
Theoretical Computer Science 412 (2011) 1263–1274

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Popular matchings with variable item copies✩

Telikepalli Kavitha a, Meghana Nasre b,∗

a Tata Institute of Fundamental Research, Mumbai, India
b Indian Institute of Science, Bangalore, India

a r t i c l e i n f o

Article history:
Received 11 March 2010
Received in revised form 3 October 2010
Accepted 27 December 2010
Communicated by P. Spirakis

Keywords:
Bipartite graphs
Matchings
One-sided preference lists
NP-hardness

a b s t r a c t

We consider the problem of matching people to items, where each person ranks a subset
of items in an order of preference, possibly involving ties. There are several notions of
optimality about how to best match a person to an item; in particular, popularity is
a natural and appealing notion of optimality. A matching M∗ is popular if there is no
matching M such that the number of people who prefer M to M∗ exceeds the number
who preferM∗ toM . However, popular matchings do not always provide an answer to the
problem of determining an optimal matching since there are simple instances that do not
admit popularmatchings. Thismotivates the following extension of the popularmatchings
problem:

• Given a graphG = (A∪B, E)whereA is the set of people andB is the set of items, and
a list ⟨c1, . . . , c|B|⟩ denoting upper bounds on the number of copies of each item, does
there exist ⟨x1, . . . , x|B|⟩ such that for each i, having xi copies of the i-th item, where
1 ≤ xi ≤ ci, enables the resulting graph to admit a popular matching?

In this paper we show that the above problem is NP-hard. We show that the problem is
NP-hard even when each ci is 1 or 2. We show a polynomial time algorithm for a variant of
the above problem where the total increase in copies is bounded by an integer k.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem ofmatching people to items, where each person ranks a subset of items in an order
of preference possibly involving ties, that is, preference lists are one-sided. Our input is a bipartite graph G = (A ∪ B, E)
where A is the set of people and B is the set of items, and E = E1 ∪̇ · · · ∪̇ Er is the set of edges, where Et is the set of edges
having rank t . For any a ∈ A, we say a prefers item b to item b′ if the rank of edge (a, b) is smaller than the rank of edge (a, b′).
The goal is to come up with an optimalmatching of people to items. Several notions of optimality like rank-maximality [8],
maximum-utility, Pareto-optimality [2,1,16] have been studied in the literature for matchings with one-sided preferences.
But most of these notions use the absolute ranks specified by people over items to distinguish between a pair of matchings.
One criterion that does not use numerical ranks is the notion of popularity.

LetM(a) denote the item to which a person a is matched in a matchingM . We say that a person a prefers matchingM to
M ′ if (i) a is matched inM and unmatched inM ′, or (ii) a is matched in bothM and M ′, and a prefers M(a) to M ′(a).

✩ Work done as part of the DST-MPG partner group ‘‘Efficient Graph Algorithms’’ at IISc Bangalore. A preliminary version of this work appeared in the
20th International Symposium on Algorithms and Computation, ISAAC’09 [11].
∗ Corresponding address: Computer Science and Automation Department, Indian Institute of Science, Bangalore, 560012, India. Tel.: +91 80 22932368;

fax: +91 80 23602911.
E-mail addresses: kavitha@tcs.tifr.res.in (T. Kavitha), meghana@csa.iisc.ernet.in, meghanamande@gmail.com (M. Nasre).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.12.067

http://dx.doi.org/10.1016/j.tcs.2010.12.067
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:kavitha@tcs.tifr.res.in
mailto:meghana@csa.iisc.ernet.in
mailto:meghanamande@gmail.com
http://dx.doi.org/10.1016/j.tcs.2010.12.067

1264 T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274

Definition 1. M is more popular than M ′, denoted by M ≻ M ′, if the number of people who prefer M to M ′ is higher than
those that preferM ′ to M . A matchingM∗ is popular if there is no matching that is more popular thanM∗.

Popular matchings were first introduced by Gärdenfors [5] in the context of stable matchings. The notion of popularity is
an attractive notion of optimality since it is based on relative ranking rather than the absolute ranks used by any person; also
popular matchings can be considered stable in the sense that no majority vote of people can force a migration to another
matching. Unfortunately there exist simple instances that do not admit any popular matching. Abraham et al. [3] designed
efficient algorithms for determining if a given instance admits a popular matching and computing one, if it exists.

A simple example that does not admit a popular matching is the following: let A = {a1, a2, a3}, B = {b1, b2, b3}, and
each person prefers b1 to b2, and b2 to b3. Consider the three symmetrical matchings M1 = {(a1, b1), (a2, b2), (a3, b3)},
M2 = {(a1, b3), (a2, b1), (a3, b2)} andM3 = {(a1, b2), (a2, b3), (a3, b1)}. None of these matchings is popular, sinceM1 ≺ M2,
M2 ≺ M3, and M3 ≺ M1. In fact, it turns out that this instance admits no popular matching, the problem being that the
more popular than relation is not transitive. Our focus in this paper will be on such instances that do not admit a popular
matching. Intuitively, the absence of a popular matching in an instance is due to a small set of items being in too much
demand by a large number of people. Suppose that we are allowed to add extra copies or duplicates of items and that these
duplicates are indistinguishable from the original item. If there were no bounds on the number of copies that we could add
for an item, a straightforward solution would be to have as many copies of an item as the number of people that demand
the item as their top choice. For example, in the above instance that does not admit a popular matching, say we have 2
additional copies of b1 (call them b′

1 and b′′

1). Thus, we have 3 copies of b1 in our instance now and it is easy to see that
the matching M̃ = {(a1, b1), (a2, b′

1), (a3, b
′′

1)} is a popular matching for the new instance. But our assumption of allowing
arbitrarily many copies of an item need not be true in practice. Fortunately, popular matchings do not require each person
to be matched to her top choice item. In the above instance it is possible to get a popular matching by making just one extra
copy of item b1 and not duplicating any other items. In this sense, we expect to improve the situation in terms of popularity
by having additional copies of some items within the specified bounds.

