even when each preference list
has length at most 2 (i.e., every person has a top choice item and possibly, a second
choice item).

– The min-cost augmentation problem has a polynomial time algorithm when each
preference list has length at most 2.

– The min-cost augmentation problem is NP-hard for general lists. In fact, it is NP-
hard to approximate to within a factor of

√
n1/2, where n1 is the number of people.

All our NP-hardness results hold even when preference lists are derived from a
master list. A master list is a total ordering of the items according to some global
objective criterion. Thus if b1 precedes b2 in the master list and if a person a has both
b1 and b2 in her list, then it has to be the case that b1 precedes b2 in a’s list.

The NP-hardness results for the min-cost augmentation/min-cost popular instance
problems stem from the fact that the number of copies of each of the items need to be
determined so as to ensure the existence of a popular matching at minimum cost. Let
copies(b) for any item b ∈ B denote the number of copies of item b in our graph G.
We now consider the following problem: each b ∈ B has a fixed number of copies
denoted by copies(b) and let the cost of a matching M be the sum of costs of items
that are matched in M (we have to pay a cost of k · cost(b) if k copies of item b are
used in M , where k ≤ copies(b)). Our final result is a polynomial time algorithm for
the min-cost popular matching problem which we define below.

The min-cost popular matching problem is to determine if G admits a popular
matching or not and if so, to compute the one with minimum cost. We show that
this problem can be solved in O(mn1) time, where m is the number of edges and
n1 is the number of people. Manlove and Sng considered this problem without costs
in the context of House Allocation. There items were called houses and copies of
items as in our case were represented using capacities for houses. They called it
Capacitated House Allocation with Ties (CHAT) and the problem was to determine
if G admits a popular matching or not, and if so, to compute one. Manlove and Sng
(2006) showed an O(m(n1 +√

C)) algorithm for the CHAT problem, where C is the
sum of capacities of all items.

1.4 Background

Popular matchings were first introduced by Gärdenfors (1975) in the context of stable
matchings for two-sided preference lists (here both sides of the graph G express
preferences). Abraham et al. (2007) studied it in the context of one-sided preferences
where only one side of the bipartition ranks the members of the other side. They gave
a structural characterization of graphs that admit popular matchings and also gave
efficient algorithms to compute a popular matching if one exists. Section 2 outlines
this characterization and the algorithm that follows from it.

Subsequent to the work in Abraham et al. (2007), several variants of the popular
matchings problem have been considered. One line of research has been on general-
izations of the popular matchings problem while the other direction has been to deal

578 J Comb Optim (2014) 27:574–596

with instances that do not admit any popular matchings. The generalizations include
the capacitated version studied by Manlove and Sng (2006), the weighted version
studied by Mestre (2008) and random popular matchings studied by Mahdian (2006).
Kavitha and Nasre (2009) as well as McDermid and Irving (2011) independently
studied the problem of computing an optimal popular matching for strict instances
where the notion of optimality is specified as a part of the input. Note that they also
considered the min-cost popular matchings but in this version the costs are associated
with edges whereas in our problem, costs are associated with items.

The other line of research includes extensions for instances when no popular
matching exists. McCutchen (2008) considered the problem of computing a least
unpopular matching; he considered two measures of unpopularity and showed that
computing a matching that minimized either of these measures is NP-hard. Kavitha
et al. (2011) generalized the notion of popularity to mixed matchings or probability
distributions over matchings and showed that a popular mixed matching always ex-
ists. Kavitha and Nasre (2011) considered the problem of popular matchings with
variable item copies which is closely related to the problems considered in this paper.
In this problem the input is a graph G = (A ∪ B,E) where A is a set of people and B
is a set of items, along with a list 〈c1, . . . , c|B|〉 denoting upper bounds on the num-
ber of copies of each item. The problem is to determine if there exists (x1, . . . , x|B|)
such that for each i, having xi copies of the i-th item, where 1 ≤ xi ≤ ci , enables
the resulting graph to admit a popular matching. This problem was shown to be NP-
hard in Kavitha and Nasre (2011). We would like to contrast the NP-hardness of the
min-cost augmentation problem with the problem of determining a popular matching
with variable item copies. Note that in case of the popular matchings with variable
copies, the number of copies of each item has an upper bound. Instead, if we only
had to maintain an overall upper bound on the total number of copies of all the items
rather than individual upper bounds, a simple polynomial time algorithm solves this
problem (Kavitha and Nasre 2011).

In the min-cost augmentation problem recall that there is no upper bound on the
amount that we can spend on a particular item. What we seek to optimize is the
overall cost and this problem is NP-hard. Note that when each item has the same cost,
then this problem can be solved in polynomial time (using the above algorithm from
Kavitha and Nasre 2011). However, when the costs come from {1,2} the problem
becomes NP-hard.

Organization of the paper Section 2 discusses preliminaries. Section 3 shows that
the min-cost popular instance problem is NP-hard. Section 4 has our results for the
min-cost augmentation problem and Sect. 5 has our algorithm for the min-cost popu-
lar matching problem.

2 Preliminaries

We review the characterization of popular matchings given in Abraham et al. (2007).
Let G1 = (A ∪ B,E1) be the graph containing only rank-1 edges. Then Abraham
et al. (2007, Lemma 3.1) show that a matching M is popular in G only if M ∩ E1

J Comb Optim (2014) 27:574–596 579

is a maximum matching of G1. Maximum matchings have the following important
properties, which we use throughout the rest of the paper.

M ∩ E1 defines a partition of A ∪ B into three disjoint sets: a vertex u ∈ A ∪ B
is even (resp. odd) if there is an even (resp. odd) length alternating path in G1 (w.r.t.
M ∩ E1) from an unmatched vertex to u. Similarly, a vertex u is unreachable if there
is no alternating path from an unmatched vertex to u. Denote by E , O and U the sets
of even, odd, and unreachable vertices, respectively, in G1. The following lemma,
proved in Pulleyblank (1995), is well known in matching theory.

Lemma 1 Let E , O and U be the sets of vertices defined by G1 and M ∩ E1 above.
Then

(a) E , O and U are pairwise disjoint, and independent of the maximum matching
M ∩ E1 in G1.

(b) In any maximum matching of G1, every vertex in O is matched with a vertex in E ,
and every vertex in U is matched with another vertex in U . The size of a maximum
matching is |O| + |U |/2.

(c) No maximum matching of G1 contains an edge between a vertex in O and a
vertex in O ∪ U . Also, G1 contains no edge between a vertex in E and a vertex in
E ∪ U .

Since every maximum cardinality matching in G1 matches all vertices u ∈ O ∪ U ,
these vertices are called critical as opposed to vertices u ∈ E which are called non-
critical. Using this partition of vertices, the following definitions can be made.

Definition 2 For each a ∈ A, define f (a) to be the set of top choice items for a.
Define s(a) to be the set of a’s most-preferred non-critical items in G1.

Theorem 1 (From Abraham et al. 2007) A matching M is popular in G iff (i) M ∩E1

is a maximum matching of G1 = (A ∪ B,E1), and (ii) for each person a, M(a) ∈
f (a) ∪ s(a).

The algorithm for solving the popular matching problem is now straightforward:
each a ∈ A determines the sets f (a) and s(a). A matching that is maximum in G1
and that matches each a to an item in f (a) ∪ s(a) needs to be determined. If no such
matching exists, then G does not admit a popular matching.

