# POPULAR MATCHINGS: STRUCTURE AND STRATEGIC ISSUES \*

#### MEGHANA NASRE<sup>†</sup>

**Abstract.** We consider the strategic issues of the popular matchings problem. Let  $G = (\mathcal{A} \cup \mathcal{A})$  $(\mathcal{P}, E)$  be a bipartite graph where  $\mathcal{A}$  denotes a set of agents,  $\mathcal{P}$  denotes a set of posts and the edges in E are ranked. Each agent ranks a subset of posts in an order of preference, possibly involving ties. A matching M is popular if there exists no matching M' such that the number of agents that prefer M' to M exceeds the number of agents that prefer M to M'. Consider a centralized market where agents submit their preferences and a central authority matches agents to posts according to the notion of popularity. Since a popular matching need not be unique, we assume that the central authority chooses an arbitrary popular matching. Let  $a_1$  be the sole manipulative agent who is aware of the true preference lists of all other agents. The goal of  $a_1$  is to falsify her preference list to get better always, that is, in the falsified instance (i) every popular matching matches  $a_1$  to a post that is at least as good as the most-preferred post that she gets when she was truthful, and (ii) some popular matching matches  $a_1$  to a post better than the most-preferred post p that she gets when she was truthful, assuming that p is not one of  $a_1$ 's (true) most-preferred posts. We show that the optimal cheating strategy for a manipulative agent to get better always can be computed in O(m+n)time when preference lists are all strict and in  $O(\sqrt{nm})$  time when preference lists are allowed to contain ties. Here  $n = |\mathcal{A}| + |\mathcal{P}|$  and m = |E|.

To compute the cheating strategies, we develop a *switching graph* characterization of the popular matchings problem involving ties. The switching graph characterization was studied for the case of strict lists by McDermid and Irving (J. Comb. Optim. 2011) and was open for the case of ties. We show an  $O(\sqrt{nm})$  time algorithm to compute the set of *popular pairs* using the switching graph. These results are of independent interest and answer a part of the open questions posed by McDermid and Irving.

1. Introduction. We consider the strategic issues of the popular matchings problem. Let  $G = (\mathcal{A} \cup \mathcal{P}, E)$  be a bipartite graph where  $\mathcal{A}$  denotes a set of agents,  $\mathcal{P}$  denotes a set of posts, and the edges in E are ranked. Each agent ranks a subset of posts in an order of preference, possibly involving ties. This ranking of posts by an agent is called the preference list of the agent. An agent a prefers post  $p_i$  to post  $p_j$  if the rank of post  $p_i$  is smaller than the rank of post  $p_j$  in a's preference list. An agent a is indifferent between posts  $p_i$  and  $p_j$  if they have the same rank on a's preference list. When agents can be indifferent between posts, the preference lists are said to contain ties, otherwise the preference lists are strict. A matching M of G is a subset of edges, no two of which share an end point. For a matched vertex u, let M(u) denote its partner in the matching M. An agent a prefers a matching M to another matching M' if (i) a is matched in M but unmatched in M', or (ii) a prefers M(a) to M'(a).

DEFINITION 1.1. A matching M is more popular than M' if the number of agents that prefer M to M' is greater than the number of agents that prefer M' to M. A matching M is popular if there is no matching M' that is more popular than M.

There exist simple instances that do not admit any popular matching – however, when an instance admits a popular matching, there may be more than one popular matching. Abraham et al. [1] characterized the instances that admit popular matchings and gave efficient algorithms to compute a popular matching if one exists.

**Our problem.** Consider a centralized matching market where each agent  $a \in A$  submits a preference over a subset of posts and a central authority matches agents

<sup>\*</sup>A preliminary version of this work appeared in STACS 2013 [14]. This work was supported in part by CSE/14-15/824/NFIG/MEGA.

<sup>&</sup>lt;sup>†</sup>Department of Computer Science and Engineering, Indian Institute of Technology, Madras, India, 600036 (meghana@cse.iitm.ac.in).

to posts using the criteria of popularity. Since an instance may admit more than one popular matching, we assume that the central authority chooses an arbitrary popular matching. Note that in distinct popular matchings of an instance, an agent may get matched to different posts. Let  $a_1$  be the sole manipulative agent who is aware of the true preference lists of all other agents and the preference lists of  $a \in \mathcal{A} \setminus \{a_1\}$ remain fixed throughout. The goal of  $a_1$  is clear: she wishes to falsify her preference list so as to improve the post that she gets matched to as compared to the post she got when she was truthful. Let  $G = (\mathcal{A} \cup \mathcal{P}, E)$  denote the instance where ranks on the edges represent true preference of all the agents. Let H denote the instance obtained by falsifying the preference list of  $a_1$  alone. We assume that G admits a popular matching and  $a_1$  falsifies in order to create an instance H which also admits a popular matching.

Let  $\mathcal{P}_G(a_1) = \{q_1, q_2, \ldots, q_k\}$  denote the set of posts that  $a_1$  gets matched to in distinct popular matchings of G. Let  $\mathcal{P}_H(a_1) = \{q'_1, q'_2, \ldots, q'_t\}$  denote the set of posts that  $a_1$  gets matched to in distinct popular matchings of H. In addition, assume that the posts in these sets are ordered with respect to  $a_1$ 's preference. That is, for each  $1 \leq i \leq k-1$ , agent  $a_1$  prefers  $q_i$  at least as much as  $q_{i+1}$ , denoted by  $q_i \succeq_{a_1} q_{i+1}$ . Similarly, assume for  $1 \leq j \leq t-1$ , we have  $q'_j \succeq_{a_1} q'_{j+1}$ . Agent  $a_1$  wishes to falsify her preference list to ensure that (i) Every popular matching of H matches her to a post that she prefers at least as much as  $q_1$ . That is, for  $1 \leq j \leq t, q'_j \succeq_{a_1} q_1$  and, (ii) Assuming that  $q_1$  is not  $a_1$ 's top choice post, there exists some popular matching in H that matches her to a post which she *strictly* prefers to  $q_1$ . That is,  $\exists q'_j \in \mathcal{P}_H(a_1)$ such that  $q'_i \succ_{a_1} q_1$ . We term this strategy of  $a_1$  as 'better always' strategy.

Note that it may be possible for  $a_1$  to falsify her preference list such that H does not admit any popular matching. But we do not consider such a falsification. We remark that in order to develop the better always strategy, we need to efficiently compute for an agent a, all the posts that she can get matched to in distinct popular matchings of a given instance. One of our contributions involves computing the popular pairs in an instance.

## 1.1. Our contributions.

- Let  $a_1$  be the sole manipulative agent who wishes to get *better always*. The optimal strategy for  $a_1$  can be computed in O(m+n) time when preference lists are all strict and in  $O(\sqrt{nm})$  time when preference lists are allowed to contain ties.
- To compute the cheating strategies, we develop a switching graph characterization of the popular matchings problem involving ties. The switching graph characterization was studied for the case of strict lists by McDermid and Irving [13] and such a characterization was not known for the case of ties. The switching graph characterization is of independent interest and answers a part of the open questions in [13]. Using the switching graph, we show an  $O(\sqrt{nm})$  time algorithm to compute the set of popular pairs. An edge  $(a, p) \in E$  is a popular pair if there exists a popular matching M in G such that  $(a, p) \in M$ .
- We also show that counting the total number of popular matchings in an instance with ties is #P-Complete. This is in contrast to the case when preferences are strict, where McDermid and Irving [13] gave a linear time algorithm for the same problem.

**1.2. Related work.** The work in this paper is motivated by the work of Teo et al. [17] where they study the strategic issues of the stable marriage problem [3]. The stable

marriage problem is a generalization of our problem where both the sides of the bipartition (usually referred to as men and women) rank members of the opposite side in order of their preference. Teo et al. [17] study the strategic issues of the stable marriage problem where women are required to give complete preference lists and there is a sole manipulative woman. Moreover, she is aware of the true preference lists of all the other women. Teo et al. [17] compute an optimal cheating strategy for a single woman under this model. Huang [5] studies the strategic issues of the stable room-mates problem [3] under a similar model. In the same spirit, we study the strategic issues of the popular matchings problem.

The notion of popular matchings was introduced by Gärdenfors [4] in the context of the stable marriage [3]. Abraham et al. [1] studied the problem for one-sided preference lists and gave a characterization of instances which admit a popular matching. Subsequent to this result, the popular matchings problem has received a lot of attention [6, 8, 9, 11, 12]. However, to the best of our knowledge none of them is motivated by the strategic issues of the popular matchings problem.

Organization of the paper: The rest of the paper is organized as follows. In Section 2 we review the background of the popular matchings problem. In Section 3 we develop the switching graph characterization for the popular matchings problem with ties. In Section 4 we give some intuition and prove useful lemmas for computing our cheating strategies. In Section 5 we formulate the cheating strategies for a manipulative agent. We conclude the paper with some open questions in Section 6.

**2. Background.** We first review the following well known properties of maximum matchings in bipartite graphs. Let  $G = (\mathcal{A} \cup \mathcal{P}, E)$  be a bipartite graph and let M be a maximum matching in G. The matching M defines a partition of the vertex set  $\mathcal{A} \cup \mathcal{P}$  into three disjoint sets: a vertex  $v \in \mathcal{A} \cup \mathcal{P}$  is even (resp. odd) if there is an even (resp. odd) length alternating path in G with respect to M from an unmatched vertex to v. A vertex v is unreachable if there is no alternating path from an unmatched vertex to v. Denote by  $\mathcal{E}$ ,  $\mathcal{O}$ , and  $\mathcal{U}$  the sets of even, odd, and unreachable vertices, respectively, in G. The following lemma is well known in matching theory; its proof can be found in [15] or [7].

LEMMA 2.1 ([15]). Let  $\mathcal{E}$ ,  $\mathcal{O}$ , and  $\mathcal{U}$  be the sets of vertices defined by a maximum matching M in G. Then,

- (a) E, O, and U are pairwise disjoint, and independent of the maximum matching M in G.
- (b) In any maximum matching of G, every vertex in  $\mathcal{O}$  is matched with a vertex in  $\mathcal{E}$ , and every vertex in  $\mathcal{U}$  is matched with another vertex in  $\mathcal{U}$ . The size of a maximum matching is  $|\mathcal{O}| + |\mathcal{U}|/2$ .
- (c) No maximum matching of G contains an edge between a vertex in  $\mathcal{O}$  and a vertex in  $\mathcal{O} \cup \mathcal{U}$ . Also, G contains no edge between a vertex in  $\mathcal{E}$  and a vertex in  $\mathcal{E} \cup \mathcal{U}$ .

We now review the characterization of the popular matchings problem from [1]. As was done in [1], we create a unique last-resort post  $\ell(a)$  for each agent a. In this way, we can assume that every agent is matched, since any unmatched agent a can be paired with  $\ell(a)$ . For an agent a, let f(a) be the set of rank-1 posts for a. To define s(a), let us consider the graph  $G_1 = (\mathcal{A} \cup \mathcal{P}, E_1)$  on rank-1 edges in G and let  $M_1$  be any maximum matching in  $G_1$ . Let  $\mathcal{O}_1, \mathcal{E}_1, \mathcal{U}_1$  define the partition of vertices  $\mathcal{A} \cup \mathcal{P}$  with respect to  $M_1$  in  $G_1$ . For any agent a, let s(a) denote the set of most preferred posts which belong to  $\mathcal{E}_1$  by the above partition. Abraham et al. [1] proved the following theorem. THEOREM 2.2 ([1]). A matching M is popular in G iff

(1)  $M \cap E_1$  is a maximum matching of  $G_1 = (\mathcal{A} \cup \mathcal{P}, E_1)$ , and

(2) for each agent  $a, M(a) \in f(a) \cup s(a)$ .

The algorithm for solving the popular matching problem is as follows: each  $a \in \mathcal{A}$  determines the sets f(a) and s(a). An  $\mathcal{A}$ -complete matching (a matching that matches all agents) that is maximum in  $G_1$  and that matches each a to a post in  $f(a) \cup s(a)$  needs to be determined. If no such matching exists, then G does not admit a popular matching. Abraham et al. [1] gave an  $O(\sqrt{nm})$  time algorithm to compute a popular matching in G which is presented as Algorithm 2.1. Steps 7–11 are added by us and will be used to define the switching graph in the next section. Abraham et al. [1] also showed a simpler characterization for the popular matchings in case of strict lists which gives an O(m + n) time algorithm to return a popular matching if one exists.

We now elaborate on the graphs G' and G'' constructed during the execution of Algorithm 2.1. Let  $G' = (\mathcal{A} \cup \mathcal{P}, E')$  denote the graph in which every agent *a* has edges incident to  $f(a) \cup s(a)$ . Step 4 of Algorithm 2.1 deletes edges from G' between a node in  $\mathcal{O}_1$  and a node in  $\mathcal{O}_1 \cup \mathcal{U}_1$ . We use the following notation for the sake of brevity to refer to edges that have end points lying in particular partitions. We refer to an edge as an  $\mathcal{O}_1\mathcal{U}_1$  edge if the edge has one end point in  $\mathcal{O}_1$  and another end point in  $\mathcal{U}_1$ . Note that the  $\mathcal{O}_1\mathcal{O}_1$  edges and the  $\mathcal{O}_1\mathcal{U}_1$  edges deleted in Step 4 cannot be present in any maximum matching of  $G_1$  (by Lemma 2.1(c)). In addition, observe that the edges deleted in Step 4 are only rank-1 edges, since posts in  $\mathcal{O}_1 \cup \mathcal{U}_1$  have only rank-1 edges incident on them.

Our idea is to extend this and delete the edges from G' that cannot be present in any popular matching of G. For this, let us partition the vertex set  $\mathcal{A} \cup \mathcal{P}$  as  $\mathcal{O}_2, \mathcal{E}_2$ and  $\mathcal{U}_2$  with respect to a popular matching M in G'. Since any popular matching Mis a maximum matching in G', it is easy to see that M cannot contain edges of the form  $\mathcal{O}_2\mathcal{O}_2$  and  $\mathcal{O}_2\mathcal{U}_2$  (by Lemma 2.1(c)). However, note that since M matches every agent, it implies that  $\mathcal{A} \cap \mathcal{E}_2 = \emptyset$  and  $\mathcal{P} \cap \mathcal{O}_2 = \emptyset$ . Thus, there are no  $\mathcal{O}_2\mathcal{O}_2$  edges in the graph G'. Therefore, in Step 9 of Algorithm 2.1 we delete from G' any edge between a node in  $\mathcal{O}_2$  and a node in  $\mathcal{U}_2$ . Let G'' denote the resulting graph.

To illustrate these definitions, we use an example instance. We use it as a running example throughout the paper.