Such a solution of making extra copies is appealing when the items represent books or DVDs. Say, along with a DVD bi
comes a licensewhich allows us tomake a specified number ci many copies of that particular DVD. If wemake up to ci copies
of that DVD, thenwedonot incur any additional cost. Our goal then is tomake the appropriate number of copies of everyDVD
so that the resulting instance admits a popular matching. Another relevant scenario is when the set B represents training
programs. Any training program bi can be run for a single person, but some training programs may be able to accommodate
up to ci many people.We call this the capacity of a training program andwewish to fix the capacity of each training program
so as to enable the resulting instance to admit a popularmatching. Itmay seem from the above examples that having asmany
copies of a DVD as are allowed or stretching a training program to its maximum capacity should be the best thing to do. We
showanexample in thenext sectionwhich illustrates that having asmany copies as possible does not always help popularity.

The problem of fixing copies. Given a graph G = (A ∪ B, E) where B = {b1, . . . , b|B|} and a list ⟨c1, . . . , c|B|⟩ of upper
bounds on the number of copies, does there exist an ⟨x1, . . . , x|B|⟩ such that for each i ∈ {1, . . . , |B|}, having xi copies of
the i-th item, where 1 ≤ xi ≤ ci, enables the resulting graph to admit a popular matching?

We assume that G does not admit a popular matching. Our problem is to determine if by fixing the copies of each item
appropriately, whether the resulting graph admits a popular matching or not. We now define a special case of this problem
which we call the 1-or-2 copies problem.

The 1-or-2 copies problem. In this case, each ci is either 1 or 2. Note that when all the ci’s are 1, this is the standard popular
matching problem. Thus the 1-or-2 copies problem is a generalization of the popular matching problem. Here we have a
subset K of items which can be duplicated, that is, the items in K can have up to 2 copies in the resulting instance, while the
rest of the items will have a single copy. The problem is to determine if by duplicating some elements in K we get a graph
that admits a popular matching.

The deleting-some-items problem. When the input instance does not admit a popular matching, another possibility is to
delete some items so that the resulting graph admits a popular matching. Here we assume that only certain items: elements
of some subset B ′ of B are allowed to be deleted; otherwise there is a trivial solution that says ‘‘delete all items, then the
empty matching is popular’’. The problem is to determine if there exists a subset T ⊆ B ′ such that by deleting the items in
T , the resulting graph admits a popular matching. If the 1-or-2 copies problem is NP-hard, then it is easy to show that the
deleting-some-items problem is also NP-hard.

Given an instance G = (A ∪ B, E) and K ⊆ B of the 1-or-2 copies problem, we create an instance of the deleting-some-
items problem as follows: our graph is H = (A ∪ B̃, E) where each item in K has 2 copies. Thus the set of items B̃ here can
be considered as {b1, . . . , b|B|, b′

1, . . . , b
′

k} where K = {b1, . . . , bk} and b′

1, . . . , b
′

k are identical copies of these items. Set the
subsetB ′ of items that may be deleted to {b′

1, . . . , b
′

k}. That is, the first copy of an itemmay not be deleted, while each of the
second copies of items that we created can be deleted. Thus, any efficient algorithm for the deleting-some-items problem
implies an efficient algorithm for the ‘‘1-or-2 copies’’ problem.

1.0.1. Related work
Subsequent to the work on popular matching algorithms in [3], Manlove and Sng [13] generalized the algorithms of

[3] to the capacitated case in the context of house allocation, there items were called houses and houses had capacities.

T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274 1265

This problem can be easily solved using the algorithm in [3] by including ci copies of item bi for each i. A faster algorithm for
determining if such an instance admits a popularmatching and computing one if it exists,was shown in [13] for this problem.

Mestre showed efficient algorithms for the weighted popular matching problem in [15], here each person is assigned a
priority or weight, and the definition of popularity takes into account the priorities of the people. Mahdian [12] considered
the problem of when random graphs (that is, preference lists are randomly constructed) admit popular matchings and
showed that a popularmatching existswith high probability in such graphs,when the number of items is a factor ofα ≈ 1.42
larger than the number of people.

In order to deal with the problem of the input instance not admitting a popular matching, the following extensions of
popular matchings have been considered so far.

• Least unpopular matching: A natural extension when the graph does not admit a popular matching is to ask for a
least unpopular matching. The unpopularity margin of a matching M , call it u(M), is maxM ′ |people who prefer M ′ to
M| − |people who prefer M to M ′

|. The least unpopularity margin matching is that matching M with the least value of
u(M). McCutchen [14] showed that computing such a matching is NP-hard. In [7] Huang et al. gave efficient algorithms
to compute matchings with bounded values of these unpopularity measures in certain graphs.

• Mixed matchings: Very recently, Kavitha et al. [10] considered the problem of computing a probability distribution over
matchings, also called a mixed matching, that is popular. It was shown that every instance admits a popular mixed
matching and a polynomial time algorithm was given to compute such a probability distribution. Although, popular
mixed matchings are guaranteed to exist and are efficiently computable, they may not be an acceptable solution when
the solution needs to be a pure matching.

1.0.2. Our contributions
In this paper we consider the following extension to the popular matching problem: does having extra copies of items

within certain bounds, yield a graph that admits a popular matching? The main results in this paper are:

• The above problem is NP-hard. In fact, the 1-or-2 copies problem is NP-hard. As a consequence the problem of deleting-
some-items is NP-hard.