3 Min-cost popular instance

In this section we consider the min-cost popular instance problem. Our input is a set
A of people where each a ∈ A has a preference list over items in a universe U , where
each item b ∈ U has a price cost(b) ≥ 0. The problem is to “construct” a graph G

or equivalently, set suitable values for copies(b) where b ∈ U , in order to ensure that
the resulting graph G admits a popular matching that matches all a ∈ A, at the least
possible cost.

580 J Comb Optim (2014) 27:574–596

ai
1 uj1 uj2

ai
2 uj2 uj3

ai
3 uj1 uj3

ai
4 uj1 pi

1

ai
5 uj2 pi

2

ai
6 uj3 pi

3

ai
7 pi

1 qi

ai
8 pi

2 qi

ai
9 pi

3 qi

Fig. 2 The preference lists of people corresponding to the i-th clause in I

We will show that the above problem is NP-hard by showing a reduction from the
monotone 1-in-3 SAT problem to this problem. The monotone 1-in-3 SAT problem
is a variant of the 3SAT problem where each clause contains exactly 3 literals and no
literal appears in negated form. The monotone 1-in-3 SAT problem asks if there exists
a satisfying assignment to the variables such that each clause has exactly 1 literal set
to be true. This problem is NP-hard (Schaefer 1978).

Let I be an instance of the monotone 1-in-3 SAT problem. Let C1, . . . ,Cm be
the clauses in I and let X1, . . . ,Xn be the variables in I . We construct from I an
instance of the min-cost popular instance problem as follows:

Corresponding to each clause Ci = (Xj1 ∨ Xj2 ∨ Xj3), we have 9 people Ai =
{ai

1 . . . , ai
9}. Their preference lists are shown in Fig. 2. In this case every person has

a preference list of length 2, that is a top item followed by a second choice item. For
instance, ai

1 treats item uj1 as its rank-1 item and item uj2 as its rank-2 item.
The items uj1 , uj2 , uj3 are called public items and the items pi

1, pi
2, pi

3, and qi

are called internal items. The internal items induced by clause Ci appear only on the
preference lists of a subset of the people of Ai while the public items appear on the
preference lists of people in Ai as well as outside Ai . The public item ujk

corresponds
to the variable Xjk

. In every clause Ci that Xjk
belongs to, the item ujk

appears in
the preference lists of some of the people in the set Ai as shown in Fig. 2.

The set A of people in our instance is
⋃

i Ai . The universe U of all items is the
union of {u1, . . . , un} (the n public items) and the set

⋃
i{pi

1,p
i
2,p

i
3, q

i} of all the
internal items. It remains to describe the costs of the items. For each i, the cost of
each pi

t for t = 1,2,3, is 1 unit, while the cost of qi is zero units. The cost of each
uj , for j = 1, . . . , n, is 3 units.

Recall that our problem is to determine a set B of items with suitable copies so
that the graph (A ∪ B,E) admits a popular matching that matches all a ∈ A and we
want to do this at the least possible cost. We first show the following lemma.

Lemma 2 Any instance (A ∪ B,E) that admits a popular matching that matches all
a ∈ A has cost at least 14m, where m is the number of clauses in the corresponding
1-in-3 SAT instance.

Proof Let us focus on the set Ai of people corresponding to clause Ci . The preference
lists of people in Ai are shown in Fig. 2. Since the cost of each item on the lists of
ai

1, a
i
2, a

i
3 is 3, we have to spend 9 units to buy an item each for these 3 people (since

we seek an instance where all the people get matched). People ai
4, a

i
5, a

i
6 have a unit

cost item in their preference lists (items pi
1,p

i
2,p

i
3, respectively). Thus, we have to

spend 3 units to buy an item each for these 3 people. Finally, ai
7, a

i
8, a

i
9 have a cost 0

item, i.e. qi , in their preference lists. Hence, we can get qi with copies(qi) = 3 for a

J Comb Optim (2014) 27:574–596 581

cost of 0. Summarizing, we need to spend at least 9 + 3 + 0 = 12 units for the people
in Ai .

However, it is not possible to spend just 12 units for the people in Ai . Consider
the people in the set Sk = {ai

k, a
i
k+3, a

i
k+6}, for k ∈ {1,2,3}. We observe that in case

ujk
does not have any copy then the people in Sk can be matched by spending 4 units.

That is, spend 3 units to match ai
k and 1 unit to match ai

k+3 to a copy of pi
k and 0

units to match ai
k+6 to a copy of qi . Note that here, ai

k gets matched to a copy of ujl

where j �= l and ujl
is on the preference list of ai

k . However, when ujk
has non-zero

copies we claim that we have to spend at least 5 units in order to match the people
in Sk in any popular matching. With non-zero copies of ujk

, we have the following
options to match the people in Sk :

(i) Match ai
k and ai

k+3 to two copies of ujk
and match ai

k+6 to a copy of qi . This
costs us 6 units.

(ii) Match ai
k to a copy of ujk

and match ai
k+3 and ai

k+6 to two copies of pi
k . This

costs us 5 units.
(iii) Match ai

k to a copy of ujk
, ai

k+3 to a copy of pi
k and match ai

k+6 to a copy of qi .
This option is the cheapest which costs us 4 units, however it is not a feasible
option due the following. Recall that there are non-zero copies of the item ujk

and hence pi
k is the second choice item for ai

k+3. Since pi
k is ai

k+6’s top choice
item, we also have to match ai

k+6 to pi
k since a popular matching has to be a

maximum cardinality matching on rank-1 edges (see Theorem 1). Thus, it is not
possible to match ai

k+6 to qi in a popular matching while pi
k gets matched to

ai
k+3 who regards this item as a second choice item.

It is clear from the above that, option (ii) is the cheapest amongst the feasible
options. Thus when we have non-zero copies of ujk

we have to spend at least 5 units
in order to match all the people in Sk in a popular matching. We further note that the
preference lists of the people ai

1, a
i
2, a

i
3 force us to have non-zero copies for at least 2

of the 3 items in {uj1, uj2 , uj3}. This implies that in order to match all the people in
Ai in any popular matching we have to spend at least 4 + 5 + 5 = 14 units.

This holds for each Ai , where 1 ≤ i ≤ m. Since the cost is at least 14 per clause, it
amounts to at least 14m in total for all the clauses. �

The following lemma establishes the correspondence between the instance I of
monotone 1-in-3-SAT and the min-cost popular instance that we defined.

Lemma 3 There exists an instance (A ∪ B,E) with cost 14m that admits a popular
matching that matches all a ∈ A iff there exists a 1-in-3 satisfying assignment for I .

Proof We know from Lemma 2 that any instance (A ∪ B,E) that admits a popular
matching that matches all a ∈ A has a cost of at least 14m. What we need to show
here is that (A ∪ B,E) has cost 14m if and only if the 1-in-3-SAT instance I is a
“yes” instance, that is, there is a true/false assignment to the variables X1, . . . ,Xn

such that each clause has exactly 1 literal set to be true (and thus 2 literals set to be
false).