EXAMPLE 2.3. Consider an instance G where  $\mathcal{A} = \{a_1, \ldots, a_7\}$  and  $\mathcal{P} = \{p_1, \ldots, p_9\}$ . The preference lists of the agents are shown in Figure 2.1(a). The preference lists can be read as follows: agent  $a_1$  ranks posts  $p_1, p_2, p_3$  as her rank-1, rank-2 and rank-3 posts respectively and the two posts  $p_6$  and  $p_7$  are tied as her rank-4 posts. We omit explicitly listing  $\ell(a)$  at the end of each agent a's preference list. For every agent a, the posts which are bold denote the set f(a), whereas the posts which are underlined denote the set s(a). The graph  $G_1$  on rank-1 edges of the instance along with a maximum matching  $M_1 = \{(a_1, p_1), (a_4, p_2), (a_5, p_3), (a_7, p_4)\}$  is as shown in Figure 2.1(b). Finally, Figure 2.1(c) shows the graph G' and a popular matching  $M = \{(a_1, p_6), (a_2, p_1), (a_3, p_8), (a_4, p_2), (a_5, p_3), (a_6, p_9), (a_7, p_4)\}$  in G. We note that the edges  $(a_4, p_3)$  and  $(a_1, p_1)$  get deleted in Step 4 and Step 9 of Algorithm 2.1, respectively. The graph G'' thus formed is shown in Figure 3.1(a) which will be used to construct the switching graph in the next section.

Using the following simple observations we state Claim 2.4. (i) Step 4 of Algorithm 2.1 deletes  $\mathcal{O}_1\mathcal{O}_1$  and  $\mathcal{O}_1\mathcal{U}_1$  edges, (ii) Step 9 of Algorithm 2.1 deletes  $\mathcal{O}_2\mathcal{U}_2$  edges, and (iii)  $\mathcal{P} \cap \mathcal{O}_2 = \emptyset$ .

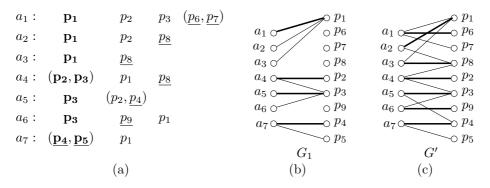


FIG. 2.1. (a) Preference lists of agents  $\{a_1, \ldots, a_7\}$ . The posts which are bold denote f(a) and the posts which are underlined denote s(a). (b) The graph  $G_1$  with bold edges denoting matching  $M_1$ . (c) The graph G' with bold edges denoting a popular matching M.

CLAIM 2.4. Let a be an agent such that  $a \in U_2$ . Then, in Step 9 of Algorithm 2.1, no edge incident on a gets deleted. Let a be an agent such that  $a \in \mathcal{E}_1$ . Then, in Step 4 of Algorithm 2.1, no edge incident on a gets deleted.

**Algorithm 2.1** An  $O(\sqrt{nm})$ -time algorithm for the popular matching problem from [1] (Steps 7–11 are added by us).

Input:  $G = (\mathcal{A} \cup \mathcal{P}, E).$ 

- 1: Construct  $G_1 = (\mathcal{A} \cup \mathcal{P}, E_1)$ . Let  $M_1$  be a maximum matching in  $G_1$ .
- 2: Partition  $\mathcal{A} \cup \mathcal{P}$  as  $\mathcal{O}_1, \mathcal{E}_1, \mathcal{U}_1$  with respect to  $M_1$  in  $G_1$ .
- 3: Construct  $G' = (\mathcal{A} \cup \mathcal{P}, E')$ , where  $E' = \{(a, p) : a \in \mathcal{A} \text{ and } p \in f(a) \cup s(a)\}$ .
- 4: Remove any edge in G' between a node in  $\mathcal{O}_1$  and a node in  $\mathcal{O}_1 \cup \mathcal{U}_1$ .
- 5: Determine a maximum matching M in G' by augmenting  $M_1$ .
- 6: If M is A-complete then M is popular in G, else return "no popular matching".
- 7: if G admits a popular matching then
- 8: Partition  $\mathcal{A} \cup \mathcal{P}$  as  $\mathcal{O}_2, \mathcal{E}_2, \mathcal{U}_2$  with respect to M in G'.
- 9: Remove any edge in G' between a node in  $\mathcal{O}_2$  and a node in  $\mathcal{U}_2$ .
- 10: Denote the resulting graph as  $G'' = (\mathcal{A} \cup \mathcal{P}, E'')$ .
- 11: end if

DEFINITION 2.5. For an agent a, let choices(a) be the set of posts p such that (a, p) is an edge in G''.

It is easy to see that for any  $a \in \mathcal{A}$ ,  $choices(a) \subseteq f(a) \cup s(a)$ . Using the above definition and the fact in Step 9 of Algorithm 2.1 we delete only those edges that do not belong to any popular matching in G, we make the following claim.

CLAIM 2.6. Let M be any popular matching in G and a be any agent. The matching M is contained in G'' and  $M(a) \in choices(a)$ .

We now show using the following lemma that the cardinality of choices(a) for any agent a is no less than two. This fact will be used by the switching graph defined in the next section.

LEMMA 2.7. For any agent  $a \in \mathcal{A}$ ,  $|choices(a)| \geq 2$ .

*Proof.* We first show that every agent has degree at least 2 in the graph G' constructed in Step 3 of Algorithm 2.1. Recall that G' denotes the graph in which every agent a has edges to  $f(a) \cup s(a)$ . Let  $a \in \mathcal{A}$ . If  $|f(a)| \ge 2$ , we are done. Else

let f(a) contain exactly one post and let  $f(a) = \{p\}$ . In this case, it is easy to see that  $p \in \mathcal{O}_1 \cup \mathcal{U}_1$ . Thus, by the definition of s(a), we conclude that  $s(a) \cap f(a) = \emptyset$ . Moreover, for every agent a, s(a) is well-defined due to the introduction of  $\ell(a)$ . This shows that, even when |f(a)| = 1, agent a has at least two edges incident on it in the graph G', one edge to  $p \in f(a)$  and, one or more edges to posts in s(a).

Next, observe that the graph G'' differs from G' because edges may get deleted in Step 4 and Step 9 of Algorithm 2.1. We now show that even after the deletions, every agent continues to have degree at least 2 in the resultant graph G''. This will prove that for any  $a \in \mathcal{A}$ , *choices* $(a) \geq 2$ . Let  $M_1$  be a maximum matching in  $G_1$ and M be a popular matching in G.

Consider the edges deleted in Step 4. Recall that we never delete matched edges, since they are either of the form  $\mathcal{OE}$  or  $\mathcal{UU}$ . We consider three cases depending on the partition in which a belongs when vertices are partitioned as  $\mathcal{O}_1, \mathcal{E}_1, \mathcal{U}_1$ .

- Let  $a \in \mathcal{E}_1$ : By Claim 2.4, no edge incident on a gets deleted in Step 4, so we are done.
- Let  $a \in \mathcal{O}_1$ : This implies that a is matched in  $M_1$  and let  $M_1(a) = p$ . In addition, there exists an odd length alternating path  $T = \langle p_0, a_1, p_1, \ldots, a_k, p_k, a \rangle$  w.r.t.  $M_1$  starting at an unmatched post  $p_0$  leading to the agent a. The path T is incident on a with an unmatched edge  $(p_k, a)$ . Note that this unmatched edge  $(p_k, a)$  is of the form  $\mathcal{E}_1\mathcal{O}_1$  and hence does not get deleted. Thus, the two neighbors  $p_k$  and p of the agent a ensure that the degree of a is at least 2 even after some edges incident on a may get deleted in Step 4.
- Finally, let  $a \in \mathcal{U}_1$ : This implies that a is matched in  $M_1$  and let  $M_1(a) = p$ . Since  $a \in \mathcal{U}_1$ , it implies that every post  $p' \in f(a)$  is such that  $p' \in \mathcal{O}_1 \cup \mathcal{U}_1$ . Since s(a) is the set of most preferred posts belonging to  $\mathcal{E}_1$ , we conclude that in this case, all posts in s(a) are at rank greater than or equal to 2. Moreover, since Step 4 only deletes rank-1 edges, none of the edges from a to posts in s(a) can get deleted in this step. Thus, counting the edge to p and one or more edges to posts in s(a), we ensure that a has degree at least 2, even after some edges incident on a may get deleted in Step 4.

We now consider edges deleted in Step 9. Recall that  $\mathcal{A} \cap \mathcal{E}_2 = \emptyset$ . Consider  $a \in \mathcal{O}_2$ , then using the same argument as we used for  $a \in \mathcal{O}_1$ , we can prove that even after edges incident on a get deleted, degree of a remains at least 2. Finally, if  $a \in \mathcal{U}_2$ , then by Claim 2.4, no edge incident on a gets deleted in Step 9.

Thus, we have proved that in the graph G'', the degree of every agent is at least 2, which implies that  $choices(a) \ge 2$ , for every  $a \in \mathcal{A}$ .  $\Box$ 

3. The switching graph characterization. In this section we develop the switching graph for the popular matchings problem with ties. In case of strict lists, McDermid and Irving [13] defined a switching graph  $G_M = (\mathcal{P}, E_M)$  as a directed graph on the posts of G and the edge set  $E_M$  is determined by a popular matching M in G. In fact, a similar graph was defined even before that by Mahdian [11] (again for strict lists) to study the existence of popular matchings in random instances. McDermid and Irving showed that given a popular matching M in G, the switching graph  $G_M$  can be used to efficiently construct any other popular matching M' in G. They also exploited the switching graph to develop efficient algorithms for several problems such as computing popular pairs, and counting the number of popular matchings, to name a few. We use the notation and terminology from [13] to define the switching graph in case of ties.

Let G be an instance of the popular matchings problem with ties and let M be a

popular matching in G. The switching graph  $G_M = (\mathcal{P}, E_M)$  is a directed weighted graph on the posts  $\mathcal{P}$  of G and is defined with respect to M in G. The edge set  $E_M$  is defined using the pruned graph  $G'' = (\mathcal{A} \cup \mathcal{P}, E'')$  constructed in Step 10 of Algorithm 2.1. There exists an edge from  $p_i$  to  $p_j$  (with  $p_i \neq p_j$ ) in  $E_M$  iff for some  $a \in \mathcal{A}, p_i = M(a)$  and  $(a, p_j) \in E''$ . The weight of an edge  $w(M(a), p_j)$  is defined as:

$$w(M(a), p_j) = 0$$
 if a is indifferent between  $M(a)$  and  $p_j$   
= -1 if a prefers  $M(a)$  to  $p_j$   
= +1 if a prefers  $p_j$  to  $M(a)$ .

It is easy to see that the graph  $G_M = (\mathcal{P}, E_M)$  can be constructed in  $O(\sqrt{nm})$  time using Algorithm 2.1.

Consider a vertex p in  $G_M$ . Call p a sink vertex in  $G_M$  if the out-degree of p is zero in  $G_M$ . We will prove subsequently that sink vertices are posts that are unmatched in M. Let  $\mathcal{X}$  be a connected component in the underlying undirected graph of  $G_M$ . Call  $\mathcal{X}$  a sink component if  $\mathcal{X}$  contains one or more sink vertices; otherwise call  $\mathcal{X}$  a non-sink component.

For a path T (resp. cycle C) in  $G_M$ , the weight of the path w(T) (resp. w(C)) is the sum of the weights on the edges in T (resp. C). (Whenever we refer to paths and cycles in  $G_M$  we imply directed paths and directed cycles respectively.) A path  $T = \langle p_0, p_1 \dots, p_{k-1} \rangle$  in  $G_M$  is called a *switching path* if T ends in a sink vertex and w(T) = 0. Similarly, a cycle  $C = \langle p_0, \dots, p_{k-1}, p_0 \rangle$  in  $G_M$  is called a *switching cycle* if w(C) = 0. Let  $\mathcal{A}_T = \{a_i : M(p_i) = a_i, \text{ for } i = 0 \dots k - 2\}$  and denote by  $M' = M \cdot T$  the matching obtained by *applying* the switching path to M, that is, for  $a_i \in \mathcal{A}_T$ ,  $M'(a_i) = p_{i+1}$  whereas for  $a \notin \mathcal{A}_T$ , M'(a) = M(a). Similarly, for a switching cycle C, define  $\mathcal{A}_C = \{a_i : M(p_i) = a_i, \text{ for } i = 0 \dots k - 1\}$  and denote by  $M' = M \cdot C$  the matching obtained by *applying* the switching cycle to M, that is, for  $a_i \in \mathcal{A}_C$ ,  $M'(a_i) = p_{(i+1) \mod k}$  whereas for  $a \notin \mathcal{A}_C$ , M'(a) = M(a). Before we prove the structural properties of the switching graph, let us construct the switching graph for our example instance.

EXAMPLE 3.1. Recall the instance in Figure 2.1(a) and the graph G'' constructed by Step 10 of Algorithm 2.1. Figure 3.1(a) shows the graph G'' for the instance with a popular matching  $M = \{(a_1, p_6), (a_2, p_1), (a_3, p_8), (a_4, p_2), (a_5, p_3), (a_6, p_9), (a_7, p_4)\}$ . Figure 3.1(b) shows the switching graph  $G_M$  with respect to M. Consider the switching path  $T = \langle p_9, p_3, p_4, p_5 \rangle$  in  $G_M$ . By applying T to M we get  $M' = M \cdot T$  where  $M' = \{(a_1, p_6), (a_2, p_1), (a_3, p_8), (a_4, p_2), (a_5, p_4), (a_6, p_3), (a_7, p_5)\}$ . It is easy to verify that M' is also a popular matching in G.

**3.1. Structural properties.** In this section we prove some useful structural properties of the switching graph  $G_M$ . Recall that the vertices  $\mathcal{A} \cup \mathcal{P}$  are partitioned as  $\mathcal{O}_1, \mathcal{E}_1, \mathcal{U}_1$  w.r.t. a maximum matching  $M_1$  in  $G_1$  (see Step 2 of Algorithm 2.1). We show that this partition of vertices determines the weights on the edges of the switching graph. Additionally, the vertices  $\mathcal{A} \cup \mathcal{P}$  are partitioned as  $\mathcal{O}_2, \mathcal{E}_2, \mathcal{U}_2$  w.r.t. a popular matching M in G' (see Step 8 of Algorithm 2.1). We show that this partition determines whether a post belongs to a sink component or a non-sink component.

PROPERTY 3.2. A vertex p is a sink vertex of  $G_M$  iff p is unmatched in M. Furthermore, every sink vertex of  $G_M$  belongs to the set  $\mathcal{E}_1$ .

*Proof.* We note that by the definition of the graph  $G_M$ , an unmatched post p does not have any out-going edge and hence is a sink vertex of  $G_M$ . To show that a sink vertex p is unmatched in M, it suffices to observe that for any  $a \in \mathcal{A}$ , we have

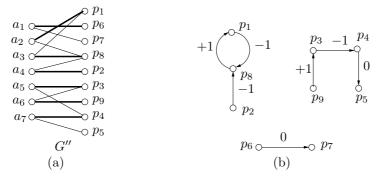


FIG. 3.1. (a) The graph G'' with a popular matching M. (b) Switching graph  $G_M$  with respect to M in G.

 $|choices(a)| \ge 2$ , by Lemma 2.7. Thus, every matched post will have out-degree at least one in  $G_M$  and hence only an unmatched post can be a sink vertex.