• Our reduction constructs an instance of the 1-or-2 copies problem with preference lists of length just 2. In fact, each of
these preference lists has a unique top choice item and theremay be at most 2 items tied as second choice items.We also
show that when preferences lists have length 2 with ties allowed only in the first position (i.e., the second choice item is
unique), then the problem becomes solvable in polynomial time.

• We show that the 1-or-2 copies problem remains NP-hard even if preference lists are derived from amaster list.
• We consider a variant of the above problem where we only have to maintain an upper bound k on the total number of

extra copies of all the items, rather an upper bound on the number of copies of each item. That is, here we are given a
graph G = (A ∪ B, E) and an integer k ≥ 0 and we have to decide whether there exist ∆1, . . . , ∆|B| where each ∆i ≥ 1
and

∑
i ∆i ≤ k, such that having ∆i + 1 copies of the i-th item, for 1 ≤ i ≤ |B|, enables the resulting instance to admit

a popular matching. Note that we add ∆i extra copies of the i-th item and in this case the sum of the extra copies of all
items is bounded by k. We show a polynomial time algorithm for this variant.

A preliminary version of these results can be found in [11].

Organization of the paper. Section 2 outlines the algorithm from [3] to compute a popular matching. Section 3 contains our
NP-hardness proofs. Section 4 shows a polynomial time algorithm for the variant where only the sum of the extra copies is
bounded.

2. Preliminaries

We first review the algorithmic characterization of popular matchings given in [3]. As was done in [3], it will be
convenient to add a unique last item ℓa at the end of a’s preference list for each person a ∈ A. We will henceforth refer to
this graph as G = (A ∪ B, E). In this way, it can be assumed that every matching in G is A-complete, since any unmatched
person a can be paired with ℓa.

A maximum matching M in a bipartite graph G1 = (A ∪ B, E1) has the following important properties: M ∩ E1 defines
a partition of A ∪ B into three disjoint sets: odd (O), even (E), and unreachable (U).

• A vertex u belongs to the set E (resp. O) if there is an even (resp. odd) length alternating path in G1 from an unmatched
vertex to u.

• A vertex u belongs to the set U, that is, it is unreachable, if there is no alternating path in G1 from an unmatched vertex
to u.

The following lemma, proved in [6], is well-known in matching theory. We include its proof for completeness.
Lemma 1. Let E , O and U be the sets of nodes defined by G1 and M ∩ E1 above. Then
(a) E , O and U are pairwise disjoint, and independent of the maximum matching M ∩ E1.
(b) In any maximummatching of G1, every node in O is matched with a node in E , and every node in U is matched with another

node in U. The size of a maximum matching is |O| + |U|/2.
(c) No maximummatching of G1 contains an edge between a node in O and a node in O ∪ U. Also, G1 contains no edge between

a node in E and a node in E ∪ U.

1266 T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274

Proof. (a) The set U is disjoint from E and O by definition. To prove that E is disjoint from O, assume that a node u is
reachable by an even length path from a node a and an odd length path from a node b. Note that a ≠ b since G is
bipartite. Composing the two paths, we get an augmenting path in Gwith respect toM , contradicting the maximality of
M .

To prove that this partition in independent of M , let N be any other maximum cardinality matching in G. M ⊕ N
consists of alternating paths and cycles and each of these paths and cycles are of even length. Since the graph is bipartite,
it is immediate that the cycle have to be of even length. For paths, assume that a path hasmore edges fromN , then such a
path is an augmenting path with respect toM , a contradiction to the maximality ofM . A similar argument holds if there
are more edges from M . Using these paths and cycles to switch from M to N does not alter the odd/even/unreachable
status of nodes, hence the partition is independent of the maximum cardinality matching.

(b) If a matched node u is reachable from a free node by an odd length path with respect to any maximum cardinality
matching, then its partner is reachable by an even length path. Thus, all edges in any maximummatching of G are either
OE or UU edges. Further, any node in U must be matched by a maximum matching, for, if not, the node is reachable
with an even length (zero length) path from itself. Also a node in O must be matched by a maximummatching since an
odd length alternating path starting and ending with a free node is an augmenting path. Thus, the size of any maximum
matching is |O| + |U|/2.

(c) Nodes in E are reachable by an alternating path from an unmatched node. Such paths end in a matching edge. If there
were an edge between two nodes in E , we could use that to construct an augmenting path, contradicting maximality.
Finally, if there were an edge between a node in E and a node in U, such an edge would be a non-matching edge. We
could use that to extend the alternating path and reach the node inU, a contradiction to the definition of nodes inU. �

As everymaximum cardinality matchingmatches all vertices u ∈ O ∪Uwe call these vertices critical as opposed to vertices
u ∈ E which are called non-critical. Using the above partition, the following definitions can be made:

Definition 2. For each a ∈ A, define f (a) to be the set of top choice items for a. Define s(a) to be the set of a’s most-preferred
non-critical items in G1.

Theorem 1 ([3]). A matching M is popular in G iff (i) M is a maximum matching of G1 = (A ∪ B, E1), and (ii) for each person
a, M(a) ∈ f (a) ∪ s(a).

The algorithm for solving the popular matching problem is now straightforward: each a ∈ A determines the sets f (a) and
s(a). An A-complete matching that is a maximum matching in G1 and that matches each a to an item in f (a) ∪ s(a) needs
to be determined. If no such matching exists, then G does not admit a popular matching. The popular matching algorithm
from [3] is presented in the Appendix.

We now present an example to illustrate these definitions as well as to show that having themaximumnumber of copies
of an item need not always help in terms of popularity.