582 J Comb Optim (2014) 27:574–596

Suppose I admits such an assignment. We now show how to construct a set B of
cost 14m such that the instance (A ∪ B,E) admits a popular matching that matches all
a ∈ A. If Xj = true then set copies(uj) = 0, else copies(uj) will be set to a suitable
strictly positive value.

Since the setting of true/false values to Xj ’s is a satisfying assignment, every
clause has two literals set to false and 1 set to true. Let clause Ci be (Xj1 ∨ Xj2 ∨
Xj3). Thus there is 1 variable Xjk

in {Xj1,Xj2,Xj3} that has been set to true. By
our definition of copies of every item, the corresponding ujk

has 0 copies. Hence the
people in the set Ai can be matched as follows:

• ai
1, a

i
2, a

i
3 get matched to the 2 items in {uj1, uj2, uj3} \ {ujk

} by having 2 copies
of one of the lower indexed item and 1 copy of the higher indexed item for these 3
people.

• pi
k becomes ai

k+3’s top choice item (since ujk
does not exist in the graph now) and

hence we can now match ai
k+3 to pi

k and ai
k+6 to qi .

This way we spend only 9 + 3 + 2 = 14 units for the people in Ai and each person
a has an item in f (a) ∪ s(a) to be matched to. Since every clause in I has exactly
1 variable set to true and 2 set to false, we achieve a cost of 14 for each set Ai . This
shows that we can construct a set B of cost 14m such that (A ∪ B,E) admits a popular
matching that matches all a ∈ A.

To show the other direction, let us set the true/false values of variables in I as
follows: for each j = 1, . . . , n set Xj = true if and only if copies(uj) = 0. We need
to show that such an assignment sets exactly 1 variable in each clause to be true.

Let us consider any clause Ci = (Xj1 ∨Xj2 ∨Xj3). Among the 3 items uj1, uj2, uj3

that correspond to these 3 variables, we need at least 2 items to have non-zero copies
so as to match all the 3 people ai

1, a
i
2, a

i
3. Thus, our true/false assignment does not set

more than 1 variable per clause to true.
We now need to show that there is at least 1 item in {uj1, uj2, uj3} with zero copies.

This is where we will use the hypothesis that we can construct (A ∪ B,E) of cost 14m

that admits a popular matching that matches all a ∈ A. It follows from the proof of
Lemma 2 that each set Ai of people corresponding to a clause needs a cost of at least
14. Since the total cost is only 14m and there are m clauses, this implies that we have
to spend exactly 14 per clause. In other words, the items for the 9 people of each Ai

have to be bought using only 14 units.
If all the 3 items in {uj1, uj2 , uj3} have non-zero copies, then this implies the cost

of items for all the 9 people in Ai will be 9 + 3 + 3 = 15 since when each ujk
has at

least one copy, then the ujk
’s become top choice items for ai

4, a
i
5, a

i
6, respectively and

thus pi
1,p

i
2,p

i
3 become their second choice items. This forces us to match each of

ai
7, a

i
8, a

i
9 to their top choice items (that is, pi

1,p
i
2,p

i
3, respectively) since a popular

matching has to be a maximum cardinality matching on rank-1 edges. However, we
are given that we can spend only 14 units per Ai ; thus it has to be the case that there
exists at least 1 item in {uj1, uj2, uj3} which has zero copies. This finishes the proof
of this lemma. �

Note that the preference lists of all the people in our instance G are strict and of
length at most 2. Also, the preference lists are drawn from a master list. We remark

J Comb Optim (2014) 27:574–596 583

that in this case, the master list ordering is the same as sorting the items in decreasing
order of their costs. We have thus shown the following theorem.

Theorem 2 The min-cost popular instance problem is NP-hard, even when each pref-
erence list has length at most 2. Further, the hardness holds even when the preference
lists are derived from a master list.

4 Min-cost augmentation

In this section we show various results for the min-cost augmentation problem. Recall
that the input here is a graph G = (A ∪ B,E) where each item b ∈ B has a non-
negative cost(b) associated with it. The problem is to determine how to make extra
copies of items in B so that the resulting graph admits a popular matching and the
cost of the extra copies is minimized.

Unlike the min-cost popular instance problem, the above problem admits a simple
polynomial time algorithm when each a ∈ A has a preference list that is strict and
of length at most 2. We describe this algorithm below. We assume throughout this
section that we add at the end of each a’s preference list a dummy item called the last
item �a , where a being matched to �a amounts to a being left unmatched.

4.1 Preference lists of length 2

For any a ∈ A, a’s preference list consists of a top choice item (let us use fa to denote
this item), and possibly a second choice item (let us use za to denote this item) and
then of course, the last item �a that we added for convenience. Let G1 be the graph
G restricted to rank-1 edges. Let the graph G′ = (A ∪ B,E′), where E′ consists of

• all the top ranked edges (a, fa): one such edge for each a ∈ A, and
• the edges (a, sa), where a is even in G1 and sa is a’s most preferred item that is

even in G1. Thus sa = za when za is nobody’s top choice item, else sa = �a .

It follows from Theorem 1 that G admits a popular matching if and only if G′ ad-
mits an A-complete matching. We assume that G does not admit a popular matching
and we have to decide now which items should be duplicated and how many extra
copies should be made. Since G′ does not admit a popular matching, there exists a set
S of people such that the neighborhood N(S) of S in G′ satisfies |N(S)| < |S|. Let S

denote a minimal such set of people. It is easy to see that every a ∈ S must be even in
G1. Thus, for each a ∈ S, the edge (a, sa) belongs to G′ and it must be that sa = za .
Otherwise sa = �a and since no vertex in A other than a has an edge to �a , such an
a will be always matched in any maximum cardinality matching in G′. Hence, such
an a cannot belong to S due to its minimality. Further note that for any such minimal
set S, the set N(S) is a set of items that are all odd in the graph G′ with respect to a
maximum cardinality matching in G′.

Since sa = za for every a ∈ S, and the preference lists are of length at most 2, there
are no items sandwiched between f (a) and s(a) in a’s preference list for every a ∈ S.
Thus, in order to ensure that these people get matched in any popular matching, we

584 J Comb Optim (2014) 27:574–596

need to make extra copies of items in N(S) or equivalently of items that are odd
in the graph G′. Our algorithm precisely does this and in order to get a min-cost
augmentation, it iteratively chooses the odd item in G′ which has least cost. The
steps of our algorithm are described in Algorithm 1.

Algorithm 1 Min-cost augmentation for strict lists of length at most 2

1: Construct the graph G′ = (A ∪ B,E′) where E′ = {(a, b) : a ∈ A, b ∈ f (a) ∪
s(a)}.

2: H0 = G, H ′
0 = G′.

3: Let M0 denote a maximum cardinality matching in H ′
0.

4: for every b ∈ B do
5: copies(b) = 1.
6: end for
7: i = 0.
8: while Mi is not an A-complete matching do
9: Partition the set of vertices into O (the set of odd vertices), E (the set of even

vertices), U (the set of unreachable vertices) w.r.t. Mi in H ′
i .

10: Let b denote the cheapest item in B ∩ O.
11: Set copies(b) = copies(b) + 1. This defines the new graph Hi+1.
12: Construct the graph H ′

i+1 corresponding to Hi+1 and update Mi+1 to be a
maximum cardinality matching in H ′

i+1.
13: i = i + 1.
14: end while
15: Output the graph Hi .