We now prove that every sink vertex belongs to  $\mathcal{E}_1$ . Assume for the sake of contradiction that a sink vertex p in  $G_M$  belongs to  $\mathcal{O}_1 \cup \mathcal{U}_1$ . Since p is a sink, it implies that p is unmatched in M. Moreover, since M is a popular matching, it implies that M is a maximum matching on rank-1 edges in G. However, every maximum matching on rank-1 edges of G matches every vertex in  $\mathcal{O}_1 \cup \mathcal{U}_1$ . Thus, if p is unmatched in M and  $p \in \mathcal{O}_1 \cup \mathcal{U}_1$ , it implies that M is not a maximum matching on rank-1 edges of G, a contradiction.  $\Box$ 

PROPERTY 3.3. A post p belongs to a sink component of  $G_M$  iff  $p \in \mathcal{E}_2$ . A post p belongs to a non-sink component of  $G_M$  iff  $p \in \mathcal{U}_2$ . Additionally, every post belonging to a sink component has a path to some sink vertex in  $G_M$ .

*Proof.* We show that it suffices to prove the first statement. Let p be a post such that  $p \in \mathcal{E}_2$ . Then p is either unmatched in M or p has an even length alternating path starting at an unmatched vertex p' with respect to M in G'. If p is unmatched, then p is a sink vertex in  $G_M$  and hence we are done. Else let  $\langle p = p_1, a_1, \ldots, p_k, a_k, p_{k+1} = p' \rangle$  denote the alternating path and for every  $1 \leq i \leq k$ , we have  $M(p_i) = a_i$ . Note that every unmatched edge  $(a_i, p_{i+1})$  is of the form  $\mathcal{O}_2\mathcal{E}_2$  and hence none of these unmatched edges get deleted in Step 9 of Algorithm 2.1. Therefore, it is easy to see that the path  $\langle p = p_1, p_2, \ldots, p_{k+1} = p' \rangle$  is present in  $G_M$  and hence p belongs to the sink component that contains p'. This also implies that every  $p \in \mathcal{E}_2$  has a directed path to some sink vertex in  $G_M$ .

To prove the other direction let  $\mathcal{X}$  be a sink component in  $G_M$  and p' be a sink in  $\mathcal{X}$ . For the sake of contradiction let  $p \in \mathcal{X}$  and  $p \in \mathcal{U}_2$ . Recall that  $\mathcal{O}_2 \cap \mathcal{P} = \emptyset$ . Now since p and p' lie in the same component, there is an (undirected) path between p and p' in the underlying undirected component of  $\mathcal{X}$ . Let  $\langle p = p_1, p_2, \ldots, p_k = p' \rangle$ denote this undirected path. Since  $p_1 \in \mathcal{U}_2$  and  $p_k \in \mathcal{E}_2$ , it implies that there exists an  $1 \leq i \leq k - 1$  such that  $p_i \in \mathcal{U}_2$  and  $p_{i+1} \in \mathcal{E}_2$ . Consider the two possible directions for the edge between  $p_i$  and  $p_{i+1}$  in  $G_M$ : (i) If the edge is directed from  $p_i$  to  $p_{i+1}$  in  $G_M$ , then we show that  $p_i$  has a directed path to some sink of  $\mathcal{X}$ . As proved earlier,  $p_{i+1}$  has a directed path T to some sink in  $\mathcal{X}$ . We now prefix the edge  $(p_i, p_{i+1})$  to the path T to get a directed path from  $p_i$  to some sink. Such a directed path to a sink implies an even length alternating path with respect to M in G' from the sink to  $p_i$ . This contradicts the fact that  $p_i \in \mathcal{U}_2$ . (ii) Finally, if the edge is directed from  $p_{i+1}$  to  $p_i$  in  $G_M$ , then it implies that  $p_{i+1}$  is matched in M and let  $M(p_{i+1}) = a_{i+1}$ . Since  $p_{i+1} \in \mathcal{E}_2$  this implies that  $a_{i+1} \in \mathcal{O}_2$ . Thus the presence of the edge  $(p_{i+1}, p_i)$ in  $G_M$  implies that there is an  $\mathcal{O}_2\mathcal{U}_2$  edge  $(a_{i+1}, p_i)$  in the graph G''. However, such an  $\mathcal{O}_2\mathcal{U}_2$  edge should have been deleted by Step 9 of Algorithm 2.1. Hence such an edge cannot be present in  $G_M$  contradicting the fact that  $p \in \mathcal{U}_2$ . Thus, every post pbelonging to a sink component belongs to the set  $\mathcal{E}_2$ .

The above proof immediately implies that a post p belongs to a non-sink component iff  $p \in \mathcal{U}_2$ . This finishes the proof of Property 3.3.  $\Box$ 

PROPERTY 3.4. For an edge  $(p_i, p_j)$  in  $G_M$ , the weight  $w(p_i, p_j)$  is determined by which partition  $p_i$  and  $p_j$  belong to when vertices are partitioned as  $\mathcal{O}_1, \mathcal{E}_1, \mathcal{U}_1$ . That is,  $w(p_i, p_j)$  can be determined using Table 3.1.

| $p_i$           | $\mathcal{O}_1$ | $\mathcal{E}_1$ | $\mathcal{U}_1$ |
|-----------------|-----------------|-----------------|-----------------|
| $\mathcal{O}_1$ | 0               | -1              | ×               |
| $\mathcal{E}_1$ | +1              | 0               | ×               |
| $\mathcal{U}_1$ | ×               | -1              | 0               |
| TABLE 3.1       |                 |                 |                 |

Table shows  $w(p_i, p_j)$  for an edge  $(p_i, p_j)$  in  $G_M$ . The weight is determined by the partition of vertices as  $\mathcal{O}_1, \mathcal{E}_1, \mathcal{U}_1$ . The  $\times$  denotes that such an edge is not present in  $G_M$ .

*Proof.* To prove Property 3.4 we justify the entries in Table 3.1. Let  $(p_i, p_j)$  be an edge in  $G_M$  and let  $M(p_i) = a$ . The weight on the edge  $(p_i, p_j)$  is determined by the relative ranks of  $p_i$  and  $p_j$  in a's preference list. We note that a post  $p \in \mathcal{O}_1 \cup \mathcal{U}_1$ has only rank-1 edges incident on it in the graph G'. Hence if  $p_i \in \mathcal{O}_1 \cup \mathcal{U}_1$ , then a treats  $p_i$  as her rank-1 post.

- $p_i \in \mathcal{O}_1$ : a treats  $p_i$  as her rank-1 post and since posts in  $\mathcal{O}_1$  remain matched to agents in  $\mathcal{E}_1$ , it implies that  $a \in \mathcal{E}_1$ .
  - $-p_j \in \mathcal{O}_1$ : *a* treats  $p_j$  as her rank-1 post, thus,  $w(p_i, p_j) = 0$ .
  - $-p_j \in \mathcal{E}_1$ : We show that *a* treats  $p_j$  as her non-rank-1 post and hence  $w(p_i, p_j) = -1$ . Assume for the sake of contradiction that *a* treats  $p_j$  as a rank-1 post. It implies that there is an  $\mathcal{E}_1\mathcal{E}_1$  edge in the graph  $G_1$ , a contradiction (by part (c) Lemma 2.1).
  - $-p_j \in \mathcal{U}_1$ : We show that such an edge cannot exist in  $G_M$ . Recall that posts in  $\mathcal{U}_1$  have only rank-1 edges incident on them, hence *a* treats  $p_j$ as her rank-1 post. This implies that there is an  $\mathcal{E}_1\mathcal{U}_1$  edge in  $G_1$ , a contradiction (by part (c) of Lemma 2.1).
- $p_i \in \mathcal{E}_1$ : Here we consider two cases:
  - (i) a treats  $p_i$  as her rank-1 post: In this case, we note that  $s(a) \subseteq f(a)$  and hence a has only rank-1 edges incident on it in the graph G' and all these edges are incident on posts which belong to  $\mathcal{E}_1$ . Thus the only case possible is,  $p_i \in \mathcal{E}_1$  and  $w(p_i, p_j) = 0$ .

(ii) a treats  $p_i$  as her non-rank-1 post: We first note that  $a \in \mathcal{E}_1$  because agents in  $\mathcal{O}_1 \cup \mathcal{U}_1$  remain matched along rank-1 edges in every popular matching. Consider the three different cases for  $p_j$ .

- $-p_j \in \mathcal{O}_1$ : *a* treats  $p_j$  as her rank-1 post and hence  $w(p_i, p_j) = +1$ .
- $-p_j \in \mathcal{E}_1$ : We show that *a* treats  $p_j$  as her non-rank-1 post and hence  $w(p_i, p_j) = 0$ . Assume for the sake of contradiction that *a* treats  $p_j$  as her rank-1 post. Then there exists an  $\mathcal{E}_1\mathcal{E}_1$  edge in  $G_1$  a contradiction (by part (c) of Lemma 2.1).

- $-p_j \in \mathcal{U}_1$ : We show that such an edge cannot exist in  $G_M$ . If such an edge exists there is an  $\mathcal{E}_1\mathcal{U}_1$  edge in  $G_1$  a contradiction (by part (c) of Lemma 2.1).
- $p_i \in \mathcal{U}_1$ : *a* treats  $p_i$  as her rank-1 post and since posts in  $\mathcal{U}_1$  remain matched along agents in  $\mathcal{U}_1$ , it implies that  $a \in \mathcal{U}_1$ .
  - $-p_j \in \mathcal{O}_1$ : *a* treats  $p_j$  as her rank-1 post however such an edge gets deleted as an  $\mathcal{O}_1\mathcal{U}_1$  edge in Step 4 of Algorithm 2.1. Thus such an edge cannot be present in  $G_M$ .
  - $-p_j \in \mathcal{E}_1$ : We show that *a* treats  $p_j$  as her non-rank-1 post and hence  $w(p_i, p_j) = -1$ . Assume for the sake of contradiction that *a* treats  $p_j$  as a rank-1 post then, it implies that there is a  $\mathcal{U}_1\mathcal{E}_1$  edge in the graph  $G_1$ , a contradiction (by part (c) of Lemma 2.1).

 $-p_j \in \mathcal{U}_1$ : *a* treats  $p_j$  as her rank-1 post and therefore  $w(p_i, p_j) = 0$ . This justifies all the entries of Table 3.1.  $\Box$ 

PROPERTY 3.5. Every path T in  $G_M$  has  $w(T) \in \{-1, 0, +1\}$ . Every cycle C in  $G_M$  has w(C) = 0. There exists no path T in  $G_M$  ending in a sink vertex with w(T) = +1.

*Proof.* It is easy to observe that if the edges have weights according to Table 3.1, then every path in  $G_M$  has weight belonging to  $\{-1, 0, +1\}$ . Furthermore, every cycle has to have weight 0. It remains to argue that in  $G_M$  there exists no path T of weight +1 which ends in a sink. For contradiction, assume that such a path exists in  $G_M$  and consider applying the path T to M to obtain the matching  $M' = M \cdot T$ . The number of agents that prefer M' to M is exactly one more than the number of agents that M'. Thus M' is more popular than M, contradicting the fact that M was a popular matching.  $\Box$ 

PROPERTY 3.6. For any switching path T (or switching cycle C) in  $G_M$ , the matching  $M' = M \cdot T$  ( $M' = M \cdot C$  resp.) is a popular matching in G. Every popular matching M' in G can be obtained from M by applying to M zero or more vertex disjoint switching paths and switching cycles in each of the of sink components of  $G_M$  together with zero or more vertex disjoint switching cycles in each of the non-sink components of  $G_M$ .

Proof. We first show that for any switching path T, the matching obtained by applying T to M is popular in G. Let  $T = \langle p_0, p_2, \ldots, p_{k-1} \rangle$  be a switching path in  $G_M$  with  $p_{k-1}$  unmatched in M and let  $M' = M \cdot T$ . Let  $\mathcal{A}_T = \{a_i : M(p_i) = a_i, \text{ for } i = 0 \ldots k - 2\}$ . We observe that for every  $a_i \in \mathcal{A}_T$ ,  $M'(a_i) \in f(a_i) \cup s(a_i)$ because edges of  $G_M$  are derived from a subset of graph  $G' = (\mathcal{A} \cup \mathcal{P}, E')$  (refer to Algorithm 2.1). Furthermore, for any  $a \notin \mathcal{A}_T$ , M'(a) = M(a). Finally, note that since w(T) = 0, for every agent that got demoted from her rank-1 post there exists a unique agent who got promoted to her rank-1 post in M'. Thus, M' is a maximum matching on rank-1 edges of G. It is therefore clear that M' satisfies both the properties defined by Theorem 2.2 and hence M' is a popular matching in G. A similar argument proves that for any switching cycle C, the matching  $M \cdot C$  is also a popular matching in G.

Now consider any popular matching M' in G. We show that M' can be obtained from M by applying a set of vertex disjoint switching paths and switching cycles of  $G_M$ . Consider  $M \oplus M'$  which is a collection of vertex disjoint paths and cycles in G. Since G is bipartite, it is clear that the cycles are of even length. To see that the paths are of even length, we recall that the addition of  $\ell(a)$  at the end of each agent a's preference list ensures that |M| = |M'|. Let  $T_G = \langle p_1, a_1, \ldots, p_k, a_k, p_{k+1} \rangle$  be any even length path in  $M \oplus M'$  with  $p_{k+1}$  unmatched in M and  $p_1$  unmatched in M'. For every  $1 \leq i \leq k$ , let  $M(p_i) = a_i$ . Now, using Claim 2.6, we know that both M and M' are contained in G'', therefore the path  $T_G$  is contained in G''. Thus, it is easy to see that the path  $T = \langle p = p_1, p_2, \dots, p_{k+1} = p' \rangle$  is present in  $G_M$  and it ends in a sink. Note that w(T) cannot be strictly positive since M is a popular matching. Similarly, w(T) cannot be strictly negative. This is because since both M and M' are popular,  $w(T) \leq -1$  implies that there exists another path  $T'_G$  (or a cycle  $C'_G$ ) in  $M \oplus M'$ , whose corresponding path T' (resp. cycle C') in the graph  $G_M$  has a positive weight. However, this again contradicts the fact that M is a popular matching. Thus, the path T has weight 0 and ends in a sink and hence is a switching path. A similar argument shows that every cycle in  $M \oplus M'$  has a corresponding switching cycle in  $G_M$ . Applying these switching paths and cycles to M gives us the desired matching M', thus completing the proof.  $\Box$ 

Recall the definition of choices(a) for an agent as given by Definition 2.5. We now define the notion of a *tight-pair*, that is, a set of agents  $A_1$  and a set of posts  $\mathcal{P}_1$  with  $|\mathcal{A}_1| = |\mathcal{P}_1|$ . In addition, for every  $a \in \mathcal{A}_1$  we have  $choices(a) \subseteq \mathcal{P}_1$ . The concept of a tight-pair will be used in the next section where we define the cheating strategy. We show that a tight-pair exists whenever there is a non-sink component in the switching graph  $G_M$ .