2.1. Illustrative example

Consider the following instance G = (A ∪ B, E), where A = {a1, a2, a3, a4, a5} and B = {f1, f2, s1, s2, s3, s4} and
the preference lists of people are described in Fig. 1(a). In Fig. 1(b) we have the same set of applicants and preference lists
except that every item has 2 copies. That is, B ′

= {f1, f ′

1, f2, f
′

2, s1, s
′

1, s2, s
′

2, s3, s
′

3, s4, s
′

4}, where we have explicitly included
an identical copy b′ of b, for every b ∈ B. We refer to this instance with duplicates as the instance H = (A ∪ B ′, E ′). Here
and in the rest of the paper, the first column in the figure denotes the set of people and the row adjoining it denotes the
preference list of the particular person. For example, a1 treats f1 as its rank-1 item, f2 as its rank-2 item and s1 as its rank-3
item according to Fig. 1(a). When there are multiple items in the same cell as in case of Fig. 1(b), we say that the items are
tied at that rank. That is, a1 treats both f1 and f ′

1 as its rank-1 item according to Fig. 1(b). We omit the numbering of the
columns as given by the first row from the rest of the figures.

1 2 3

a1 f1 f2 s1
a2 f1 f2 s2
a3 f1 f2 s3
a4 f1 f2 s4
a5 f2

1 2 3

a1 f1, f ′

1 f2, f ′

2 s1, s′1
a2 f1, f ′

1 f2, f ′

2 s2, s′2
a3 f1, f ′

1 f2, f ′

2 s3, s′3
a4 f1, f ′

1 f2, f ′

2 s4, s′4
a5 f2, f ′

2

(a) (b)
Fig. 1. Example showing larger copies do not always help.

T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274 1267

Consider the subgraph G1 = (A ∪ B, E1) of G where every person has edges only to her top-choice item. It is easy to
see that every maximum matching of G1 has to match the following vertices: the items {f1, f2} and the person a5. Thus,
the items f1 and f2 are critical and s1, . . . , s4 are non-critical in G1. Hence si is the most preferred non-critical vertex in G1
for person ai, for i = 1, . . . , 4. Applying Theorem 1 we see that the instance G admits a popular matching: for example,
{(a1, f1), (a5, f2), (a2, s2), (a3, s3), (a4, s4)} is a popular matching.

Let us now consider the subgraph H1 of H where every person has edges to her rank-1 items. The critical vertices in
H1 = (A ∪ B ′, E ′

1) are f1 and f ′

1 while f2 and f ′

2 are now non-critical in H1. Thus f2 and f ′

2 become the most preferred non-
critical vertices for a1, . . . , a4 — hence any popular matching has to match each of a1, . . . , a4 to one of {f1, f ′

1, f2, f
′

2}. Also, a5
has to be matched to f2 or f ′

2 (since a popular matching is a maximum matching on rank-1 edges). Since there are 5 people
and only 4 items that they can be matched to in any popular matching, there exists no popular matching now. Thus the
instance shown in Fig. 1(b) where each item has 2 copies does not admit a popular matching while the instance in Fig. 1(a)
where each item has a single copy does.

3. The 1-or-2 copies problem

Given a graph G = (A ∪ B, E) and a subset K ⊆ B of items which can be duplicated, that is, we can have up to 2 copies
of every item in the set K , the problem is to determine if there exists a setting of copies of items as ⟨x1, . . . , x|B|⟩ where
xi = 1 for each item bi ∈ B \ K and xi is either 1 or 2 for each item bi ∈ K such that with these copies the resulting graph
admits a popular matching.

To prove that this problem is NP-hard, we reduce the problem of monotone 1-in-3 SAT to the 1-or-2 copies problem.
Monotone 1-in-3 SAT is a variant of the 3-satisfiability problem (3SAT). Like 3SAT, the input instance is a collection of
clauses, where each clause consists of exactly three variables and no variable appears in negated form. The monotone 1-
in-3 SAT problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly
one true variable (and thus exactly two false variables). This problem is NP-hard [17]; in fact the variant of monotone 1-in-3
SAT where each variable occurs in at most 3 clauses is also NP-hard (refer to [4]). As with other reductions from the 3SAT
problem, our reduction also involves designing small gadgetswhich build an instance of the 1-or-2 copies problem.We first
give an overview of our reduction and then describe these gadgets in detail.

3.1. Overview of the reduction

Let I be an instance of the monotone 1-in-3 SAT problem with {X1, X2, . . . , Xn} being the set of variables and
{C1, C2, . . . , Cm} being the set of clauses in I . We must construct from I an instance of the 1-or-2 copies problem G =

(A ∪ B, E) and a subset K ⊆ B of items which can be duplicated.
We want the following properties of our input ⟨G, K⟩:

(i) G (with a single copy of each item) does not admit a popular matching.
(ii) By duplicating some items in K we get an instance that admits a popular matching iff there exists an assignment with

exactly one variable in each clause of I set to true.

With these observations we design a gadget for every clause in I . Each gadget consists of a set of people and a set of items
along with the preference lists of people. A subset of these items is internal to the gadget, that is, such items appear only on
the preference lists of people within the gadget. In addition there will be items which are public, that is, such items appear
on the preference lists of people across several gadgets. The set of all public items in our instance G is the set K of items
which may be duplicated, that is, the items in K that get duplicated will have 2 copies in the resulting instance.