Our algorithm maintains the invariant that no person a changes her s-item due
to the increase in copies. This is because we ensure that no top choice item b ever
becomes even in H 1

i , the graph Hi restricted to rank-1 edges. Note that the set of
odd items in Hi is identified by constructing alternating paths from a person who is
unmatched in Hi and every item b that appears on such a path is always odd. Further,
our duplications ensure that the total number of copies of an item b in any augmented
instance Hi is bounded by the degree of b in G′. In the case of a top choice item b,
the degree of b in G′ is equal to the degree of b in G1, the graph G restricted to
rank-1 edges. Thus, even with the extra copies, a top choice item remains critical in
the augmented graph restricted to rank-1 edges. This implies that for every person,
the most preferred even item in the augmented graph restricted to rank-1 edges (i.e.,
its s-item) remains unchanged.

We note that the above claim also implies that in every iteration of the while loop in
Step 4 of our algorithm, the size of the maximum cardinality matching increases by 1,
that is, |Mi+1| = |Mi | + 1. Therefore, the while loop terminates in k = |A| − |M0|
iterations. Since k is bounded by n1, the number of people in G, the running time of
our algorithm is O(n2

1). It is clear that the graph Hi returned by the algorithm admits
an A-complete matching in the graph H ′

i and hence admits a popular matching. It
remains to show that the instance returned by our algorithm is indeed a minimum
cost instance; we prove that using Lemma 4.

J Comb Optim (2014) 27:574–596 585

Lemma 4 The graph H returned by Algorithm 1 is a minimum cost augmentation of
G that admits a popular matching.

Proof For the sake of contradiction suppose there is an augmentation of G with
smaller cost. Among all such augmentations of minimum cost, let HOPT be that min-
cost augmentation such that the following sum:

∑

b∈B
|number of copies of b in H − number of copies of b in HOPT |

is the smallest.
Since H �= HOPT , the number of extra copies of duplicated items in H and HOPT

do not match. However, note that any item b having extra copies in HOPT is an item
which was odd in G′. Because, if b were even/unreachable in G′, we could delete the
extra copies of b from HOPT and get a smaller cost instance that continues to admit
a popular matching. Further, it is clear that our algorithm always makes extra copies
of items that were odd in G′.

Now, let i be the first iteration where our algorithm chooses to make a copy of
an item β such that the number of copies of β in H is more than the number of
copies of β in HOPT . Since HOPT admits a popular matching, the item β has to be
unreachable in H ′

OPT (since H ′
OPT admits an A-complete matching). It is possible

for β to be unreachable in H ′
OPT only if there exists some other item β ′ with a larger

number of copies in HOPT than in H and β ′ satisfies the following property: β ′ has an
alternating path from β with respect to the matching Mi in the graph H ′

i constructed
by our algorithm.

Thus in the iteration i when β was odd in H ′
i , so was β ′. Since our algorithm chose

β to duplicate, it follows that cost(β) ≤ cost(β ′). Thus, we could replace a copy of
β ′ in HOPT by a copy of β , thereby getting another instance K that admits a popular
matching.

In case cost(β) < cost(β ′), the cost of K is less than the cost of HOPT , contra-
dicting the fact that HOPT was the minimum cost instance. Thus it has to be the case
that cost(β) = cost(β ′), and so K is another minimum cost augmentation of G that
admits a popular matching. Since K has one more copy of β and one less copy of
β ′ than HOPT , this contradicts the definition of HOPT as that min-cost augmentation
where

∑
b∈B |the number of copies of b in H − the number of copies of b in HOPT |

is the smallest. This completes the proof that the graph returned by our algorithm is
indeed a minimum cost augmentation of G that admits a popular matching. �

We can therefore conclude the following theorem.

Theorem 3 The min-cost augmentation problem with strict preference lists of length
at most 2 can be solved in O(n2

1) time.

4.2 Hardness for the general case

We now show that the min-cost augmentation problem in the general case is NP-hard.
The reduction is again from the monotone 1-in-3 SAT problem (refer to Sect. 3). Let

586 J Comb Optim (2014) 27:574–596

ai
1 pi uj1 qi

ai
2 pi uj2 qi

ai
3 pi uj3 qi

ai
4 ri uj1

ai
5 ri uj2

ai
6 ri uj3

Fig. 3 Preference lists of the 6 people in Ai

I be an instance of the monotone 1-in-3 SAT problem. Let C1, . . . ,Cm be the clauses
in I and let X1, . . . ,Xn be the variables in I . We construct from I an instance of the
min-cost augmentation problem as follows.

Let Ci be (Xj1 ∨ Xj2 ∨ Xj3). Corresponding to this clause we have 6 people
Ai = {ai

1, a
i
2, a

i
3, a

i
4, a

i
5, a

i
6} and 3 internal items Di = {pi, qi, ri}. In addition, we

have public items uj1 , uj2, uj3 which belong to preference lists of people in Ai , and,
whenever Xjk

occurs in a clause Ci , the item ujk
will belong to the preference lists of

some people in Ai . The public items have unit cost whereas each internal item b ∈ Di

has cost 2. The preference lists of the people in Ai are shown in Fig. 3.
The set B of items is the union of

⋃m
i=1 Di (the set of all the internal items) and

{u1, . . . , un} (consisting of all the public items, where vertex uj corresponds to the
j -th variable Xj). The set A of people is the union of

⋃m
i=1 Ai and {x1, . . . , xn},

where the vertex xj corresponds to the variable Xj . The preference list of each xj is
of length 1, it consists of the item uj .

G has no popular matching It is easy to see that the graph G described above does
not admit any popular matching. To see this, first note that each public item uj is a
unique rank-1 item for exactly one applicant xj . Hence when every item has a single
copy, these public items are unreachable or critical in G1 (the subgraph of rank-1
edges in G). Now let us consider the people in Ai : for each ai

t ∈ {ai
1, a

i
2, a

i
3}, we have

f (ai
t) = {pi} and s(ai

t) = {qi}. Since there are only 2 items pi, qi for the 3 people
ai

1, a
i
2, a

i
3 to be matched to in any popular matching, G does not admit a popular

matching.
Let G̃ be a min-cost instance such that G̃ admits a popular matching. We now state

the following lemma that establishes the reduction.

Lemma 5 G̃ has cost at most m iff there exists a 1-in-3 satisfying assignment for the
instance I .

Proof Assume that there exists a 1-in-3 satisfying assignment for I . For each j , let cj

denote the number of clauses in which Xj appears. We will set the number of copies
of the items in the following manner: the number of copies of the internal items
remain the same, i.e., copies(b) = 1 for each b ∈ ∪iDi and the number of copies of
the public items are set as follows.

For each j , where 1 ≤ j ≤ n do:

• if Xj = true, then set copies(uj) = 1 + cj

• else copies(uj) remains 1.

Let us determine the cost of this augmentation. For every Xj that is true, we pay
a cost of cj · 1 = cj and for Xj that is false, we pay nothing. Since each clause has

J Comb Optim (2014) 27:574–596 587

exactly one variable set to true, we have:
∑

j :Xj =true cj = m. Thus the cost of our
augmentation is m.

We now show that the graph G̃′ admits an A-complete matching (the edges in G̃′
are (a, b) where b ∈ f (a) ∪ s(a)).