LEMMA 3.7. Let  $\mathcal{Y}$  be a non-sink component in  $G_M$  and  $q \in \mathcal{Y}$ . Let

$$= \{q\} \cup \{p: \ q \ has \ a \ path \ to \ p \ in \ G_M \ \}$$

Then there exists a set of agents  $\mathcal{A}_q$  such that (i)  $|\mathcal{A}_q| = |\mathcal{P}_q|$ , and (ii) for every

 $a \in \mathcal{A}_q, \ choices(a) \subseteq \mathcal{P}_q.$  *Proof.* Let  $\mathcal{A}_q = \{M(p) : p \in \mathcal{P}_q\}$ . Since every  $p \in \mathcal{P}_q$  is matched, we note that  $|\mathcal{A}_q| = |\mathcal{P}_q|$ . Consider any agent  $a \in \mathcal{A}_q$ ; then  $M(a) \in \mathcal{P}_q$  and note that  $M(a) \in choices(a)$ . Moreover, note that, for every  $p' \in choices(a) \setminus \{M(a)\}$ , we have an edge (M(a), p') in  $G_M$ . Thus, every such p' also belongs to  $\mathcal{P}_q$ . This proves that for every  $a \in \mathcal{A}_q$ ,  $choices(a) \subseteq \mathcal{P}_q$ .  $\Box$ 

3.2. Generating popular pairs and counting popular matchings. Let  $G = (\mathcal{A} \cup \mathcal{P}, E)$  be an instance of the popular matchings problem. Define

 $PopPairs = \{(a, p) \in E : M \text{ is a popular matching in } G \text{ and } M(a) = p\}.$  (3.1)

We show that the set *PopPairs* can be computed efficiently using our switching graph. In particular, we prove the following theorem.

THEOREM 3.8. The set of popular pairs for an instance  $G = (\mathcal{A} \cup \mathcal{P}, E)$  of the popular matchings problem with ties can be computed in  $O(\sqrt{nm})$  time.

*Proof.* Let  $G_M$  be the switching graph with respect to a popular matching M in G. From Property 3.6 we can conclude that an edge e = (a, p) is a popular pair if and only if (i)  $e \in M$  or, (ii) the edge (M(a), p) belongs to some switching path in  $G_M$  or, (iii) the edge (M(a), p) belongs to some switching cycle in  $G_M$ . We show how each of these conditions can be efficiently verified.

- The condition (i) can be checked in  $O(\sqrt{nm})$  time by running Algorithm 2.1 and obtaining a popular matching M.
- In order to check condition (iii), recall that every cycle in  $G_M$  has weight 0 and is therefore a switching cycle. This implies that every edge belonging to a strongly connected component of  $G_M$  is a popular pair. We can therefore use the linear time algorithm of Tarjan [16] to find strongly connected components of  $G_M$  and mark edges that satisfy condition (iii).
- In order to check condition (ii), recall that a switching path is a path which has weight 0 and ends in a sink. Therefore such paths can be found only

in sink components of  $G_M$  or equivalently paths beginning at vertices in  $\mathcal{E}_2$ . Furthermore, any sink vertex in  $G_M$  has to be a vertex in  $\mathcal{E}_1$  according to the partition on rank-1 edges of G. Using the weights on the edges given by Table 3.1, it is easy to see that any 0 weight path ending in a sink has to begin at a vertex  $p \in \mathcal{E}_1$ . Thus, a simple depth-first search beginning at vertices in  $\mathcal{E}_1 \cap \mathcal{E}_2$  and marking all edges that we encounter as popular pairs takes care of condition (ii). It is easy to see that this procedure also takes time linear in the size of  $G_M$ .

This completes the proof of the theorem.  $\Box$ 

We now consider the problem of counting the number of popular matchings in an instance with ties. McDermid and Irving [13] showed that when preference lists are all strict, the problem of counting the number of popular matchings admits a linear time algorithm. In contrast, we show that the problem turns to be #P-Complete when ties are allowed.

THEOREM 3.9. Given an instance  $G = (\mathcal{A} \cup \mathcal{P}, E)$  of the popular matchings problem with ties, counting the total number of popular matchings in G is #P-Complete.

*Proof.* In order to prove the completeness result, we reduce from the problem of counting the number of perfect matchings in 3-regular bipartite graphs. This problem was shown to be #P-Complete by Dagum and Luby [2]. Let  $H = (\mathcal{A} \cup \mathcal{P}, E)$  be a 3-regular bipartite graph. We construct an instance G = H of the popular matching problem by assigning all the edges in E as rank-1 edges. It is well-known that a k-regular bipartite graph admits a perfect matching and it is easy to see that every perfect matching in H is a popular matching in G and vice versa. Thus, the theorem statement follows.  $\Box$ 

4. Cheating strategies – preliminaries. In this section we set up the notation useful in formulating our cheating strategies. We begin by partitioning the set of agents  $\mathcal{A}$  depending on the posts that a particular agent gets matched to when each agent is truthful, that is, in the instance G.

 $\mathcal{A}_{f} = \{a : \text{every popular matching in } G \text{ matches } a \text{ to one of her rank-1 posts} \}$  $\mathcal{A}_{s} = \{a : \text{every popular matching in } G \text{ matches } a \text{ to one of her non-rank-1 posts} \}$  $\mathcal{A}_{f/s} = \mathcal{A} \setminus (\mathcal{A}_{f} \cup \mathcal{A}_{s}).$ 

The set  $\mathcal{A}_{f/s}$  denotes the set of agents *a* such that *a* gets matched to one of her rank-1 posts in some popular matching in *G*, whereas to one of her non-rank-1 posts in some other popular matching in *G*. It is easy to see that the above partition can be readily obtained once we have the set of popular pairs *PopPairs* (defined by Equation (3.1)).

Let  $a_1$  be the sole manipulative agent who is aware of the true preference lists of all other agents. Let  $\mathcal{L} = P_1, P_2, \ldots, P_t, \ldots, P_l$  denote the true preference list of  $a_1$  where  $P_i$  denotes the set of *i*-th ranked posts of  $a_1$ . Since we will be working with another instance H obtained by falsifying the preference list of  $a_1$ , we use the following notation throughout. For an agent a, let  $f_G(a)$  and  $s_G(a)$  denote sets f(a)and s(a) respectively for agent a in G. We use a similar notation for the partition of vertices with respect to the instance under consideration. For instance, let  $(\mathcal{O}_1)_G$ denote the set of vertices that belong to  $\mathcal{O}_1$  in G.

We note that  $f_G(a_1) = P_1$ . Assume that  $s_G(a_1) \subseteq P_t$  is the set of *t*-th ranked posts of  $a_1$ . Recall the strategy – *better always* defined for a single manipulative agent. If agent  $a_1 \in \mathcal{A}_f$ , then she does not have any incentive to manipulate her preference list. Thus, in this case we are done and  $\mathcal{L}$  is her optimal strategy. We therefore focus on  $a_1 \in \mathcal{A}_s \cup \mathcal{A}_{f/s}$ . Let *H* denote the instance obtained by falsifying the preference list of  $a_1$  alone.

- If  $a_1 \in \mathcal{A}_s$ , then in order to get *better always* her goal is to force at least some popular matching in H to match her to a post which she strictly prefers to her *t*-th ranked post (that is, posts in  $s_G(a_1)$ ). Note that t > 1.
- If  $a_1 \in \mathcal{A}_{f/s}$ , then in order to get *better always* her goal is to force every popular matching in H to match her to one of her true rank-1 posts.

Denote by  $H \succ_{a_1} G$  if agent  $a_1$  is *better always* in H. It is instructive to consider examples in order to develop intuition regarding the cheating strategies.

EXAMPLE 4.1. Consider the instance G as shown in Figure 2.1(a) and let  $a_5$  be the manipulative agent. It can be seen that  $a_5 \in \mathcal{A}_{f/s}$  in G. Now consider the instance H where  $a_5$  alone falsifies her preference list such that  $p_3$  is her rank-1 post and  $p_8$  as her rank-2 post.

#### $a_5: p_3 \ p_8$

It is easy to verify that every popular matching in H matches  $a_5$  to  $p_3$  which is her true rank-1 post. The idea for an  $\mathcal{A}_{f/s}$  agent a is to choose a single post p (in this case  $p_8$ ) that will belong to  $s_H(a)$  such that a can never be matched to p in any popular matching of H.

EXAMPLE 4.2. Consider the instance G shown in Figure 2.1(a) and let  $a_1$  be the manipulative agent. Every popular matching in G matches  $a_1$  to either  $p_6$  or  $p_7$  and therefore  $a_1 \in \mathcal{A}_s$ . Let H denote the instance where  $a_1$  submits the preference list as follows:  $p_3$  is her rank-1 post whereas  $p_8$  is her rank-2 post.

#### $a_1: p_3 \ p_8$

It can be verified that every popular matching in H matches  $a_1$  to  $p_3$ . The intuition here is that, a post to which  $a_1$  wishes to get matched (here  $p_3$ ), should have a path to an unmatched post or should belong to a sink component of  $G_M$ . We also choose a post in  $s_H(a_1)$  (in this case  $p_8$ ) to which  $a_1$  can never get matched in any popular matching in H. However, in this example, this is not the best that  $a_1$  can get by falsifying. Let  $a_1$  falsify her preference list as below and let H denote the falsified instance.

### $a_1: p_2 \quad p_8$

Consider the matching  $M'' = \{(a_1, p_2), (a_2, p_1), (a_3, p_8), (a_4, p_3), (a_5, p_4), (a_6, p_9), (a_7, p_5)\}$ in H. It can be verified that M'' is popular in H and in fact every popular matching in H matches  $a_1$  to  $p_2$ . However, our intuition that  $p_2$  should belong to a sink component does not hold. This is because the edge  $(a_4, p_3)$  which got deleted in Step 4 of Algorithm 2.1 is being used after  $a_1$  falsifies her preference list. In order to deal with such cases we will work with a slightly modified instance as defined in Section 4.3.

In the rest of this section, we establish some facts crucial for developing the optimal cheating strategy. In Section 4.1 we establish that when  $a_1$  manipulates to get better always, the set of *s*-posts of other agents remains unaffected. This gives us a useful handle on the modified instance obtained after manipulation. In Section 4.2 we show that if  $a_1$  did not get matched to her rank-1 post in any popular matching by being truthful, then she cannot get matched to her rank-1 post even by falsifying her preferences. Finally, in Section 4.3 we formally define the modified instance  $\tilde{G}$ .

**4.1.** s(a) for other agents remains unchanged. Let H denote the instance obtained by falsifying the preference list of  $a_1$  alone. Since the rest of the agents are truthful, for every agent  $a \in \mathcal{A} \setminus \{a_1\}$ , we have  $f_H(a) = f_G(a)$ . However, since  $s_H(a)$  depends on the rank-1 posts of the rest of the agents, it may be the case that when  $a_1$  falsifies her preference list,  $s_H(a) \neq s_G(a)$  for an agent  $a \in \mathcal{A} \setminus \{a_1\}$ . We claim

that if  $a_1$  falsifies her preference list only to improve the rank of the post that she gets matched to, then s(a) for any other agent a remains unchanged. Recall that by definition,  $s_H(a)$  is the set of most preferred posts of a which are *even* in the graph  $H_1$  (the graph H on rank-1 edges). Theorem 4.6 establishes that the set of *even* posts in  $G_1$  and  $H_1$  are the same. We need the following lemmas to prove the theorem.

We first show that if agent  $a_1$  gets matched to her non-rank-1 post in some popular matching in G, then all the rank-1 posts of  $a_1$  are odd in  $G_1$ . Intuitively, the set of rank-1 posts of  $a_1$  are highly in demand.

LEMMA 4.3. Let  $a_1 \in \mathcal{A}_s \cup \mathcal{A}_{f/s}$  when she is truthful. Then,  $f_G(a_1) \subseteq (\mathcal{O}_1)_G$ .

Proof. Since  $a_1 \in \mathcal{A}_s \cup \mathcal{A}_{f/s}$ , it implies that at least one popular matching in G matches  $a_1$  to her non-rank-1 post. We show that if  $f_G(a_1) \not\subseteq (\mathcal{O}_1)_G$ , then every popular matching in G matches  $a_1$  to her rank-1 post. Assume for the sake of contradiction that  $f_G(a_1) \not\subseteq (\mathcal{O}_1)_G$ . Let  $q \in f_G(a_1)$  such that,  $q \in (\mathcal{E}_1 \cup \mathcal{U}_1)_G$ . This implies that  $a_1 \in (\mathcal{O}_1 \cup \mathcal{U}_1)_G$ . Consider the case when  $a_1 \in (\mathcal{O}_1)_G$ . Then,  $s_G(a_1) \subseteq f_G(a_1)$  and therefore  $a_1$  has no non-rank-1 edges incident on it in the graph G'. Thus,  $a_1$  remains matched along her rank-1 edge in every popular matching of G. Now consider the case when  $a_1 \in (\mathcal{U}_1)_G$ . If  $a_1$  gets matched to a non-rank-1 post in a popular matching M, then M is not a maximum matching on rank-1 edges of G. Thus, in this case also,  $a_1$  remains matched along a rank-1 edge in every popular matching in G. This contradicts the fact that  $a_1 \in \mathcal{A}_s \cup \mathcal{A}_{f/s}$ . Therefore,  $f_G(a_1) \subseteq (\mathcal{O}_1)_G$ .  $\Box$ 

We now argue that in any instance  $H \succ_{a_1} G$ , the set of rank-1 posts of  $a_1$  in H must be posts which are *odd* or *unreachable* in  $G_1$ . Again, this intuitively implies that the set of rank-1 posts of  $a_1$  in H are posts that are *in demand* in G.

LEMMA 4.4. Let H be such that  $H \succ_{a_1} G$ . Then  $f_H(a_1) \subseteq (\mathcal{O}_1 \cup \mathcal{U}_1)_G$ .

Proof. We first show that if  $f_H(a_1) \cap (\mathcal{E}_1)_G \neq \emptyset$ , then the size of the maximum matching on rank-1 edges of H is strictly larger than the size of the maximum matching on rank-1 edges of G. Let  $G_1$  be the graph on rank-1 edges of G and let  $M_1$  be a maximum matching in  $G_1$  that leaves  $a_1$  unmatched. Note that such a matching exists because by Lemma 4.3,  $f_G(a_1) \subseteq (\mathcal{O}_1)_G$  which implies that  $a_1 \in (\mathcal{E}_1)_G$ . Consider the graph  $H_1$ , that is, the graph on rank-1 edges of H. Note that  $M_1$  is a matching in  $H_1$  as no other agent changes her preference list. Since each  $q_i \in (\mathcal{E}_1)_G$  and  $a_1 \in (\mathcal{E}_1)_G$ , the addition of the edge  $(a_1, q_i)$  creates an augmenting path with respect to  $M_1$  in the graph  $H_1$ . Note that if  $q_i$  is unmatched in  $M_1$ , then this augmenting path is of length 1 containing the unmatched edge  $(a_1, q_i)$ . Thus, we get another matching  $M_2$  in  $H_1$  obtained by augmenting  $M_1$ , such that  $|M_2| = |M_1| + 1$ .

Assume for contradiction that there exists an instance  $H \succ_{a_1} G$  and let  $f_H(a_1) \cap (\mathcal{E}_1)_G = \{q_1, \ldots, q_k\}$ . Recall that by assumption,  $s_G(a_1)$  is a set of t-th ranked posts for  $a_1$ . Additionally, by definition,  $s_G(a_1)$  denotes the set of most preferred posts on  $a_1$ 's preference list that belong to  $(\mathcal{E}_1)_G$ . This implies that the rank of each  $q_i$  in  $a_1$ 's preference list is t or worse. We show that if  $f_H(a_1) \cap (\mathcal{E}_1)_G \neq \emptyset$ , then every popular matching in H matches  $a_1$  to one of  $\{q_1, \ldots, q_k\}$ . Thus, the rank of the most preferred post that  $a_1$  gets in H is t or worse, a contradiction to  $H \succ_{a_1} G$ .