Note that the instance I requires us to decide the true/false status of variables {X1, . . . , Xn}. Similarly the instance G
requires us to decide the duplication status for items in K . The non-triviality of the 1-or-2 copies problem lies in the
following: Let b be an item that is a unique rank-1 item for exactly one person in G, then b is critical in G1 (the graph where
we have only rank-1 edges). Making an extra copy of b′ of item b makes both b and b′ non-critical in the resulting graph
restricted to rank-1 edges. This in turn may change the s-items of people in the resulting graph, and hence the resulting
graph may admit a popular matching. The preference lists of people in our gadgets therefore ensure that every item in K is
a unique rank-1 item for exactly one person in G.

Public items. The set of public items in our instance G is the set K of items which may be duplicated. We now describe how
we derive the set of public items from the instance I . For every occurrence of variable Xi in I , we have a public item in G.
That is, if a variable Xi appears in clause Ct we have an item ut

i in G. Note that since I is an instance of monotone 1-in-3 SAT,
no variable appears in negated form in I .

We denote by dup(b) the duplication status of item b ∈ K : dup(b) = 0 implies that item b is not duplicated and hence
has only 1 copy in the resulting instance, while dup(b) = 1 implies that b gets duplicated and hence has 2 copies in the
resulting instance. The value of dup(ut

i)’s should capture the truth value of variable Xi appearing in clause Ct , that is, assign
variable Xi in clause Ct as false if dup(ut

i) = 0, whereas assign variable Xi in clause Ct as true if dup(ut
i) = 1.

For us to make the above translation of duplication status, it has to be the case that for any i, all dup(ut
i)’s have the

same value. So if some dup(ut
i) is set to 1, we will need to set dup(uℓ

i) = 1, for all ℓ where uℓ
i ∈ K . Thus the set of items

1268 T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274

corresponding to all occurrences of variable Xi should simultaneously have the same duplication status. That is, we want
the following property with respect to the duplication status of items corresponding to Xi.

(∗) Let ut
i ∈ K , then dup(ut

i) = dup(ut ′
i), for all t ′ where ut ′

i ∈ K .

It can be seen that if this property is satisfied, then the duplication status of item ut
i can be translated to the truth

assignment for Xi appearing in clause Ct . Further, this will be a consistent assignment, that is, all occurrences of variable
Xi get the same value.

With this, we have completely described all the public items (elements of K) in our instance G. The set K , therefore,
consists of 3m items as shown below.

K = ∪i,t{ut
i : Xi appears in Ct}. (1)

We now describe our gadgets - one corresponding to each clause and show how all the gadgets ensure that the above
constraint is met.

3.2. Gadget corresponding to a clause

Let Ct = (Xi1 ∨ Xi2 ∨ Xi3) be a clause in I . Corresponding to Ct we have a gadget which we denote by Gt . The gadget Gt
consists of a set At = {at1, . . . , a

t
14} of 14 people and a set Bt = {pt1, p

t
2, p

t
3, q

t
0, q

t
1, q

t
2} of 6 internal items. Fig. 2(a)–(c) show

the preference lists of the 14 people at1, . . . , a
t
14 associated with the clause Ct . Recall that we introduce a last resort item for

each person to ensure that matchings are always A-complete. The ℓ-items are these last resort items.
As seen in Fig. 2(a) and (c) the public items ut

i1
, ut

i2
, ut

i3
appear on the preference lists of people shown in these two

tables. Apart from these public items, people shown in Fig. 2(b) have public items ut1
i1
, ut2

i2
, ut3

i3
appearing on their preference

lists. Here, t1, t2, t3 (each of them ≠ t) is such that, Xi1 , Xi2 , Xi3 appear in Ct1 , Ct2 , Ct3 respectively. The role of the applicants
at6, . . . , a

t
11 is to ensure that the property (*) mentioned above is satisfied. It is easy to see that if some variable Xi1 appears in

exactly one clause (say Ct) in the instance I , then we have exactly one public item ut
i1
in our set K corresponding to variable

Xi1 and the property (*) is trivially true with respect to Xi1 . Hence assume that the variable Xi1 appears in at least 2 clauses,
then t1 is such that Ct1 denotes the next higher numbered clause after Ct in which variable Xi1 appears. If Ct happens to be the
highest numbered clause in which variable Xi1 appears, then let Ct1 denote the lowest numbered clause in which variable Xi1
appears. Similarly let t2 (resp. t3) denote the next higher numbered clause after Ct in which variable Xi2 (resp. Xi3) appears.
We note that t1, t2, t3 need not be all distinct.

at1 pt1 ut
i1
, qt0, q

t
1 ℓt,1

at2 pt1 ut
i2
, qt0, q

t
1 ℓt,2

at3 pt1 ut
i3
, qt0, q

t
1 ℓt,3

at4 pt1 qt2 ℓt,4

at5 pt1 qt2 ℓt,5

(a)

at6 pt2 ut
i1
, ut1

i1
ℓt,6

at7 pt2 ut
i2
, ut2

i2
ℓt,7

at8 pt2 ut
i3
, ut3

i3
ℓt,8

at9 pt3 ut
i1
, ut1

i1
ℓt,9

at10 pt3 ut
i2
, ut2

i2
ℓt,10

at11 pt3 ut
i3
, ut3

i3
ℓt,11

(b)

at12 ut
i1

ℓt,12

at13 ut
i2

ℓt,13

at14 ut
i3

ℓt,14

(c)
Fig. 2. Preference lists of people corresponding to a clause Ct .

The preference lists are designed such that when each public item has a single copy, then Gt does not admit any popular
matching. Further, any instance that admits a popular matching and is obtained by duplicating public items in Gt obeys the
following two properties:

At least one of ut
i1
, ut

i2
, ut

i3
must get duplicated. As seen in Fig. 2(a), at4 and at5 have pt1 as their top item and qt2 as their second

choice item — as qt2 is nobody’s top choice item, it follows that qt2 is the most preferred non-critical item of at4 and at5. It is
easy to see that in any popular matching, one of at4, a

t
5 has to bematched to pt1 and the other to qt2. The role of these 2 people

is to ensure that at1, a
t
2, a

t
3 always get matched to items in s(at1), s(a

t
2), s(a

t
3), respectively.