• Consider the people x1, . . . , xn. Each xj gets matched to her f -item uj .
• Consider the people in Ai . We know that exactly one amongst uj1, uj2, uj3 has

more than one copies (since the number of copies was based on a satisfying as-
signment for 1-in-3 SAT). If copies(ujk

) > 1, then ai
k gets matched to ujk

and one
of the 2 people in {ai

1, a
i
2, a

i
3} \ {ai

k} gets matched to pi while the other person gets
matched to qi . Finally, ai

k+3 gets matched to her top choice item ri whereas the 2
people in {ai

4, a
i
5, a

i
6} \ {ai

k+3} get matched to their respective last items (their most
preferred even item in G1).

To prove the other direction, assume that the cost of G̃ is m. We now translate this
into truth values for variables in I . If copies(uj) > 1 in G̃, then set variable Xj =
true, else set Xj = false. We need to show that this is a 1-in-3 satisfying assignment
for I .

Since the cost of adding one copy of any item is at least 1, we need to pay at least
1 unit per clause in order to match the people in Ai . Thus, we need to pay at least
m to get a graph that admits a popular matching. However, by assumption we know
that with a cost of exactly m, the graph G̃ that admits a popular matching. Hence, the
copies of items have been added such that exactly 1 unit has been spent per clause.

Spending 1 unit has allowed all the people in Ai , for each i, to have enough items
to match themselves to in G̃′. Consider the items that occur in the preference lists of
people in Ai (refer to Fig. 3). Since the cost of each internal item is 2 and we cannot
afford a cost of 2 for any clause, it has to be the case that copies(u) > 1 for some
u ∈ {uj1, uj2, uj3}. Thus, we have at least 1 true variable per clause in I .

We now have to show that there is exactly 1 true variable per clause in I . The point
to note is that copies(u) > 1 for any public item u implies that u is non-critical in G̃1.
This changes the most preferred even item in G̃1 for some people. That is, suppose
k items in {uj1, uj2 , uj3} have more than 1 copy. Then, we have k non-critical items
in {uj1, uj2 , uj3} and so we have k people in {ai

4, a
i
5, a

i
6} satisfying the following:

a’s most preferred even item in G̃1 is no longer the last resort item �a ; it is now the
non-critical public item that is second in a’s preference list.

Observe that one person in {ai
4, a

i
5, a

i
6} can be matched to her top choice item ri .

However, to match the second person we need to spend another unit. In the first place,
we have already spent 1 unit to add an extra copy of some ujk

to match all the people
in {ai

1, a
i
2, a

i
3}. With more than one item in {uj1, uj2 , uj3} non-critical in G̃1, we have

pay at least 2 units for the people in Ai . This contradicts the fact that we spent exactly
1 unit for the people in Ai . Hence there is exactly 1 true variable per clause in I . �

We can now conclude the following theorem.

Theorem 4 The min-cost augmentation problem is NP-hard, even for strict lists of
length at most 3. Further, the lists can be derived from a master list.

588 J Comb Optim (2014) 27:574–596

Fig. 4 Preference lists of
people corresponding to the t -th
triplet

ai
3t+1 rt

i uj1

ai
3t+2 rt

i uj2

ai
3t+3 rt

i uj3

4.3 Inapproximability of min-cost augmentation

We extend the above reduction from I to show that this problem is NP-hard to ap-
proximate to within a factor of

√
n1/2, where n1 is the size of A. We construct a

graph H on at most 4m4 people that satisfies the following property:

(∗) If I is a yes instance for 1-in-3 SAT, then H can be augmented at a cost of m to
admit a popular matching. If I is a no instance for 1-in-3 SAT, then H needs a
cost strictly greater than m3 to admit a popular matching.

We describe the construction of the graph H below. Recall that I has m clauses and
corresponding to each clause Ci , we have a set Ai of people. The construction of H

is as follows. Let us call the group of 3 people (ai
4, a

i
5, a

i
6) in Fig. 3 a triplet. Instead

of having just one triplet in Ai , as was the case in the previous section, here we have
many such triplets. In particular, we have m3 + 1 such triplets. The preference list for
one particular triplet (ai

3t+1, a
i
3t+2, a

i
3t+3) is shown in Fig. 4.

We now have 3 + 3(m3 + 1) people in Ai , namely ai
1, a

i
2, a

i
3 and 3 people per

triplet, for each of the m3 + 1 triplets. Thus our overall instance H has m(3 + 3(m3 +
1)) (the people in

⋃
i Ai), plus the n people in {x1, . . . , xn}. Since each clause has

3 variables, n ≤ 3m. Thus we can bound n1, the number of people in H as: n1 ≤
3m4 + 9m ≤ 4m4 for m ≥ 3.

Recall that for each j , the preference list of xj is of length 1, which consists of only
uj . The costs of the items are as follows: the cost of each of the internal items, i.e.,
pi, qi , and rk

i , for k = 1, . . . ,m3 + 1 is m3, and the cost of each uj for j = 1, . . . , n

is 1. We now show that the instance constructed as above satisfies the property (∗).

Lemma 6 If I is a yes instance for 1-in-3 SAT, then H can be augmented at a cost
of m to admit a popular matching. If I is a no instance for 1-in-3 SAT, then H needs
a cost strictly greater than m3 to admit a popular matching.

Proof We first consider the case when I is an yes instance. The proof is similar to that
of Lemma 5. For each j , where 1 ≤ j ≤ n, do the following: if Xj = true, then set
copies(uj) = 1 + cj , where cj is the number of clauses in which Xj is present. Else
set copies(uj) = 1. The total cost involved here is

∑
j :Xj =true cj . Since each clause

has exactly one variable set to true, we have:
∑

j :Xj =true cj = m. Thus, the cost of

our instance H̃ is m. It is easy to show that the graph H̃ ′ admits an A-complete
matching.

• Consider the people x1, . . . , xn. Each xj gets matched to her f -item uj .
• Consider the people in Ai . We know that exactly one amongst uj1, uj2, uj3 has

more than one copies (since the number of copies was based on a satisfying as-
signment for 1-in-3 SAT). If copies(ujk

) > 1, then ai
k gets matched to ujk

and the

J Comb Optim (2014) 27:574–596 589

2 people in {ai
1, a

i
2, a

i
3} \ {ai

k} get matched to pi and qi . For each of the m3 + 1
triplets that we have here, we do as follows. The person ai

3t+k gets matched to
her top choice item rt

i whereas the 2 people in {ai
3t+1, a

i
3t+2, a

i
3t+3} \ {ai

3t+k} get
matched to their last items.

This proves that H can be augmented at a cost of exactly m to admit a popular
matching.

We now prove the other direction, that is, if I is a no instance for 1-in-3 SAT, then
H needs a cost of at least m3 + 1 to admit a popular matching. Suppose H can be
augmented at a cost of at most m3 to admit a popular matching. We will show that this
translates to a 1-in-3 satisfying assignment for I . Let H̃ denote the augmented graph.
Let us set the truth values of variables in I as follows. Set Xj = true iff copies(uj)

in H̃ is greater than 1.
We have only m3 units available to make extra copies so that people in each set Ai

have items in H̃ ′ to match themselves to. Recall that the cost of each internal item is
m3. Hence it is easy to see that we cannot afford an extra copy of any internal item
and thus at least one public item in {uj1, uj2 , uj3} should have more than one copy to
match all of ai

1, a
i
2, a

i
3. Otherwise there are only 2 items pi and qi for these 3 people

to be matched to; since the first copies of uj1 , uj2, uj3 will be matched to xj1, xj2, xj3 ,
respectively. Thus, we have shown that at least one of uj1 , uj2, uj3 has more than one
copy. Hence in our assignment of truth values, there is at least 1 variable in each
clause that is set to true.