Now if every popular matching in H matches  $a_1$  to one of  $\{q_1, \ldots, q_k\}$  then this contradicts the fact that  $H \succ_{a_1} G$  and we are done. Otherwise assume that there exists a popular matching M' in H which matches  $a_1$  to some post other than  $\{q_1, \ldots, q_k\}$ . Let  $M'_1$  denote the matching M' restricted to rank-1 edges of H. Since M' is a maximum matching on rank-1 edges of H, it is clear that  $|M'_1| = |M_2|$ . Moreover, since  $M'(a_1) \in f_H(a_1) \cup s_H(a_1)$  let us consider the following cases:

•  $M'(a_1)$  is a true rank-1 post of  $a_1$ : In this case  $M'_1$  is a maximum matching

in  $G_1$  and note that  $|M'_1| = |M_2| = |M_1| + 1$ . This contradicts the fact that  $M_1$  is a maximum matching in  $G_1$ .

•  $M'(a_1)$  is a non rank-1 post of  $a_1$ : This implies that  $M'_1$  leaves  $a_1$  unmatched. Thus,  $M'_1$  is also a matching in  $G_1$  since no other agents changed their preferences. However,  $|M'_1| = |M_1| + 1$  which contradicts the fact that  $M_1$  was a maximum matching in  $G_1$ .

Thus, we have established that in any instance  $H \succ_{a_1} G$ , the rank-1 posts of  $a_1$  in H are posts which are *odd* or *unreachable* in  $G_1$ . This finishes the proof of the lemma.  $\Box$ 

Using the above lemma we now show that the sizes of maximum matching in  $G_1$  and  $H_1$  are indeed the same.

LEMMA 4.5. Let  $M_1$  be a maximum matching in  $G_1$  such that  $M_1$  leaves  $a_1$  unmatched. Then, in any instance H such that  $H \succ_{a_1} G$ ,  $M_1$  is a maximum matching in  $H_1$ .

Proof. We first note that such a maximum matching  $M_1$  in  $G_1$  which leaves  $a_1$ unmatched exists, because  $f_G(a_1) \subseteq (\mathcal{O}_1)_G$ , hence  $a_1 \in (\mathcal{E}_1)_G$ . Assume that  $M_1$  is not a maximum matching in  $H_1$ . Then there exists an augmenting path  $\langle a_1, p_1, \ldots, a_k, p_k \rangle$ in  $H_1$  with respect to  $M_1$  where both  $a_1$  and  $p_k$  are unmatched. However, using the path  $\langle p_k, a_k, \ldots, p_1 \rangle$ , we have an even length alternating path from  $p_k$  to  $p_1$  which implies that  $p_1 \in (\mathcal{E}_1)_{G_1}$ . However, note that  $p_1 \in f_H(a_1)$  and the fact that  $p_1 \in (\mathcal{E}_1)_G$ contradicts Lemma 4.4. Thus  $M_1$  is a maximum matching in  $H_1$ .  $\Box$ 

Finally, using Lemma 4.5 we are ready to prove the main theorem of this subsection. We first show that the set of posts which are *even* in  $G_1$  is the same as the set of posts which are *even* in  $H_1$ . This immediately implies that s(a) for other agents remains unchanged. We also prove a useful fact that the set of *odd* agents in  $G_1$  is the same as the set of *odd* agents in  $H_1$ .

THEOREM 4.6. Let H be an instance such that  $H \succ_{a_1} G$ . Then, (i)  $(\mathcal{E}_1)_G \cap \mathcal{P} = (\mathcal{E}_1)_H \cap \mathcal{P}$  and therefore  $s_H(a) = s_G(a)$  for every  $a \in \mathcal{A} \setminus \{a_1\}$  and, (ii)  $(\mathcal{O}_1)_G \cap \mathcal{A} = (\mathcal{O}_1)_H \cap \mathcal{A}$ .

*Proof.* The case when  $f_H(a_1) = f_G(a_1)$  is easy, since  $H_1 = G_1$  and both (i) and (ii) are trivially true. Consider the case when  $f_H(a_1) \neq f_G(a_1)$  and let  $M_1$  be a maximum matching in  $G_1$  such that  $M_1$  leaves  $a_1$  unmatched. By Lemma 4.5,  $M_1$ is also a maximum matching in  $H_1$ . To prove  $(\mathcal{E}_1)_G \cap \mathcal{P} = (\mathcal{E}_1)_H \cap \mathcal{P}$ , consider the following two cases:

- $p \in (\mathcal{O}_1 \cup \mathcal{U}_1)_G \cap \mathcal{P}$ : Assume for contradiction that  $p \in (\mathcal{E}_1)_H \cap \mathcal{P}$ . This implies that there exists an even length alternating path T with respect to  $M_1$  in  $H_1$  from an unmatched post to p in  $H_1$ . The path T cannot contain  $a_1$ , since  $a_1$  is unmatched in  $M_1$ . Hence T is also present in  $G_1$  contradicting the fact that  $p \in (\mathcal{O}_1 \cup \mathcal{U}_1)_G \cap \mathcal{P}$ .
- $p \in (\mathcal{E}_1)_G \cap \mathcal{P}$ : Let *T* denote the even length alternating path w.r.t.  $M_1$  in  $G_1$  starting from an unmatched post in  $M_1$ . The path *T* again cannot contain  $a_1$  and hence exists in  $H_1$  thus proving that  $p \in (\mathcal{E}_1)_H \cap \mathcal{P}$ .

Now, since the preference lists of the agents  $a \in \mathcal{A} \setminus \{a_1\}$  remain unchanged, it is clear that  $s_H(a) = s_G(a)$ .

To prove that  $(\mathcal{O}_1)_G \cap \mathcal{A} = (\mathcal{O}_1)_H \cap \mathcal{A}$ , we again consider two cases:

- $a \in (\mathcal{O}_1)_G \cap \mathcal{A}$ : Let *T* denote the odd length alternating path w.r.t.  $M_1$  in  $G_1$  starting from an unmatched post in  $M_1$ . The path *T* again cannot contain  $a_1$  and hence exists in  $H_1$  thus proving that  $p \in (\mathcal{O}_1)_H \cap \mathcal{P}$ .
- $a \in (\mathcal{E}_1 \cup \mathcal{U}_1)_G \cap \mathcal{A}$ : Assume for contradiction that  $a \in (\mathcal{O}_1)_H \cap \mathcal{A}$ . This implies that there exists an odd length alternating path T with respect to  $M_1$

in  $H_1$  from an unmatched post to a in  $H_1$ . This path again cannot contain  $a_1$ , and hence is present in  $G_1$ . This contradicts the fact that  $a \in (\mathcal{E}_1 \cup \mathcal{U}_1)_G \cap \mathcal{A}$ . This finishes the proof of the theorem.  $\Box$ 

**4.2.** An  $\mathcal{A}_s$  agent cannot get one of her true rank-1 posts. In this section we show that if  $a_1 \in \mathcal{A}_s$ , then by falsifying her preference list alone, she cannot get matched to one of her true rank-1 posts in any popular matching in H. We prove it using Theorem 4.10 which requires the following lemmas. Using Lemma 4.7 we establish that every true rank-1 post q of  $a_1$  belongs to a non-sink component of  $G_M$ . We then construct a tight-pair  $\mathcal{A}_q, \mathcal{P}_q$  corresponding to each rank-1 post q and establish that the agent  $a_1$  does not lie in  $\mathcal{A}_q$ . We further establish that for every agent  $a \in \mathcal{A}_q$ , the set  $choices_H(a) \in \mathcal{P}_q$ . We emphasize that the claim is for  $choices_H(a)$  which need not be the same as  $choices_G(a)$ . Lemma 4.8 and Lemma 4.9 prove these facts. Using these facts a simple argument based on pigeon-hole principle allows us to establish the main result which is stated in Theorem 4.10.

LEMMA 4.7. Let  $a_1 \in \mathcal{A}_s$ , and let  $q \in f_G(a_1)$ . Then, q belongs to a non-sink component of  $G_M$  and the edge  $(M(a_1), q)$  is not contained in a cycle in  $G_M$ .

Proof. We first show that the edge  $(M(a_1), q)$  is not contained in a cycle in  $G_M$ . Observe that the edge  $(a_1, q)$  may get deleted from G' in either Step 4 or Step 9 of Algorithm 2.1. In such a case, we are already done since the edge  $(M(a_1), q)$  does not exist in the graph  $G_M$ . Now consider the case when the edge  $(a_1, q)$  is not deleted in either of the steps. Moreover, for the sake of contradiction assume that there exists a cycle C in  $G_M$  which contains the edge  $(M(a_1), q)$ . Since every cycle in  $G_M$  has a weight 0, the cycle C is a switching cycle and hence we get another popular matching  $M' = M \cdot C$  in which  $a_1$  gets matched to q. Since  $q \in f_G(a_1)$ , this contradicts the fact that  $a_1 \in \mathcal{A}_s$ .

We now show that every  $q \in f_G(a_1)$  belongs to a non-sink component of  $G_M$ . Assume for the sake of contradiction that there exist some  $q \in f_G(a_1)$  such that q belongs to a sink component, say  $\mathcal{X}$  of  $G_M$ . In this case we show that there exists a switching path T beginning at  $M(a_1)$  which uses the edge  $(M(a_1), q)$ . Using T, we construct another popular matching  $M' = M \cdot T$  where  $a_1$  gets matched to q. Thus, we get the desired contradiction as  $a_1 \in \mathcal{A}_s$ .

It remains to prove that the switching path T exists. We first show that the edge  $(M(a_1), q)$  exists in the graph  $G_M$  or equivalently, the edge  $(a_1, q)$  does not get deleted from G' in either Step 4 or Step 9 of Algorithm 2.1. Note that since  $a_1 \in \mathcal{A}_s$  implies that  $a_1 \in (\mathcal{E}_1)_G$ . Thus, by Claim 2.4, no edge incident on  $a_1$  gets deleted on Step 4. Also since q belongs to a sink component,  $q \in (\mathcal{E}_2)_G$  and hence no edge incident on q gets deleted in Step 9. Thus the edge  $(a_1, q)$  exists in G'' and hence the edge  $(M(a_1), q)$  exists in  $G_M$ . Finally note that,  $w(M(a_1), q) = +1$  since  $M(a_1) \in s_G(a_1)$  and  $q \in f_G(a_1)$ . We will use the edge  $(M(a_1), q)$  as the first edge of our path T.

Observe that since q belongs to a sink component  $\mathcal{X}$ , by Property 3.3, q has a path to some sink vertex q' in  $\mathcal{X}$ . From Lemma 4.3, we know that  $q \in \mathcal{O}_1$  and by Property 3.2, it is clear that  $q' \in \mathcal{E}_1$ . Using Table 3.1 of edge weights, we conclude that the path  $T_1$  starting a vertex in  $\mathcal{O}_1$  and ending in a vertex in  $\mathcal{E}_1$  has weight  $w(T_1) = -1$ . Thus, we obtain the switching path  $T = \langle M(a_1), q, T_1 \rangle$  which ends in the sink q' and has w(T) = 0. This completes the proof of the lemma.  $\Box$ 

LEMMA 4.8. Let  $a_1 \in \mathcal{A}_s$  and let  $q \in f_G(a_1)$ . Let  $\mathcal{P}_q$  be defined as

 $\mathcal{P}_q = \{q\} \cup \{q' : there is a path from q to q' in G_M\}$ 

Let  $\mathcal{A}_q = \{ M(q') : q' \in \mathcal{P}_q \}$ . Then,  $a_1 \notin \mathcal{A}_q$ .

*Proof.* Note that since  $a_1 \in \mathcal{A}_s$  and  $q \in f_G(a_1)$ , by Lemma 4.7, q belongs to a non-sink component, say  $\mathcal{Y}$ , of  $G_M$ . If  $M(a_1)$  does not belong to  $\mathcal{Y}$ , then it is clear that  $M(a_1) \notin \mathcal{P}_q$  and therefore  $a_1 \notin \mathcal{A}_q$ .

Otherwise, assume for the sake of contradiction that  $M(a_1)$  belongs to  $\mathcal{Y}$  and there exists a path from q to  $M(a_1)$  in  $G_M$ . In this case, we show that the path from q to  $M(a_1)$  along with the edge  $(M(a_1), q)$  creates a cycle in  $G_M$  containing the edge  $(M(a_1), q)$  which is a contradiction by Lemma 4.7. Thus, we need to show that the edge  $(M(a_1), q)$  does not get deleted in either Step 4 or Step 9 of Algorithm 2.1. Since  $M(a_1)$  belongs to a non-sink component, therefore by Property 3.3,  $M(a_1) \in (\mathcal{U}_2)_G$ . This implies that  $a_1 \in (\mathcal{U}_2)_G$ . Furthermore, since  $q \in f_G(a_1)$ , by Lemma 4.3, we know that  $q \in (\mathcal{O}_1)_G$ . This implies that  $a_1 \in (\mathcal{E}_1)_G$ . Thus, from Claim 2.4, it is clear that no edge incident on  $a_1$  gets deleted in either Step 9 or Step 4 of Algorithm 2.1. Therefore, the edge  $M((a_1), q)$  exists in  $G_M$  and along with the path from q to  $M(a_1)$  creates a cycle in  $G_M$  containing the edge  $(M(a_1), q)$ . This gives the desired contradiction establishing that  $a_1 \notin \mathcal{A}_q$ .  $\Box$ 

LEMMA 4.9. Let  $a_1 \in \mathcal{A}_s$  and let  $q \in f_G(a_1)$ . Then, there exist sets  $\mathcal{A}_q$  and  $\mathcal{P}_q$ such that  $|\mathcal{A}_q| = |\mathcal{P}_q|$  and for every  $a \in \mathcal{A}_q$  we have choices<sub>H</sub>(a)  $\subseteq \mathcal{P}_q$ .

Proof. Since  $a_1 \in \mathcal{A}_s$  and  $q \in f_G(a_1)$ , from Lemma 4.7, we know that q belongs to a non-sink component, say  $\mathcal{Y}$ , of  $G_M$ . Therefore, using Lemma 3.7, we know that there exists a tight-pair  $\mathcal{A}_q$  and  $\mathcal{P}_q$  such that  $|\mathcal{A}_q| = |\mathcal{P}_q|$  and for each  $a \in \mathcal{A}_q$ , we have  $choices_G(a) \subseteq \mathcal{P}_q$ . To prove the lemma it suffices to show that for every  $a \in \mathcal{A}_q$ , we have  $choices_G(a) \subseteq \mathcal{P}_q$ . By Lemma 4.8,  $a_1 \notin \mathcal{A}_q$  and therefore, we know that  $f_G(a) \cup s_G(a) = f_H(a) \cup s_H(a)$ , for all  $a \in \mathcal{A}_q$ . If no edges had got deleted in Step 4 and Step 9 of Algorithm 2.1 then we would be done since  $choices_G(a)$  would have been  $f_G(a) \cup s_G(a)$ . Therefore we consider edges that get deleted in Step 4 and Step 9 of the algorithm. Observe that since every  $q' \in \mathcal{P}_q$  belongs to a non-sink component of  $G_M$ , therefore by Property 3.3,  $q' \in (\mathcal{U}_2)_G$ . This implies that every  $a \in \mathcal{A}_q$  is such that  $a \in (\mathcal{U}_2)_G$ . Thus, by Claim 2.4 no edge incident on a gets deleted in Step 9 of Algorithm 2.1 when executed on G.