Items ut
i1
, ut

i2
, ut

i3
appear as unique top items for at12, a

t
13 and at14 respectively (Fig. 2(c)). Further, they do not appear as

top choice items for any other person in G. Thus, with a single copy, all these items remain critical on rank-1 edges. Hence
s(at1) = s(at2) = s(at3) = {qt0, q

t
1}. Thus these 3 people cannot be matched to only these 2 items in any popular matching, so

there exists no popular matching when each item has a single copy.
Therefore at least one of ut

i1
, ut

i2
, ut

i3
should have 2 copies in the resulting instance for all of at1, a

t
2, a

t
3 to be matched to

items in s(at1), s(a
t
2), s(a

t
3), respectively.

T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274 1269

Exactly one of ut
i1
, ut

i2
, ut

i3
can be duplicated. The 6 people at6, . . . , a

t
11 ensure that exactly one amongst ut

i1
, ut

i2
, ut

i3
can have

2 copies in any instance that admits a popular matching. These 6 people as shown in Fig. 2(b) can be divided into two sets
— S1 = {at6, a

t
7, a

t
8} and S2 = {at9, a

t
10, a

t
11}. All these people have public items as their second choice items. Further, the

preference lists of people in gadgets Gt1 ,Gt2 ,Gt3 ensure that items ut1
i1
, ut2

i2
, ut3

i3
also appear as unique top items for exactly

one person. Hence, when each of the public items has a single copy, then one person from S1 and one person from S2 get
matched to their top item (pt2 and pt3 resp.), whereas the rest of the people get matched to their respective last resort items
(most preferred non-critical item) in any popular matching. However, we know that at least one of ut

i1
, ut

i2
, ut

i3
has 2 copies

due to at1, . . . , a
t
5.

We will assume here that copies of the items ut1
i1
, ut2

i2
, ut3

i3
are unavailable for the people in the gadget Gt since these

copies will be used up by people belonging to the other gadgets. It therefore suffices to focus on the duplication status of
items ut

i1
, ut

i2
, ut

i3
with respect to people in gadget Gt . If exactly one among ut

i1
, ut

i2
, ut

i3
(say, ut

i1
) gets duplicated, then both

the copies of the item ut
i1
become non-critical in the resulting graph restricted to rank-1 edges. The person at12 gets matched

to one copy of ut
i1
as its f -item whereas person at1 gets matched to another copy of ut

i1
as its s-item. Further, at6 and at9 get

matched to the respective top items (pt2 and pt3) while at7, a
t
8 and at10, a

t
11 get matched to their respective last resort items.

Assume that any two of ut
i1
, ut

i2
, ut

i3
(say ut

i1
, ut

i2
) have 2 copies in the resulting instance. As in the previous case, one copy of

each of these items is used up to match people at12 and at13 to their respective f -items. Further the extra copy of one of the
2 items (say ut

i1
) is matched to people in at1, a

t
2, a

t
3. However, in this case we also have four people at6, a

t
9 and at7, a

t
10 treating

ut
i1
and ut

i2
as their s-items respectively. Although one person from each of the above pairs can be matched to her top item,

we cannot match one copy of the item (ut
i2
) amongst the remaining two people. It is easy to see that a similar case occurs if

all 3 of ut
i1
, ut

i2
, ut

i3
are duplicated.

Thus the gadget Gt ensures that exactly one of the items ut
i1
, ut

i2
, ut

i3
has 2 copies in the resulting instance. Note that

the gadget described above assumes that every variable appears in at least 2 clauses. For example, by this assumption for
variable Xi1 , we have the 2 items ut

i1
and ut1

i1
appearing in the preference lists of people at6 and at9. If some variable (say Xi1)

appears in exactly one clause (say Ct), then the preference lists of people at6 and at9 contain only the item ut
i1
as their second

choice item. This change does not affect the above two properties that the gadget Gt ensures.

3.3. Putting it together

The graph G that we construct is the union of gadgets corresponding to each of the clauses. The sets A and B can be
described as below:

A = ∪
m
t=1At .

B = ∪
m
t=1Bt ∪ K .

The set K is the set of all the public items as described earlier in Eq. (1). The preference lists of the people are as shown in
our gadget. We note that every item b ∈ K is a unique rank-1 item for exactly one person in A. We now show how all the
gadgets co-operate to enforce property (∗) mentioned in Section 3.1.

Lemma 2. Assume that by having 1 or 2 copies of items in K there exists an instance that admits a popular matching. In such an
instance if for some i, t, dup(ut

i) = 1 then dup(ut ′
i) = 1, for all t ′ where ut ′

i ∈ K.

Proof. Recall that the item ut
i ∈ K because the variable Xi appears in the clause Ct . If Ct is the only clause inwhich Xi appears,

then we are done, otherwise assume that Xi appears in another clause say Ct1 . Without loss of generality let Xi be the first
variable in every clause that it appears in and t1 be such that Ct is the next higher numbered clause after Ct1 in which Xi

appears. We first show that dup(ut
i) = 1 ⇒ dup(ut1

i) = 1. Suppose not.
The item ut

i appears on the preference lists of following people:

• at1 in gadget Gt .
• at6 and at9 in gadget Gt .
• at16 and at19 in gadget Gt1 .