Suppose 2 or more of the items in {uj1, uj2, uj3} have more than one copy in H̃ .
We have two people in {ai

1, a
i
2, a

i
3} having their most preferred even item in H̃1 as an

item in {uj1 , uj2, uj3}. In addition, in each of the m3 +1 triplets, two people have their
most preferred even item in {uj1, uj2 , uj3}. Although one of these 2 people from each
triplet can be matched to her unique top choice item, we still need to spend m3 +1 for
all the people in Ai to be matched to items in H̃ ′. This contradicts the hypothesis that
H can be augmented a cost of at most m3 into H̃ . Hence for each i, there is exactly
1 item in {uj1, uj2 , uj3} that has more than one copy in H̃ . In other words, for each
i, there is exactly 1 true variable in the i-th clause. Thus our assignment is a 1-in-3
satisfying assignment for I . �

Now suppose that the min-cost augmentation problem admits a
√

n1/2 approxi-
mation algorithm. Call this algorithm Algo1. If I is a yes instance, then Algo1 has to
return an augmentation of cost at most 1/2 · √

4m4 · m = m3. If I is a no instance,
then there is no augmentation of cost at most m3, so Algo1 returns an answer of cost
greater than m3. Thus using Algo1 it is possible to determine whether I has a 1-
in-3 satisfying assignment or not, a contradiction. Hence we conclude the following
theorem.

Theorem 5 It is NP-hard to approximate the min-cost augmentation problem on
G = (A ∪ B,E) within

√|A|/2.

590 J Comb Optim (2014) 27:574–596

5 Min-cost popular matchings

In this section we present an O(mn1) time algorithm for the min-cost popular match-
ings problem, where m = |E| and n1 = |A|. Our input is an instance G = (A ∪ B,E)

where each item b ∈ B has associated with it the number copies(b) (denoting the
maximum number of people that can be matched to b) and a price cost(b) ≥ 0.
Whenever a person gets matched to b, an amount of cost(b) has to be paid. Thus
if k ≤ copies(b) copies of b get used in a matching M , then a cost of k · cost(b) has
to be paid by M . As done in the earlier sections, we will add a last item �a at the end
of a’s preference list for each person a ∈ A. The cost of �a is 0, since using the edge
(a, �a) amounts to leaving a unmatched.

Our problem here is to decide whether G admits a popular matching or not and if
so, to compute the one with minimum cost. As mentioned in Sect. 1, Manlove and Sng
considered the popular matchings problem (referred to as the CHAT problem) where
items (these were called houses) have capacities and they showed an O(m(n1 +√

C))

algorithm for this problem, where C is the sum of all the capacities.
In order to solve the min-cost popular matchings problem, for each b ∈ B, we

could make copies(b) number of copies and call them b1, . . . , bcopies(b), where each
bi has the same neighborhood as the original vertex b. However, the number of ver-
tices and edges in such a graph will be a function of the sum of number of copies of
every item and therefore can be considerably larger than the number of vertices and
edges in G. Hence we will stick to the original graph G = (A ∪ B,E) and simulate
the larger graph in G itself. Note that a matching in G can contain up to copies(b)

many pairs (ai, b). Such matchings are called b-matchings in the literature; we abuse
notation for the sake of convenience. It is easy to see that the structural characteriza-
tion for popular matchings from Abraham et al. (2007) holds for our problem as well.
That is, any popular matching in our graph G has to be a maximum cardinality match-
ing on rank-1 edges and every person a has to be matched to an item in f (a) ∪ s(a).
This is because by having copies(b) number of occurrences of b, for every item b,
our problem becomes equivalent to the original popular matchings problem.

5.1 Our algorithm

Our algorithm to compute a min-cost popular matching can be broadly partitioned
into two stages. In the first stage we build the graph G′, i.e., the graph where every
person adds edges to their f and s-items. Identifying s-items for people involves par-
titioning the vertices of G into odd, even and unreachable with respect to a maximum
cardinality matching on rank-1 edges. We show in the next section how to efficiently
do this by building Hungarian trees rooted at unmatched vertices. The second stage
then computes a min-cost popular matching in the graph G′ if one exists.

5.1.1 The first stage

We first construct the graph G1 which is the graph G restricted to rank-1 edges. In
order to find a maximum cardinality matching in the graph G1, we use the Ford-
Fulkerson max-flow algorithm. The following transformation from G1 into a flow
network is based on the standard transformation from the bipartite matching problem
to the maximum flow problem:

J Comb Optim (2014) 27:574–596 591

• add a vertex s and an edge directed from s to each person a ∈ A with an edge
capacity of 1 on this edge.

• add a vertex t and an edge directed from each item b ∈ B to t with an edge capacity
of copies(b) on this edge.

• direct every edge (a, b) of G from a to b and set an edge capacity of 1 for each
such edge.

Let F(G1) denote the above graph. It is easy to see that a valid flow from s to t

in the graph F(G1) can be translated to a matching in G1 in which every person
is matched to at most 1 item and every item b is matched up to copies(b) people.
A maximum flow in F(G1) becomes a maximum cardinality matching in G1. We
compute a maximum cardinality matching M0 of G1 by computing a max-flow from
s to t in F(G1). Using the matching M0, our goal is to obtain a partition of A ∪ B
into O (odd), E (even) and U (unreachable). This can be done in time proportional
to the number of edges in the graph provided we create copies(b) many occurrences
of each item p and replicate the neighborhood of b for each copy of b. However this
is too expensive. The main point to note is that all the copies(b) many copies of b,
for each item b, have the same odd/even/unreachable status. We show below that we
can remain in the graph G1 and determine the odd/even/unreachable status of all the
vertices in linear time.

1. We begin with O = E = U = ∅.
2. We then add to the set E all the people that are unmatched in M0 and all the items

that are not fully matched by M0 (i.e., an item b that is matched to fewer than
copies(b) many people). This is because if we would have had copies(b) many
occurrences of b, some of these occurrences would have remained unmatched by
M0 and the other occurrences which are matched would be connected by even
length alternating paths from these unmatched vertices.

3. Our goal now is to build a Hungarian tree Tu for each vertex u that is unmatched
or not fully matched in M0. In order to do so we first set all vertices as unmarked.
We build the trees rooted at unmatched people and not fully matched items as
described below:
(a) For u ∈ A that is unmatched, the children of u in Tu are all the neighboring

items of u that are unmarked so far. For each of these items b the children
of b in Tu are all the unmarked people matched to b. The children of these
people are their neighboring unmarked items and so on. As soon as a vertex
gets visited in Tu we mark it.

(b) For u ∈ B the children of u are all the neighboring unmarked people of u.
Note that some of these people could be matched to u—however, we will
include all these people since we are simulating the Hungarian tree rooted at
an unmatched copy of u. We mark each person in this child list.