It remains to show that if  $a' \in \mathcal{A}_q$  and edge (a',q') gets deleted in Step 4 of Algorithm 2.1 when executed on G, then (a',q') also gets deleted in Step 4 of Algorithm 2.1 when executed on H. We first show that if  $a \in \mathcal{A}_q$  then  $a \in (\mathcal{E}_1 \cup \mathcal{O}_1)_G$ . To see this, observe by Lemma 4.3, the post  $q \in (\mathcal{O}_1)_G$ . Now consider any post  $q' \in \mathcal{P}_q$ . From the Table 3.1, it is easy to see that  $q' \in (\mathcal{O}_1 \cup \mathcal{E}_1)_G$ , since posts in  $(\mathcal{U}_1)_G$  cannot be reached starting at a post in  $(\mathcal{O}_1)_G$ . Now since in any popular matching, posts in  $(\mathcal{O}_1 \cup \mathcal{E}_1)$  remain matched to agents in  $(\mathcal{O}_1 \cup \mathcal{E}_1)$ , we conclude that if  $a \in \mathcal{A}_q$  then  $a \in (\mathcal{E}_1 \cup \mathcal{O}_1)_G$ .

If  $a \in (\mathcal{E}_1)_G$ , by Claim 2.4 no edge incident on a gets deleted in Step 4 of Algorithm 2.1 when executed on G. Finally, let  $a \in (\mathcal{O}_1)_G$ . If the edge (a, q') got deleted in Step 4, then  $q' \in (\mathcal{O}_1 \cup \mathcal{U}_1)_G$ . Thus, by Theorem 4.6,  $a \in (\mathcal{O}_1)_H$  and  $q' \in (\mathcal{O}_1 \cup \mathcal{U}_1)_H$ , thus the edge (a', q') continues to get deleted in Step 4 of Algorithm 2.1 when executed on H. This completes the proof of the lemma.  $\Box$ 

Using the above lemmas we prove the following theorem.

THEOREM 4.10. Let  $a_1 \in \mathcal{A}_s$ . Then by falsifying her preference list alone, she cannot get matched to a post  $q \in f_G(a_1)$  in any popular matching in the falsified instance.

*Proof.* For contradiction assume that there exists a falsified instance H such that in a popular matching M' of H, agent  $a_1$  gets matched to  $q \in f_G(a_1)$ . By Lemma 4.7, the post q belongs to a non-sink component of  $G_M$ . Furthermore, by Lemma 4.9, there exists a set of agents  $\mathcal{A}_q$  and a set of posts  $\mathcal{P}_q$  such that  $|\mathcal{A}_q| = |\mathcal{P}_q|$ ,  $a_1 \notin \mathcal{A}_q$ and for every  $a \in \mathcal{A}_q$ , we have  $choices_H(a) \subseteq \mathcal{P}_q$ . Thus, if  $a_1$  gets matched to q in M', then there is at least one agent  $a' \in \mathcal{A}_q$  which does not have a post to be matched in  $choices_H(a')$ . This contradicts the fact that M' is a popular matching in H.  $\Box$ 

**4.3. The modified instance**  $\tilde{G}$ . As mentioned earlier, we need to define a modified instance, call it  $\tilde{G}$  to develop our cheating strategies. Recall from Example 4.2 that a rank-1 edge which gets deleted from the graph G' in Algorithm 2.1, can be used in a popular matching in a falsified instance. Thus, we define  $\tilde{G}$  from the instance G which has the following properties: (i) every popular matching in G corresponds to a popular matching in  $\tilde{G}$  and, (ii) any edge (a, p) that gets deleted in Step 4 of Algorithm 2.1 when executed on  $\tilde{G}$  also gets deleted in Step 4 when Algorithm 2.1 is executed on H such that  $H \succ_{a_1} G$ . However, the definition of  $\tilde{G}$  is independent of the agent  $a_1$ .

The graph  $\tilde{G}$  is defined as follows: Let  $G_1$  be the graph on rank-1 edges of Gand let  $M_1$  be a maximum matching in  $G_1$ . Let  $\{q_1, \ldots, q_k\}$  be the set of unreachable posts with respect to  $M_1$  in  $G_1$ . Let us add to the instance G, a dummy agent bwhose preference list is of length 1 and has all the unreachable posts in  $G_1$  tied as her rank-1 posts. That is, the preference list of b can be written as  $(q_1, \ldots, q_k)$ . The set of posts as well as the preference lists of all the agents  $a \in \mathcal{A}$  remain the same as in G. Formally,  $\tilde{G} = (\tilde{\mathcal{A}} \cup \mathcal{P}, \tilde{E})$  where  $\tilde{\mathcal{A}} = \mathcal{A} \cup \{b\}, \tilde{E} = E \cup \{(b, q_1), \ldots, (b, q_k)\}$  and each  $(b, q_i)$  is a rank-1 edge. We recall that for each agent, including the agent b, we add a unique last-resort post at the end of the agent's preference list. By the choice of preference list of b, we note that  $f_{\tilde{G}}(b) = \{q_1, \ldots, q_k\}$  and  $s_{\tilde{G}}(b) = \ell(b)$ , the unique last-resort post for agent b.

We note that even after the addition of agent b, a maximum matching  $M_1$  in  $G_1$ continues to be maximum matching in  $\tilde{G}_1$ . However, with respect to the partition of vertices on rank-1 edges in  $\tilde{G}$ , every vertex is either *odd* or *even* in  $\tilde{G}_1$ . We show that the addition of b leaves the set s(a) unchanged for every agent  $a \in \mathcal{A}$ .

LEMMA 4.11. Let  $\hat{G}$  be the graph as defined above. Then,  $(\mathcal{E}_1)_{\tilde{G}} \cap \mathcal{P} = (\mathcal{E}_1)_G \cap \mathcal{P}$ . Therefore, for every  $a \in \mathcal{A}$ , we have  $s_{\tilde{G}}(a) = s_G(a)$ .

*Proof.* Let  $M_1$  be a maximum matching in  $G_1$ . Since  $M_1$  is also a maximum matching in  $\tilde{G}_1$ , let us partition the vertices of  $\tilde{\mathcal{A}} \cup \mathcal{P}$  w.r.t.  $M_1$  in  $\tilde{G}_1$ . Note that the addition of agent b makes every post that was *unreachable* in  $G_1$  as *odd* in  $\tilde{G}_1$ . Now, the set of *even* posts in  $G_1$  and  $\tilde{G}_1$  is same and the preferences of the agents are unchanged. This implies that for every  $a \in \mathcal{A}$ , we have  $s_{\tilde{G}}(a) = s_G(a)$ .  $\Box$ 

Let M be a popular matching in G, then let M denote the corresponding matching in  $\tilde{G}$  such that for every  $a \in \mathcal{A}$  we have  $\tilde{M}(a) = M(a)$  and  $\tilde{M}(b) = \ell(b)$ , the unique last-resort post of b. Note that  $\tilde{M}$  is a maximum matching on rank-1 edges in  $\tilde{G}$ and for every  $a \in \mathcal{A}$ , we have  $\tilde{M}(a) \in f_{\tilde{G}}(a) \cup s_{\tilde{G}}(a)$ . Finally  $\tilde{M}(b) \in s_{\tilde{G}}(b)$  since  $s_{\tilde{G}}(b) = \{\ell(b)\}$ . It is clear that  $\tilde{M}$  satisfied both the properties of Theorem 2.2 and therefore is a popular matching in  $\tilde{G}$ . We can now construct the switching graph  $\tilde{G}_{\tilde{M}}$  w.r.t.  $\tilde{M}$  in  $\tilde{G}$ . Having made these definitions, we can now prove the following lemmas.

LEMMA 4.12. Let (a, p) be an edge which gets deleted in Step 4 of Algorithm 2.1 when it is executed on  $\tilde{G}$ . Then (a, p) gets deleted in Step 4 when Algorithm 2.1 is executed on any instance H such that  $H \succ_{a_1} G$ .

*Proof.* As mentioned earlier, all vertices in  $\tilde{G}_1$  are either *odd* or *even*, hence if an edge (a, p) got deleted in Step 4 of Algorithm 2.1, then it implies that  $\{a, p\} \in (\mathcal{O}_1)_{\tilde{G}}$ . To prove the lemma statement, we show that such an edge gets deleted either as an

 $\mathcal{O}_1\mathcal{O}_1$  edge, or as an  $\mathcal{O}_1\mathcal{U}_1$  edge in  $H_1$ . To this end we establish the following two claims.

- 1. Any agent that is odd in  $\tilde{G}_1$  is also odd in  $H_1$ . That is,  $(\mathcal{O}_1)_{\tilde{G}} \cap \mathcal{A} = (\mathcal{O}_1)_H \cap \mathcal{A}$ : Consider a maximum matching  $M_1$  in  $\tilde{G}_1$  which leaves  $a_1$  and b unmatched. As argued earlier, this is a maximum matching in  $G_1$  and hence a maximum matching in  $H_1$ . We consider two cases:
  - $a \in (\mathcal{O}_1)_{\tilde{G}} \cap \mathcal{A}$ : Let T denote the odd length alternating path w.r.t.  $M_1$ in  $\tilde{G}_1$  starting at an unmatched post in  $M_1$  to the agent a. The path Tcannot contain  $a_1$  since  $a_1$  is unmatched in  $M_1$ . This implies the path T exists in  $H_1$  thus proving that  $a \in (\mathcal{O}_1)_H \cap \mathcal{P}$ .
  - $a \in (\mathcal{E}_1 \cup \mathcal{U}_1)_{\tilde{G}} \cap \mathcal{A}$ : Assume for contradiction that  $a \in (\mathcal{O}_1)_H \cap \mathcal{A}$ . This implies that there exists an odd length alternating path T with respect to  $M_1$  in  $H_1$  from an unmatched post to a in  $H_1$ . This path again cannot contain  $a_1$ , and hence is present in  $\tilde{G}_1$ . This contradicts the fact that  $a \in (\mathcal{E}_1 \cup \mathcal{U}_1)_{\tilde{G}} \cap \mathcal{A}$ .
- 2. Any post that is odd in  $\tilde{G}_1$  is either odd or unreachable in  $H_1$ . That is,  $(\mathcal{O}_1)_{\tilde{G}} \cap \mathcal{P} = (\mathcal{O}_1 \cup \mathcal{U}_1)_H \cap \mathcal{P}$ : Note that, using Lemma 4.11 and Theorem 4.6(i) we can conclude that  $(\mathcal{E}_1)_{\tilde{G}} \cap \mathcal{P} = (\mathcal{E}_1)_H \cap \mathcal{P}$ . This implies that  $(\mathcal{O}_1)_{\tilde{G}} \cap \mathcal{P} = (\mathcal{O}_1 \cup \mathcal{U}_1)_H \cap \mathcal{P}$ . (Recall that  $(\mathcal{U}_1)_{\tilde{G}} = \emptyset$ .)

Thus, using (1) and (2) above we conclude that any  $\mathcal{O}_1\mathcal{O}_1$  edge deleted in Step 4 of Algorithm 2.1 when executed on  $\tilde{G}$  is also deleted in Step 4 when the same algorithm is executed on any  $H \succ_{a_1} G$ .  $\Box$ 

At this moment, we recall Example 4.2 and the instance H which was obtained by falsifying the preference list of  $a_1$  to  $p_2, p_8$ . This example motivated us to define the instance  $\tilde{G}$ . We now emphasize that we could not work directly with the instance G, because for every agent  $a \in \mathcal{A} \setminus \{a_1\}$  we cannot guarantee that  $choices_H(a) \subseteq$  $choices_G(a)$ . In fact, the above example shows that  $choices_G(a_4) = \{p_2, p_8\}$  whereas  $choices_H(a_4) = \{p_2, p_3, p_8\}$ . Our next lemma shows that the careful definition of  $\tilde{G}$ ensures that for an agent a in a non-sink component of  $\tilde{G}_{\tilde{M}}$  we have  $choices_H(a) \subseteq$  $choices_{\tilde{G}}(a)$ . This lemma along with the tight-pair defined earlier will be a useful tool for proving our results in the next section.

LEMMA 4.13. Let  $a \in \mathcal{A} \setminus \{a_1\}$  such that  $\tilde{M}(a)$  belongs to a non-sink component of  $\tilde{G}_{\tilde{M}}$ . Let H be an instance such that  $H \succ_{a_1} G$ . Then  $choices_H(a) \subseteq choices_{\tilde{G}}(a)$ .

Proof. Recall that for any  $a \in \mathcal{A} \setminus \{a_1\}, f_{\tilde{G}}(a) = f_G(a) = f_H(a)$  and  $s_{\tilde{G}}(a) = s_G(a) = s_H(a)$ . We also know that, in any instance, for an agent a,  $choices(a) \subseteq f(a) \cup s(a)$ . Thus, for an agent  $a \in \mathcal{A} \setminus \{a_1\}$ , if it were the case that  $choices_{\tilde{G}}(a) = f_{\tilde{G}}(a) \cup s_{\tilde{G}}(a)$ , then the lemma statement holds trivially. However due to deletion of edges in Step 4 and Step 9 of Algorithm 2.1 when executed on  $\tilde{G}$ , it may be the case that  $choices_{\tilde{G}}(a) \subset f_{\tilde{G}}(a) \cup s_{\tilde{G}}(a) \cup s_{\tilde{G}}(a)$ . We note that since M(a) belongs to a non-sink component it implies that both  $\{a, M(a)\} \in (\mathcal{U}_2)_{\tilde{G}}$ . Therefore, by Claim 2.4, no edge incident on a gets deleted in Step 9. Moreover, by Lemma 4.12, it is clear that if an edge (a, p) gets deleted in Step 4 of Algorithm 2.1 run in  $\tilde{G}$ , then the same edge gets deleted in Step 4 when executed on H. This proves that, for any  $a \in \mathcal{A} \setminus \{a_1\}$ , such that, a belongs to a non-sink component, we have  $choices_H(a) \subseteq choices_{\tilde{G}}(a)$ .  $\Box$ 

Armed with these observations we now develop the cheating strategies for the manipulative agent  $a_1$ .

5. Cheating strategies. In this section we develop a characterization of the conditions under which  $a_1$  can falsify her preference list. We formulate the strategy of  $a_1$  depending on whether  $a_1 \in \mathcal{A}_s$  or  $a_1 \in \mathcal{A}_{f/s}$ . Throughout, we assume that the

true preference list of  $a_1$  is denoted by  $\mathcal{L} = P_1, \ldots, P_t, \ldots, P_l$  where  $P_i$  denotes the set of *i*-th ranked posts of  $a_1$ . Thus,  $f_G(a_1) = P_1$  and  $s_G(a_1) \subseteq P_t$ . We will use the modified instance  $\tilde{G}$  to formulate our strategies.

**5.1.**  $\mathcal{A}_s$  agent. Let  $a_1 \in \mathcal{A}_s$  and let M be any popular matching in G and  $M = M \cup \{(b, \ell(b))\}$ . It follows from the definition of  $\mathcal{A}_s$  that,  $M(a_1) = \tilde{M}(a_1) \in s_G(a_1)$  and therefore  $M(a_1) \in P_t$ . We first characterize whether  $a_1$  can get better always using the graph  $\tilde{G}$  and the switching graph  $\tilde{G}_{\tilde{M}}$ .