With dup(ut
i) = 1, all these people regard ut

i as their s-item. The design of our gadgets ensures that no other item ut
i′ can

have 2 copies in the resulting instance. Hence, in any popular matching in the resulting instance, while at1 gets matched to
its s-item ut

i , each of at6, a
t
9, a

t1
6 , at19 has to be matched to its f -items pt2, p

t
3, p

t1
2 , pt13 respectively.

Our assumption that the resulting instance admits a popular matching and that dup(ut1
i) = 0 implies that there exists

another item ut1
j ∈ K which has 2 copies, or equivalently dup(ut1

j) = 1. With dup(ut1
j) = 1, the following people belonging

to the gadget Gt1 treat ut1
j as their s-item.

• either the 3 people at12 , at17 , and at110 or the 3 people at13 , at18 , and at111.

1270 T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274

For k = 2 or 3, while at1k gets matched to her s-item (which is some ut1
j) in any popular matching, both at1k+5 and at1k+8 are left

without an item amongst their f or s-items, a contradiction to the lemma hypothesis that the resulting instance admits a
popular matching. Hence we have dup(ut1

i) = 1.
Recall that we started with an instance of monotone 1-in-3 SAT where every variable appears in at most 3 clauses. Thus

corresponding to the variable Xi, we have at most one more item u
t ′1
i ∈ K and we need to show that dup(u

t ′1
i) = 1. We note

that a similar argument as above forbids any instance where dup(ut
i) = dup(ut1

i) = 1 and dup(u
t ′1
i) = 0, to admit a popular

matching. Hence we have dup(u
t ′1
i) = 1.

This completes our proof. �

Thus if by having 1 or 2 copies of each item in K there exists an instance that admits a popular matching, then the
duplication status of items in K always translates to a consistent truth assignment of the variables in I . We now prove the
following two lemmas which establish the correctness of our reduction.
Lemma 3. If there exists an instance by having 1 or 2 copies of items in K such that this instance admits a popular matching, then
there exists a 1-in-3 satisfying assignment for I.
Proof. We obtain a truth assignment of variables X1, . . . , Xn of I from the duplication status of items in K as follows: for Xi
appearing in clause Ct , set Xi to true if dup(ut

i) = 1, else setXi to false. By Lemma2, this assignment is a consistent assignment.
To see that this is also a 1-in-3 satisfying assignment, consider a clause Ct = (Xi1 ∨ Xi2 ∨ Xi3) in I . The fact that the resulting
instance admits a popular matching enforces that in Gt , exactly one of ut

i1
, ut

i2
, ut

i3
has its dup(·) value set to 1. As the above

property is true for every clause Ct , it follows that we have a truth assignment to the variables of I such that every clause
has exactly one variable set to true. This proves the lemma. �

Lemma 4. If there exists a 1-in-3 satisfying assignment for I, then there exists an instance obtained by duplicating items in K
which admits a popular matching.
Proof. Let Truth-val denote a 1-in-3 satisfying truth assignment to variables X1, . . . , Xn of I . Set the dup(·) value of each
item in K = ∪i,t{ut

i : Xi appears in Ct} as follows:

dup(ut
i) = 0 if Truth-val(Xi) = false, else dup(ut

i) = 1 ∀i, t where ut
i ∈ K .

First, since Truth-val is a 1-in-3 satisfying assignment for I , every clause in I has exactly one variable set to true. This
implies that for every clause Ct = (Xi1 ∨ Xi2 ∨ Xi3), in the gadget Gt , exactly one item among ut

i1
, ut

i2
, ut

i3
has duplication

status set to 1. Let us assume that Truth-val sets variable Xi1 in clause Ct to true. Thus the item ut
i1
has 2 copies in our instance.

To prove that the graph as defined by the above duplication status admits a popular matching, we show that there exists
a matching that is a maximum cardinality matching on rank-1 edges and where each person a ∈ A gets matched to an item
in f (a) ∪ s(a). We focus on the people belonging to the set At .

• Consider the 5 people at1, . . . , a
t
5 first: a

t
4 and at5 get matched to pt1 and qt2, respectively whereas at2 and at3 get matched to

qt0 and qt1, respectively (their s-items). Since we have 2 copies of item ut
i1
, both these copies are non-critical in the graph

on rank-1 edges. Thus, at1 can be matched to one copy of ut
i1
since it is one of her s-items.

• Consider the 6 people at6, . . . , a
t
11 next: we recall that the duplication scheme was derived from the 1-in-3 satisfying

assignment for I and the property (*) mentioned in Section 3.1 is ensured by our gadgets. Thus, our assumption that item
ui1 has 2 copies in our instance implies that each of the items ut

i2
, ut

i3
, ut2

i2
, ut3

i3
have a single copy in our instance. Thus

all these items remain critical on the graph restricted to rank-1 edges and hence each of the people at7, a
t
8, a

t
10, a

t
11 treat

their respective last resort items as their s-items.We can thereforematch at6 and at9 to their f -items pt2 and pt3 respectively
while matching at7, a

t
8, a

t
10, a

t
11 to their unique last-resorts.

• This leaves us with the 3 people at12, a
t
13, a

t
14 who get matched to their respective f -items ut

i1
, ut

i2
, ut

i3
.

This finishes our proof that if Truth-val is a 1-in-3 satisfying assignment for I , then we have a setting of duplication values
of items in K such that the resulting graph admits a popular matching. �

Wenote that all the people in our gadgets have preference lists of length 2where ties occur at second choice items (see Fig. 2).
Recall that the last-resort items were introduced by us and hence are not counted. Further, all people except at1, a

t
2, a

t
3 have

at most 2 items tied as their second choice items. It is easy to see that we can merge the items qt0, q
t
1 into a single item qt

which now belongs to the set of items which can be duplicated. Further, in any instance that admits a popular matching, we
will set dup(qt) = 1, ∀t = 1, . . . ,m. We can now conclude the following theorem.
Theorem 2. The 1-or-2 copies problem is NP-hard for preference lists of length 2 with ties of length 2 allowed in second choice
items.