Each person a in the above child list had a unique child, the item to which
a is matched. If this item is marked, then a is a leaf in this tree, else we add
M0(a) to the tree and mark it. We now continue to explore the unmarked
neighborhood of M0(a) for all non-leaf people a.

(c) Once Tu is built, all vertices that belong to even levels of Tu (the root is at level
0) are added to E and all vertices that belong to odd levels are added to O.

592 J Comb Optim (2014) 27:574–596

4. Once we finish building all the trees Tu, where u is an unmatched person or not a
fully matched item, the set U gets set to the vertices of A ∪ B \ (O ∪ E) as there
is no alternating path from an unmatched vertex to such vertices.

We note that while building a tree Tu, we explore the neighborhood of a vertex
only if this vertex is unmarked and then this vertex immediately gets marked. This
ensures that a vertex occurs just once across all Tu’s. Having obtained the partition,
it is now possible to define s(a) for every person a as the most preferred even item
of a. Let the graph G′ be the graph G1 along with the edges (a, b) where a ∈ E and
p ∈ s(a).

Since a popular matching is a maximum cardinality matching on rank-1 edges, all
items that are critical in G1, that is, all items in O ∪ U have to be fully matched in
every popular matching M∗ of G. However, we have choice in selecting items of E
and their number of copies that should participate in the min-cost popular matching.
We make this choice in the second stage of our algorithm, as described in the next
section.

5.1.2 The second stage

Our goal in the second part of the algorithm is to augment the matching M0 to find
a min-cost popular matching. However, we start with the matching M1, where M1 =
M0 \ {all edges (a, b) where a ∈ O}. Thus M1 consists only of edges (a, b) where
b ∈ O ∪ U . We take M1 to be our starting matching rather than M0 because it may
be possible to match people O ∩ A to cheaper rank-1 neighbors. Recall that while
computing the max-flow M0, the costs of items played no role.

Now let ρ be an augmenting path with respect to M1, i.e., one end of ρ is an
unmatched person and the other end of ρ is an item b that is not fully matched. The
cost of augmenting the current matching along ρ is the cost of b. By augmenting
the current matching along ρ, every item other than b that is currently matched stays
matched to the same number of people and the item b gets matched to one more
person. Thus the cost of the new matching is the cost of the old matching + cost(b).
In order to match an unmatched person a, our algorithm always chooses the cheapest
augmenting path starting from the person a.

To find the cheapest augmenting path we build a Hungarian tree Ta rooted at every
person that is unmatched in M1. Initially all vertices are unmarked and while building
Ta every visited vertex gets marked so that each vertex occurs at most once in Ta . We
do not terminate the construction of Ta as soon as we find an augmenting path, but we
build Ta completely in order to find a min-cost item b such that there is an augmenting
path between and a and b; we augment M1 along this path to obtain M2. On the other
hand if Ta has no augmenting path then we quit and declare “G does not admit a
popular matching”.

We present our entire algorithm in Algorithm 2. Before we prove the correctness,
we use an illustrative example to demonstrate the execution of our algorithm.

Illustrative example Let G = (A ∪ B,E) denote the instance where A = {a1, . . . ,

a6} and B = {b1, . . . , b5}. The preference lists of the people are as shown in Fig. 5(a),
whereas for every b ∈ B, copies(b) and cost(b) are as shown in Fig. 5(b). The items

J Comb Optim (2014) 27:574–596 593

Algorithm 2 Algorithm for min-cost popular matching
1: Construct the graph G1 = (A ∪ B,E1) where E1 = {(a, b) : a ∈ A, b ∈ f (a)}.
2: Construct the flow graph F(G1) by adding two vertices s and t and adding di-

rected edges with appropriate capacities.
3: Compute a maximum flow in F(G1) and translate the flow to a matching M0

in G1.
4: Mark the vertices of G as odd, even, and unreachable (their status in G1) using

M0.
5: Construct the graph G′ = (A ∪ B,E′) where every person adds edges to her f -

items and every even person adds edges to her s-items.
6: Delete from G′ all edges between two odd vertices and all edges between an odd

vertex and an unreachable vertex.
7: Delete from M0 all edges that are incident on odd people in G′ and call the

resulting matching M1.
8: i = 1.
9: while there exists an unmatched person a in Mi do

10: Build a Hungarian tree Ta rooted at a.
11: if there exists no augmenting path starting at a then
12: Quit and declare “G does not admit any popular matching”.
13: else
14: Augment Mi along the cheapest augmenting path in Ta and call the new

matching Mi+1.
15: end if
16: i = i + 1.
17: end while
18: Return Mi .

a1 b1 b4 (b2, b5)

a2 b1 b5

a3 (b1,b2) b3

a4 (b2,b3) b1

a5 (b2,b4) b3

a6 b4 b1 b5

(a)

copies cost

b1 : 1 8

b2 : 4 3

b3 : 2 4

b4 : 1 2

b5 : 1 4

(b)

Fig. 5 Example to illustrate Algorithm 2

which are bold in Fig. 5(a) denote the f -items for a person, whereas items which are
underlined denote the s-items for a person.

In the first stage, our algorithm constructs the graph G1 on rank-1 edges of G

and the flow-graph F(G1). It is easy to see that in this example the maximum
flow in F(G1) is of 5 units. Figure 6 shows the flow graph F(G1) and a match-
ing M0 = {(a1, b1), (a3, b2), (a4, b2), (a5, b2), (a6, b4)} in F(G1). Using this match-
ing and building Hungarian trees rooted at unmatched people and items which are

594 J Comb Optim (2014) 27:574–596

Fig. 6 The flow graph F(G1).
Dotted edges indicate the
matching M0

not fully matched, we can get the partition of vertices A ∪ B = O ∪ E ∪ U . Here,
O = {a3, a4, a5, b1}, E = {a1, a2, b2, b3} and U = {a6, b4}. At this point, we have
completed Stage 1 of our algorithm or in other words, Steps 1–4 of Algorithm 2.
We now identify s-items for every person using the partition of vertices and con-
struct the graph G′ as described in Step 5 of the algorithm. The s-items for every
person are the underlined items in Fig. 5(a). We note that the edges (a3, b1) and
(a5, b4) get deleted from the graph G′ since they are O O and O U edges respec-
tively. Finally, we delete the edges (a3, b2), (a4, b2) and (a5, b2) from M0 and begin
with the matching M1 = {(a1, b1), (a6, b4)}. The above 3 edges get deleted since
they are incident on vertices belonging to the set O. Finally constructing Hungarian
trees at unmatched people it is easy to see that the instance admits a popular match-
ing and the min-cost popular matching has cost equal to 20. One such matching is
M = {(a1, b2), (a2, b1), (a3, b2), (a4, b3), (a5, b2), (a6, b4)}.

Correctness of this algorithm To see the correctness of the algorithm, we first note
that if there is no augmenting path in Ta , where a is an unmatched person in Mi ,
then there is no popular matching in G. This is because every popular matching is a
maximum cardinality matching on rank-1 edges and has to match every a ∈ A to a
item in f (a) ∪ s(a). It remains to prove that if G admits a popular matching, then
the matching M(= Mi) returned at Step 18 of Algorithm 2 is a min-cost popular
matching. We prove that using Lemma 7.