Our cheating strategy for  $a_1$  (as shown in Figure 5.1) is simple: it checks if any of  $a_1$ 's *i*-th ranked posts  $p \in P_i$  where  $i = 2 \dots t - 1$ , either belongs to a sink component in  $\tilde{G}_{\tilde{M}}$ , or has a path to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ . If there exists such a post p, our strategy ensures that every popular matching in the falsified instance H matches  $a_1$  to p. We denote by  $\mathcal{L}_f$  the falsified preference list of  $a_1$ .

- 1. For  $i = 2 \dots t 1$  check if there exists a post  $p \in P_i$  in  $a_1$ 's preference list such that
  - (a) p belongs to a sink component in  $\tilde{G}_{\tilde{M}}$  or,
  - (b) p has a path to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ .
- 2. If no post satisfies (a) or (b) above, then true preference list  $\mathcal{L}$  is optimal for  $a_1$ .
- 3. Else let p denote one of the most preferred post of  $a_1$  satisfying one of the above two properties. Set post p as  $a_1$ 's rank-1 post in the falsified preference list.
- 4. To obtain the rank-2 post for  $a_1$ , let q be some post in  $f_G(a_1)$ . Let  $a_2 = \tilde{M}(q)$  and  $p' \in s_G(a_2)$ . Set p' as the rank-2 post of  $a_1$  in the falsified instance.

FIG. 5.1. Cheating strategy for  $a_1 \in \mathcal{A}_s$ .

We first show that the post p' chosen as a rank-2 post for  $a_1$  is valid, that is, p' is not one of the dummy last-resort posts that we introduce.

LEMMA 5.1. The post p' chosen in Step 4 of Figure 5.1 is matched in M and  $p' \neq \ell(a_2)$ . Furthermore, p' is a non-rank-1 post for  $a_2$ .

Proof. We note that post p' is chosen in Step 4 of Figure 5.1 as follows: Let q be some post such that  $q \in f_G(a_1)$  and let  $a_2 = \tilde{M}(q)$ . Then post p' is such that  $p' \in s_G(a_2)$ . Also recall that the popular matching  $\tilde{M}$  in  $\tilde{G}$  is obtained from a popular matching M in G. Therefore, to show that p' is matched in  $\tilde{M}$ , it suffices to show that p' is matched in M. Assume for contradiction, p' is not matched in M. Then, we can obtain another matching M' in G by demoting  $a_2$  to p' and promoting  $a_1$  to q and leaving rest of the agents matched as it is. It is easy to see that M' is popular in G and  $M'(a_1) \in f_G(a_1)$ . This contradicts the fact that  $a_1 \in \mathcal{A}_s$ . Thus, p' is matched in M and therefore matched in  $\tilde{M}$ . Finally, if  $p' = \ell(a_2)$ , then it is clear that p' has to be unmatched in M since  $a_2$  is the only agent that has an edge to  $\ell(a_2)$  and  $\tilde{M}(a_2) = M(a_2) = q$ .

To show that p' is a non-rank-1 post for  $a_2$ , note that by assumption,  $p' \in s_G(a)$ . Assume for contradiction that p' is a rank-1 post for  $a_2$ . This implies that  $a_2 \in (\mathcal{O}_1)_G$ . Also as  $q \in f_G(a_1)$ , by Lemma 4.3, we know that  $q \in (\mathcal{O}_1)_G$ . Thus, the edge  $(a_2, q)$ should have been deleted as on  $\mathcal{O}_1\mathcal{O}_1$  edge. However, since  $M(a_2) = q$ , this edge did not get deleted. This gives us the desired contradiction and proves that p' is in fact

<sup>5.</sup>  $\mathcal{L}_f = p, p'$ .

a non-rank-1 post for  $a_2$ .

This completes the proof of the lemma.  $\Box$ 

The following two lemmas establish the correctness of our strategy.

LEMMA 5.2. Let H denote the instance obtained when  $a_1$  submits  $\mathcal{L}_f = p, p'$  as computed by the algorithm in Figure 5.1. Then, there exists a popular matching in H that matches  $a_1$  to p.

Proof. We begin by noting that  $s_H(a_1) = \{p'\}$ . This is because  $p' \in s_G(a_2)$ and hence  $p' \in (\mathcal{E}_1)_G$ , therefore by Theorem 4.6 (i), we conclude that  $p' \in (\mathcal{E}_1)_H$ . We now construct a popular matching M' in H such that  $M'(a_1) = p$ . Consider a popular matching M in G and the corresponding matching  $\tilde{M}$  in  $\tilde{G}$ . Let  $N = \tilde{M} \setminus \{(a_1, \tilde{M}(a_1)), (b, \tilde{M}(b))\}$ . This leaves the post  $\tilde{M}(a_1)$  unmatched in N. We now consider the switching graph  $\tilde{G}_{\tilde{M}}$ . Recall the choice of rank-1 post p of  $a_1$  from the algorithm in Figure 5.1. If p has a path to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ , then let T denote a path from p to  $\tilde{M}(a_1)$  in the graph  $\tilde{G}_{\tilde{M}}$ . Else if p belongs to a sink component  $\mathcal{X}$  of  $\tilde{G}_{\tilde{M}}$ , then let T denote a path from p to a sink in  $\mathcal{X}$ . (Recall from Property 3.3 that every post belonging to a sink component has a path to a sink.) We note that the path Tdoes not contain  $\tilde{M}(b)$  since  $\tilde{M}(b) = \ell(b)$  and  $\ell(b)$  does not have any incoming edges. Now, consider the matching  $N' = (N \cdot T) \cup \{(a_1, p)\}$ . We prove that N' is popular in H. This has two parts:

- We claim that for every  $a \in \mathcal{A}$ ,  $N'(a) \in f_H(a) \cup s_H(a)$ . Note that for every  $a \in \mathcal{A} \setminus \{a_1\}$ , we have  $N'(a) \in f_{\tilde{G}}(a) \cup s_{\tilde{G}}(a)$  which implies that  $N'(a) \in f_H(a) \cup s_H(a)$ . Also,  $N'(a_1) = p$  and note that  $f_H(a_1) = \{p\}$ .
- Finally, it remains to show that N' is a maximum matching on rank-1 edges of H. Recall that the size of a maximum matching in  $\tilde{G}_1$  is the same as the size of a maximum matching in  $H_1$ . Thus, to show that N' is a maximum matching on rank-1 edges of H, we show that the number of rank-1 edges in N' is equal to the number of rank-1 edges in  $\tilde{M}$ . Now, recall the definition of path T from above and the way N' was obtained from  $\tilde{M}$ . It is easy to note that the number of rank-1 edges in  $\tilde{M}$  and N is the same. Furthermore, since  $N' = (N \cdot T) \cup \{(a_1, p)\}$ , we conclude that the difference between the number of rank-1 edges in N' and N is exactly equal to w(T) + 1. Note that the edge  $(a_1, p)$  is a rank-1 edge in H. Thus to show that N' is a maximum matching in  $H_1$ , or equivalently, the number of rank-1 edges in N' and  $\tilde{M}$  is equal, it suffices to show that w(T) = -1.

We now establish that w(T) = -1. For this, we examine the end points of T, namely the source which is post p and the target which is either a sink in  $\tilde{G}_{\tilde{M}}$  or the post  $\tilde{M}(a)$ . Since p is a post ranked  $2, \ldots, t-1$  in  $a_1$ 's true preference list, and the rank of posts in  $s_G(a_1)$  is exactly t, it implies that  $p \in (\mathcal{O}_1 \cup \mathcal{U}_1)_G$ . Therefore we can conclude that that  $p \in (\mathcal{O}_1)_{\tilde{G}}$ . Moreover, if the target is a sink, by Property 3.2 it belongs to  $(\mathcal{E}_1)_{\tilde{G}}$ . Finally, if the target is  $\tilde{M}(a_1)$ , by the assumption that  $a_1 \in \mathcal{A}_s$ , it implies that  $\tilde{M}(a_1) \in (\mathcal{E}_1)_{\tilde{G}}$ . Therefore using Table 3.1 we conclude that w(T) = -1. This finishes our argument that M' is a maximum matching on rank-1 edges of H.

This completes the proof of the lemma.  $\square$ 

LEMMA 5.3. Let H denote the instance obtained when  $a_1$  submits  $\mathcal{L}_f = p, p'$  as computed by the algorithm in Figure 5.1. Then, every popular matching in H matches  $a_1$  to p.

*Proof.* We have already shown using Lemma 5.2 that there exists some popular matching in H that matches  $a_1$  to p. For the purpose of proving that every popular

matching in H matches  $a_1$  to p, we will work with the graph G and the switching graph  $G_M$  corresponding to a popular matching M in G. For contradiction assume that there exists a popular matching M'' in H such that  $M''(a_1) = p'$ . Note that the rank-2 post p' of  $a_1$  is chosen as follows. Let q be some post such that  $q \in f_G(a_1)$  and let  $a_2 = \tilde{M}(q)$ . Then the post p' is such that  $p' \in s_G(a_2)$ . Recall that  $\tilde{M}$  is a popular matching in  $\tilde{G}$  which is obtained from a popular matching M in G. Note that since  $q \in f_G(a_1)$ , by Lemma 4.7, q belongs to a non-sink component in  $G_M$ . Moreover, by Lemma 4.9, there exists sets  $\mathcal{A}_q$  and  $\mathcal{P}_q$  such that  $|\mathcal{A}_q| = |\mathcal{P}_q|$ ,  $a_1 \notin \mathcal{A}_q$  and for every  $a \in \mathcal{A}_q$ , we have  $choices_H(a) \subseteq \mathcal{A}_q$ . We show that the post p' also belongs to  $\mathcal{P}_q$  and therefore if  $M''(a_1)$  matches  $a_1$  to p' then there exists at least one agent  $a \in \mathcal{A}_q$  who does not have a post to be matched in  $choices_H(a)$ . Thus, M'' cannot be a popular matching in H.

It remains to prove that  $p' \in \mathcal{P}_q$ . Note that  $q = M(a_2) \in f_G(a_2)$  and  $p' \in s_G(a_2)$ . If  $G_M$  contains the edge (q, p'), then we are done; since by definition of  $\mathcal{P}_q$ , it is clear that  $p' \in \mathcal{P}_q$ . The edge (q, p') can be missing in  $G_M$  only if it gets deleted either in Step 4 or in Step 9 of Algorithm 2.1. By Lemma 5.1, we know that  $a_2$  treats p' as her non-rank-1 post. Thus, the edge  $(a_2, p')$  cannot get deleted in Step 4 since only rank-1 edges get deleted in Step 4. Since q belongs to a non-sink component in  $G_M$ , by Property 3.3 it implies that  $q \in (\mathcal{U}_2)_G$ . Therefore  $M(q) = a_2$  also belongs to  $(\mathcal{U}_2)_G$ . Thus by Claim 2.4, the edge  $(a_2, p')$  does not get deleted in Step 9 of Algorithm 2.1 and hence  $p' \in \mathcal{P}_q$ . This completes the proof of the lemma.  $\Box$ 

The following lemma establishes the optimality of our strategy.

LEMMA 5.4. The strategy output by the algorithm in Figure 5.1 is the optimal strategy for  $a_1$  to get better always, when  $a_1 \in \mathcal{A}_s$ .

*Proof.* To prove that our strategy in Figure 5.1 is optimal, we note that when  $a_1$  was truthful, she got matched to her t-th ranked post in every popular matching in G. Using our strategy she either gets matched to her k-th ranked post in every popular matching in H where k < t or we declare that true preference list is optimal in which case she remains matched to her t-th ranked post where k = t. Then there exists no instance H such that a popular matching in H matches  $a_1$  to a post q' which  $a_1$  strictly prefers to her k-th ranked post.

For the sake of contradiction assume that there exists such an instance H obtained by falsifying the preference list of  $a_1$  alone. Let M' be some popular matching of Hsuch that  $M'(a_1) = q$  and  $a_1$  strictly prefers q to her k-th ranked post. Since our strategy in Figure 5.1 did not find q, the post q belongs to a non-sink component  $\mathcal{Y}$ in  $\tilde{G}_{\tilde{M}}$  and moreover there exists no path from q to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ . Now consider the two sets  $\mathcal{P}_q$  and  $\mathcal{A}_q$  as defined by Lemma 3.7. We know that  $|\mathcal{A}_q| = |\mathcal{P}_q|$ . Moreover, for every  $a \in \mathcal{A}_q$ , we have  $\{choices_{\tilde{G}}(a)\} \subseteq \mathcal{P}_q$ . Note that,  $a_1 \notin \mathcal{A}_q$ , otherwise  $\tilde{M}(a_1) \in \mathcal{P}_q$  which implies that there exists a path from q to  $\tilde{M}(a_1)$ , a contradiction. Furthermore, note that  $\ell(b) \notin \mathcal{P}_q$  and therefore,  $b \notin \mathcal{A}_q$ . By Lemma 4.13, we know that for every  $a \in \mathcal{A}_q$ ,  $choices_H(a) \subseteq choices_{\tilde{G}}(a)$ , which implies  $choices_H(a) \subseteq \mathcal{P}_q$ . Therefore, if M' matches  $a_1$  to q, there exists at least one agent  $a \in \mathcal{A}_q$  who does not have a post to be matched in  $choices_H(a) \square$ 

Using Lemma 5.3 and Lemma 5.4 we conclude the following theorem.

THEOREM 5.5. Let  $a \in A_s$ . Then there exists a cheating strategy for  $a_1$  to get better always if and only if there exists a post p ranked  $2 \dots t - 1$  on  $a_1$ 's preference list satisfying either

(a) p belongs to a sink component in  $G_{\tilde{M}}$  or,

(b) p has a path to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ .

**5.2.**  $\mathcal{A}_{f/s}$  agent. Let  $a_1 \in \mathcal{A}_{f/s}$  when she submits her true preference list. In order to get *better always*, the goal of  $a_1$  is to falsify her preference list such that every popular matching in the falsified instance H matches  $a_1$  to posts in  $P_1$ .

Let M be a popular matching in G such that  $M(a_1) = p$  and  $p \in f_G(a_1)$ . Let  $\tilde{M}$  denote the corresponding popular matching in  $\tilde{G}$  which matches b to  $\ell(b)$ . Consider the switching graph  $\tilde{G}_{\tilde{M}}$ . Our strategy for  $a_1$  to get better always (as described in Figure 5.2) is to search for an *even* post p' in  $G_1$  which belongs to a non-sink component of  $\tilde{G}_{\tilde{M}}$ . In addition the post p' does not have a path T to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ .

- 1. For every  $p' \in (\mathcal{E}_1)_G \cap \mathcal{P}$  check if
  - (a) p' belongs to a non-sink component, say  $\mathcal{Y}_1$ , of  $\tilde{G}_{\tilde{M}}$  and,
  - (b) p' does not have a path T to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ .
- 2. If no post satisfies both properties, declare true preference list  $\mathcal{L}$  is optimal for  $a_1$ .
- 3. Else set  $M(a_1) = p$  and p' as the rank-1 and rank-2 posts respectively in the falsified preference list of  $a_1$ .
- 4.  $\mathcal{L}_f = p, p'$ .