Lemma 7 If G admits a popular matching, then the matching M returned by our
algorithm is a min-cost popular matching in G.

Proof Suppose M is not a min-cost popular matching in G and let OPT be such a
matching. For the purpose of this proof we operate on the cloned graph where each
item b has copies(b) many occurrences and M and OPT both refer to matchings
where each item is matched to at most one person. Consider OPT ⊕ M—this is a
collection of cycles and even length alternating paths (since both OPT and M are
A-complete). The cycles do not contribute to any change in costs since both OPT and
M match the same items in any cycle.

J Comb Optim (2014) 27:574–596 595

Let ρ be a path in OPT ⊕ M . Let β0 and βM be the endpoints of this path, where
OPT leaves βM unmatched while M leaves β0 unmatched. It suffices to show that
cost(βM) ≤ cost(β0). Since OPT is a popular matching, it has to match all the items
in O ∪ U (the odd/unreachable items in G1). Since it leaves βM unmatched, it follows
that βM ∈ E and thus there are items of E in ρ.

It is the second stage of our algorithm that matches items in E . Let α1 be the last
person in the path ρ to get matched by our algorithm and let M(α1) = β1. Since β0
is unmatched in M it implies that during the execution of our algorithm we found
at least two augmenting paths from α1—one ending in β1 and the other ending in
β0. Further, we found the augmenting path ending in β1 cheaper, that is, cost(β1) ≤
cost(β0).

We now repeat the same argument for the β1–βM sub-path of ρ. Let α2 be the last
person in the β1–βM sub-path that got matched by our algorithm and let M(α2) = β2.
Note that β1 was also unmatched at this time and hence our algorithm found at least
two augmenting paths from α2—one ending in β1 and another ending in β2. Since
M(α2) = β2 it implies that cost(β2) ≤ cost(β1).

Repeating the same argument for the β2–βM sub-path we get vertices β3, . . . , βt =
βM where cost(β2) ≥ cost(β3) ≥ · · · ≥ cost(βt). Combining all the inequalities
yields cost(βM) ≤ cost(β0). �

Time complexity of this algorithm The difference between our algorithm and that
of Manlove and Sng for the CHAT problem in the first stage is that they use
Gabow’s algorithm to find a matching on rank-1 edges whereas we use the Ford-
Fulkerson max-flow algorithm. Gabow’s algorithm runs in time O(

√
Cm) where

C = ∑|B|
i=1 copies(bi) whereas since the value of max-flow in the graph F(G1) is

upper bounded by |A| = n1, Ford-Fulkerson algorithm takes O(mn1) time. Also, the
total time taken by our algorithm to partition the set of vertices into O, E , and U is
O(m+n), where n denotes the total number of vertices in G. It is easy to see that the
time spent by our algorithm in the second stage is also O(mn1) since it takes O(m)

time to build the tree Ta and there are at most n1 such trees that we build. We can
now conclude the following theorem.

Theorem 6 There exists an O(mn1) time algorithm to decide whether a given in-
stance G of the min-cost popular matchings problem admits a popular matching and
if so, to compute one with minimum cost.

Note that by assigning a huge cost Ĉ >
∑

b copies(b) · cost(b) to each of the last
items �a that we introduced, where a ∈ A, our algorithm also works for the min-cost
maximum-cardinality popular matching problem, where we seek among all popular
matchings of maximum cardinality, the one with minimum cost.

6 Conclusions

In this paper we considered several extensions of the popular matching problem. We
showed that the min-cost popular instance problem, which involves building a min-
cost graph that admits a popular matching that matches all applicants, is NP-hard,

596 J Comb Optim (2014) 27:574–596

even when preference lists are strict and of length at most 2. In contrast, the min-cost
augmentation problem admits a simple polynomial time algorithm when preference
lists are strict and of length at most 2. However, the min-cost augmentation problem
is NP-hard in general; it is NP-hard even when preference lists are strict and of length
at most 3. In fact, it is NP-hard to approximate the min-cost augmentation problem to
within a factor of

√
n1/2, where n1 is the number of people. We also showed that the

min-cost popular matching problem (the number of copies of each item is fixed here)
can be solved in O(mn1) time, where m is the number of edges in the input graph.

It may be interesting to consider the augmentation model with costs in the context
of other notions of optimality like rank-maximality (Irving et al. 2006) or fairness.
Although rank-maximal/fair matchings are guaranteed to exist in an instance, it may
be of practical interest to allocate a budget and augment the graph within the budget
constraints to obtain an instance that admits the best rank-maximal/fair matching.

References

Abraham DJ, Cechlárová K, Manlove DF, Mehlhorn K (2004) Pareto-optimality in house allocation prob-
lems. In: Proceedings of 15th annual international symposium on algorithms and computation, pp 3–
15

Abraham DJ, Irving RW, Kavitha T, Mehlhorn K (2007) Popular matchings. SIAM J Comput 37(4):1030–
1045

Gärdenfors P (1975) Match making: assignments based on bilateral preferences. Behav Sci 20:166–173
Irving RW, Kavitha T, Mehlhorn K, Michail D, Paluch K (2006) Rank-maximal matchings. ACM Trans

Algorithms 2(4):602–610
Kavitha T, Nasre M (2009) Note: optimal popular matchings. Discrete Appl Math 157(14):3181–3186
Kavitha T, Nasre M (2011) Popular matchings with variable item copies. Theor Comput Sci 412(12–

14):1263–1274
Kavitha T, Nasre M, Nimbhorkar P (2010) Popularity at minimum cost. In: Proceedings of 21st annual

international symposium on algorithms and computation, pp 145–156
Kavitha T, Mestre J, Nasre M (2011) Popular mixed matchings. Theor Comput Sci 412(24):2679–2690
Mahdian M (2006) Random popular matchings. In: Proceedings of the 8th ACM conference on electronic

commerce, pp 238–242
Manlove D, Sng C (2006) Popular matchings in the capacitated house allocation problem. In: Proceedings

of the 14th annual European symposium on algorithms, pp 492–503
McCutchen RM (2008) The least unpopularity factor and least unpopularity margin criteria for matching

problems with one-sided preferences. In: Proceedings of the 15th Latin American symposium on
theoretical informatics, pp 593–604

McDermid E, Irving RW (2011) Popular matchings: structure and algorithms. J Comb Optim 22(3):339–
358

Mestre J (2008) Weighted popular matchings. In: Kao M-Y (ed) Encyclopedia of algorithms. Springer,
Berlin

Pulleyblank WR (1995) Matchings and extensions. In: Handbook of combinatorics (vol. 1). MIT Press,
Cambridge, pp 179–232 (Chap. 3)

Schaefer T (1978) The complexity of satisfiability problems. In: Proceedings of the 10th annual ACM
symposium on theory of computing, pp 216–226

	Popularity at minimum cost
	Abstract
	Introduction
	Min-cost augmentation
	Min-cost popular instance
	Our results
	Background
	Organization of the paper

	Preliminaries
	Min-cost popular instance
	Min-cost augmentation
	Preference lists of length 2
	Hardness for the general case
	G has no popular matching

	Inapproximability of min-cost augmentation

	Min-cost popular matchings
	Our algorithm
	The first stage
	The second stage
	Illustrative example
	Correctness of this algorithm
	Time complexity of this algorithm

	Conclusions
	References