FIG. 5.2. Cheating strategy for  $a_1 \in \mathcal{A}_{f/s}$  to get better always.

We prove the correctness and optimality of our strategy using the following two lemmas.

LEMMA 5.6. Let H denote the instance obtained when  $a_1$  submits  $\mathcal{L}_f = p, p'$  as computed by the algorithm in Figure 5.2. Then, every popular matching in H matches  $a_1$  to p.

*Proof.* We first show that a popular matching M in G which matches  $a_1$  to her rank-1 post is in fact a popular matching in H. This follows from the fact that M is a maximum matching on rank-1 edges of G, and it continues to be a maximum matching on rank-1 edges of H. In addition, for every  $a \in \mathcal{A} \setminus \{a_1\}$ , we have  $M(a) \in f_G(a) \cup s_G(a)$  which implies that  $M(a) \in f_H(a) \cup s_H(a)$ . Thus, M is a popular matching in H.

We now show that every popular matching of H matches  $a_1$  to p. Assume not. Then let M' be a popular matching in H such that  $M'(a_1) \in s_H(a_1)$ . It is easy to see that  $s_H(a_1) = \{p'\}$ . This is because by choice,  $p' \in (\mathcal{E}_1)_G \cap \mathcal{P}$  and therefore by Theorem 4.6, we have  $p' \in (\mathcal{E}_1)_H \cap \mathcal{P}$ . Thus, p' is the most preferred even post in  $H_1$ for agent  $a_1$  and therefore  $s_H(a_1) = \{p'\}$ .

We know that p' belongs to a non-sink component  $\mathcal{Y}_1$  of  $\tilde{G}_{\tilde{M}}$  and p' does not have a path to  $\tilde{M}(a_1) = p$ . Let us define tight-pair  $\mathcal{P}_{p'}$  and  $\mathcal{A}_{p'}$  as in Lemma 3.7. Thus, we have  $|\mathcal{P}_{p'}| = |\mathcal{A}_{p'}|$  and every  $a \in \mathcal{A}_{p'}$  satisfies  $choices_{\tilde{G}}(a) \subseteq \mathcal{P}_{p'}$ . Since p' does not have a path to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ , it is clear that  $\tilde{M}(a_1) \notin \mathcal{P}_{p'}$ . Therefore  $a_1 \notin \mathcal{A}_{p'}$ . Furthermore,  $\tilde{M}(b) \notin \mathcal{P}_{p'}$  since  $\tilde{M}(b) = \ell(b)$  does not have any incoming edges. Since every  $a \in \mathcal{A}_{p'}$  belongs to a non-sink component of  $\tilde{G}_{\tilde{M}}$ , using Lemma 4.13 we know that  $choices_H(a) \subseteq choices_{\tilde{G}}(a)$ . Thus, for every  $a \in \mathcal{A}_{p'}$ , we have  $choices_H(a) \subseteq \mathcal{P}_{p'}$ . Now if  $M'(a_1) = p'$  then there exists at least one agent  $a \in \mathcal{A}_{p'}$  which does not have a post to be matched in  $choices_H(a)$ . Thus, M' cannot be a popular matching in H.

LEMMA 5.7. Let  $a_1 \in \mathcal{A}_{f/s}$  when she is truthful. Then the strategy output by the algorithm in Figure 5.2 is the optimal strategy for  $a_1$  to get better always.

*Proof.* To prove the lemma statement, assume that no post satisfies the two properties in Step 1 of Figure 5.2. And for the sake of contradiction assume that there exists an instance H where every popular matching in H matches  $a_1$  to a post in  $f_G(a_1)$ . Let  $q' \in s_H(a_1)$ , then by the definition of s(a), we know that  $q' \in (\mathcal{E}_1)_H \cap \mathcal{P}$ . We first claim that q' is not a true rank-1 post for  $a_1$ , that is,  $q' \notin f_G(a_1)$ . This is because, if  $q' \in f_G(a_1)$ , then Lemma 4.3 implies that  $q' \in (\mathcal{O}_1)_G$ . Moreover, by Theorem 4.6(i), we can conclude that  $q' \in (\mathcal{O}_1 \cup \mathcal{U}_1)_H \cap \mathcal{P}$ , which contradicts the fact that  $q' \in (\mathcal{E}_1)_H \cap \mathcal{P}$ . Now, since our algorithm in Figure 5.2 did not find q', either:

1. q' belongs to a sink component in  $G_{\tilde{M}}$ , or

2. q' belongs to a non-sink component of  $\tilde{G}_{\tilde{M}}$  and q' has a path T to  $\tilde{M}(a_1)$ . In each of the above two cases we will construct a popular matching in H that matches  $a_1$  to q'. This will give us the desired contradiction. We now split the two cases mentioned above depending on whether the post q' has a path to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ .

• q' does not have a path to  $\tilde{M}(a_1)$ : Since q' was not found by our algorithm in Figure 5.2, and q' does not have a path to  $\tilde{M}(a_1)$ , it implies that q' belongs to a sink component, say  $\mathcal{X}_i$  of  $\tilde{G}_{\tilde{M}}$ . Our intermediate goal is to obtain a popular matching N in  $\hat{G}$  in which the post q' is unmatched. If q' is a sink vertex in  $G_{\tilde{M}}$ , then it is unmatched and in this case  $N = \tilde{M}$ . Otherwise since q' belongs to a sink component  $\mathcal{X}_i$  of  $\tilde{G}_{\tilde{\mathcal{M}}}$ , there exists a path  $T_1$  starting at q' which ends in a sink in  $\mathcal{X}_i$ . Let  $\mathcal{A}_{T_1} = \{a : p \in T \text{ and } \tilde{M}(p) = a\}$  denote the set of agents matched to posts in  $T_1$ . Since q' does not have a directed path to  $M(a_1)$ , the agent  $a_1 \notin \mathcal{A}_{T_1}$ . Moreover,  $b \notin \mathcal{A}_{T_1}$  since  $M(b) = \ell(b)$ does not have any incoming edges. In this case, let  $N = M \cdot T_1$  which leaves the post q' unmatched. To see that N is indeed popular in G, it suffices to show that  $w(T_1) = 0$ . Consider the two end-points of  $T_1$  – the source q' and the destination which is a sink vertex in  $\tilde{G}_{\tilde{M}}$ . Note that  $q' \in s_H(a_1)$  implies  $q' \in (\mathcal{E}_1)_H \cap \mathcal{P} = (\mathcal{E}_1)_{\tilde{G}} \cap \mathcal{P}$  and the end point of the path  $T_1$  is a sink vertex in  $G_{\tilde{M}}$  which again belongs to  $(\mathcal{E}_1)_{\tilde{G}} \cap \mathcal{P}$ . Therefore from Table 3.1, it is clear that w(T) = 0. Thus, we have obtained a matching N which is popular in  $\hat{G}$ and leaves the post q' unmatched.

Now consider the popular matching N in  $\tilde{G}$ . We note that since  $a_1 \in \mathcal{A}_{f/s}$ , there exists a post say  $q \in s_G(a_1) = s_{\tilde{G}}(a_1)$  such that  $(a_1, q)$  is a popular pair in both G and  $\tilde{G}$ . (Recall that by the definition of  $\tilde{G}$ , every popular matching in G corresponds to a popular matching in  $\tilde{G}$ .) Now, consider the switching graph  $\tilde{G}_N$ . Since  $(a_1, q)$  is a popular pair in  $\tilde{G}$  and  $N(a_1) \neq q$ , we know that the edge  $(a_1, q)$  belongs to either a switching path, say  $T_2$ , or a switching cycle say  $C_2$  of  $G_N$ . Let us denote the path  $T_2$  or the cycle  $C_2$  by T. We first note that w(T) = 0, since T is either a switching path or a switching cycle. Now consider the matching  $N' = N \cdot T$  in which  $a_1$  is matched to q. Next consider the matching  $N'' = N' \setminus \{(a_1, q), (b, \ell(b))\} \cup \{(a_1, q')\}$ . We now argue that N'' is a popular matching in H. First note that for every  $a \in \mathcal{A} \setminus \{a_1\}$ , we have  $N''(a) \in f_{\tilde{G}}(a) \cup s_{\tilde{G}}(a)$  which implies that  $N''(a) \in f_H(a) \cup s_H(a)$ . For agent  $a_1, N''(a) \in s_H(a_1)$  by the assumption that  $q' \in s_H(a_1)$ . Next, observe that the number of rank-1 edges in  $\tilde{M}$ , N and N' is the same since they are obtained by applying switching paths or cycles. Finally, the number of rank-1 edges of N'' is the same as N' since  $a_1$  is matched to a non-rank-1 post in both the matchings. This completes the proof that N'' is a popular matching in H which matches  $a_1$  to q'. Thus, we get the desired contradiction that every popular matching in H matches  $a_1$  to one of her rank-1 posts.

• q' has a path to  $\tilde{M}(a_1)$ : In this case, q' may belong to a sink component or a non-sink component of  $\tilde{G}_M$ . In either case, let T denote the path from q'to  $\tilde{M}(a_1)$ . Since  $q' \in (\mathcal{E}_1)_{\tilde{G}}$  and  $\tilde{M}(a_1) \in (\mathcal{O}_1)_{\tilde{G}}$ , using Table 3.1, it is clear that w(T) = +1.

We obtain N'' as follows: let  $N = \tilde{M} \setminus \{(a_1, \tilde{M}(a_1)), (b, \tilde{M}(b))\}$ . This leaves the post  $\tilde{M}(a_1)$  unmatched in N. Let  $N' = N \cdot T$  and finally let N'' = $N' \cup \{(a_1, q')\}$ . Using the same arguments as above it is possible to show that for every  $a \in \mathcal{A}$ ,  $M'(a) \in f_H(a) \cup s_H(a)$ . We note that since w(T) = +1and  $a_1$  no longer remains matched to one of her rank-1 posts, the number of rank-1 edges in M' and  $\tilde{M}$  is the same. Thus, N'' is a maximum matching on rank-1 edges in H. Therefore, N'' is popular in H and  $N''(a_1) \in s_H(a_1)$ which gives us the required contradiction.

This finishes the proof of the lemma.  $\Box$ 

Using Lemma 5.6 and Lemma 5.7, we conclude the following theorem.

THEOREM 5.8. Let  $a_1 \in \mathcal{A}_{f/s}$ . There exists a cheating strategy for  $a_1$  to get better always if and only if there exists a post p' in  $(\mathcal{E}_1)_G$  satisfying the following two properties

(a) p' belongs to a non-sink component, say  $\mathcal{Y}_1$ , of  $G_{\tilde{M}}$ , and

(b) there exists no path from p' to  $\tilde{M}(a_1)$  in  $\tilde{G}_{\tilde{M}}$ .

**Time complexity:** We now discuss the time complexity of computing the optimal cheating strategy using Theorem 5.9.

THEOREM 5.9. The optimal falsified preference list for a manipulative agent to get better always can be computed in  $O(\sqrt{nm})$  time if preference lists contain ties and in time O(m+n) time if preference lists are all strict.

*Proof.* The main steps of our strategy are:

- 1. Construct the switching graph.
- 2. Compute the set of popular pairs.
- 3. Run the algorithm given by Figure 5.1 or Figure 5.2 as appropriate for the manipulative agent.

We note that we use the modified graph  $\tilde{G}$  for computing our strategies and let  $\tilde{n}$ and  $\tilde{m}$  denote the vertices and edges in  $\tilde{G}$  respectively. Clearly,  $\tilde{n} = n + 1$  and  $\tilde{m} < m + n = O(m)$ . Once the switching graph is constructed, we observe that the algorithms in Figure 5.1 and Figure 5.2 have checks which can be done in time which is linear in the size of the switching graph. Thus the steps (1) and (2) defined above decide the complexity of our cheating strategy. In case of ties, we have shown that both steps can be computed in  $O(\sqrt{nm})$  time. In case of strict lists, using the switching graph given by McDermid and Irving [13], both steps can be computed in O(m + n) time. Thus we have the desired result.  $\Box$ 

**Remark:** In each case we constructed a falsified preference list for the manipulative agent which is strict and of length exactly two. However, by appending the rest of the posts in  $\mathcal{P}$  at the end of  $a_1$ 's preference list, there is no change in the popular matchings that the instance H admits. Thus, we conclude that, if an agent can manipulate to get *better always* she can achieve the same when preference lists are required to be complete.

6. Conclusion. In this paper we presented cheating strategies for a manipulative agent to get *better always*. It would be interesting to study how two or more agents co-operate and falsify their preference lists in order to get *better always*. We leave this as an open problem. Another contribution of the paper is the switching graph characterization of the popular matchings problem with ties. McDermid and Irving [13] have used their characterization in case of strict lists to give efficient algorithms for the *optimal* popular matchings problem [10, 13]. It would be useful to exploit the characterization developed here and design efficient algorithms for the *optimal* popular matchings problem with ties allowed. We leave that as another open question.

**Acknowledgment:** The author would like to thank Prof. Vijaya Ramachandran for several useful discussions on the problem and also to the anonymous reviewers for the detailed comments which improved the presentation considerably.

### REFERENCES

- D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing, 37(4):1030–1045, 2007.
- P. Dagum and M. Luby. Approximating the permanent of graphs with large factors. Theor. Comput. Sci., 102(2):283–305, 1992.
- [3] D. Gale and L. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 69:9–14, 1962.
- [4] P. G\u00e4rdenfors. Match making: assignments based on bilateral preferences. Behavioural Sciences, 20:166–173, 1975.
- [5] C.-C. Huang. Cheating to get better roommates in a random stable matching. In Proceedings of 24th Annual Symposium on Theoretical Aspects of Computer Science, pages 453–464, 2007.
- [6] C.-C. Huang and T. Kavitha. Near-popular matchings in the roommates problem. In Proceedings of the 19th Annual European Symposium on Algorithms, pages 167–179, 2011.
- [7] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.
- [8] T. Kavitha. Popularity vs maximum cardinality in the stable marriage setting. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pages 123–134, 2012.
- T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science, 412(24):2679–2690, 2011.
- [10] T. Kavitha and M. Nasre. Note: Optimal popular matchings. Discrete Applied Mathematics, 157(14):3181–3186, 2009.
- M. Mahdian. Random popular matchings. In Proceedings of 7th ACM Conference on Electronic Commerce, pages 238–242, 2006.
- [12] R. M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In Proceedings of the 15th Latin American Symposium on Theoretical Informatics, pages 593–604, 2008.
- [13] E. McDermid and R. W. Irving. Popular matchings: structure and algorithms. Journal of Combinatorial Optimization, 22(3):339–358, 2011.
- [14] M. Nasre. Popular Matchings: Structure and Cheating Strategies. In Proceedings of 30th Annual Symposium on Theoretical Aspects of Computer Science, pages 412–423, 2013.
- [15] W. R. Pulleyblank. Handbook of Combinatorics (Vol. 1), chapter Matchings and Extensions, pages 179–232. MIT Press, Cambridge, MA, USA, 1995.
- [16] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160, 1972.
- [17] C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-shapley stable marriage problem revisited: Strategic issues and applications. *Management Science*, 47(9):1252–1267, 2001.