Since the ties in the preference lists occur only for second choice items, this leaves us with two unresolved cases:

• The complexity of the 1-or-2 copies problem when preference lists are strict (that is, no ties are allowed). Our gadgets
can be easily modified to show that this problem is also NP-hard.

• The complexity of the 1-or-2 copies problem when preference lists have length two and ties can occur only at the first
position. We show that this case has a polynomial time algorithm.

T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274 1271

3.4. Strict lists

We break ties in the above instance as follows:

• For each of atk, k ∈ {1, 2, 3}, we first replace the items qt0 and qt1 by a single item qt which becomes an element of K (set
of those items that can be duplicated). Further we let item ut

ik
precede the item qt in the preference list of atk.

• For any of atk, k ∈ {6, . . . , 11}, we have two public items tied as atk’s second choice, call them ut
i and ut1

i . Recall that these
two public items correspond to the same variable Xi appearing in two different clauses namely Ct and Ct1 . We break the
tie in the rank-2 item for atk by letting item ut

i precede item ut1
i such that t < t1. That is, the item corresponding to the

lower numbered clause precedes the one corresponding to the higher numbered clause.

It is easy to check that for an A-complete matching to exist, the items qt for t = 1, . . . ,m need to have 2 copies in the
resulting instance. It is straightforward to verify that all our claims hold even with these strict preference lists and hence
the 1-or-2-copies problem is NP-hard for strict preference lists.
Corollary 1. The 1-or-2 copies problem for strict preference lists where the longest preference list has length 3 is NP-hard.

3.5. Master preference list

In this section we consider the restriction of the problem when preference lists of the people are derived from a master
preference list. A master list is a ranking of all items according to some global objective criterion. The master list may be
allowed to contain ties or may be strict. Irving et al. [9] considered the stable marriage problem in the presence of master
preference lists and proved that many interesting variants remain hard under this master list model. In the same vein, we
consider the 1-or-2 copies problem in the presence of a master list.

In the master list model, the preference list of a person is the same as the master list, except that she can delete all items
that she finds unacceptable. We show that under this severe restriction of master list also, the 1-or-2 copies problem is
NP-hard for strict preferences.

For the sake of convenience, we partition the set B as F (f -items), S (s-items) and D (duplicable items).
B = F ∪ D ∪ S

where the sets F , D and S are as defined below:

F = ∪
m
t=1{p

t
1, p

t
2, p

t
3}

S = ∪
m
t=1{q

t
2}

D = K ∪
m
t=1 {qt}.

Here the set K is as defined by Eq. (1). The item qt is the replacement for items qt0 and qt1 as done for strict lists. We note
that the set D is the set of items which can be duplicated. To get a master list such that the preference lists of all people are
derived from the master list, we order elements of F , S and D as follows:

• Order the items in F in any arbitrary order in a strict manner. Let Fo denote the ordered list.
• Order the items in S in any arbitrary order in a strict manner. Let So denote the ordered list.
• Let Do denote the ordered list of D as:

Do = ut1
i1
, ut2

i1
, ut3

i1
, . . . , ul1

in , u
l2
in , u

l3
in , q

1, q2, . . . , qm
Here t1 < t2 < t3 and l1 < l2 < l3.

It is clear that the list Fo, Do, So forms a master list for the strict instance G constructed above. We therefore conclude
the following corollary.
Corollary 2. The 1-or-2 copies problem with strict preference lists derived from a master list is NP-hard.

3.6. Lists of length 2 with ties in the top position only

Here we consider the 1-or-2 copies problem for preference lists of length 2 where the second choice item is unique.
We are given G = (A ∪ B, E) and every a ∈ A can give any number of top choice items, say f0, f1, . . . , fd, which are tied
as a’s most preferred items and at most a single item, say s, as a’s next choice item. Thus the entire preference list of a is:
(f0, f1, . . . , fd) followed by s followed by ℓa. We show there exists a polynomial time algorithm for such instances.

Let E, O and U denote the set of even, odd and unreachable vertices respectively, in G1 (the graph G restricted to rank-
1 edges), refer to Section 2. The set E is the set of non-critical vertices, thus only elements of E are candidates for being
elements in s(a), for any a ∈ A. Recall that certain items that are critical in G1 can become non-critical on rank-1 edges once
they get duplicated.

Let G = (A ∪ B, E) be the instance of the above special case and K be the set of items that can be duplicated. Assume
that G does not admit a popular matching and there exists a way of duplicating items in K such that the augmented instance
G̃ = (A ∪ B̃, E) admits a popular matching. Then we have the following lemma.

1272 T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274

Lemma 5. There exists an augmented instance H such that every item that is critical in G1 is also critical in H1 and H admits a
popular matching.

Proof. If every item that is critical in G1 is also critical in G̃1 (recall that G̃1 is the graph G̃ restricted to rank-1 edges), thenwe
have H = G̃ and we are done. Suppose not, then there exists an item b1 such that b1 is critical in G1 but with dup(b1) = 1,
both b1 and its duplicate b′

1 are non-critical in G̃1. Since b′

1 is non-critical in G̃1, deleting b′

1 does not change the size of
the maximum cardinality matching in G̃1. As any popular matching has to be a maximum cardinality matching in G̃1, the
contribution of b′

1 is to add an edge (a, b′

1) of rank-2 in any popularmatching of G̃. Note that the person ahas to be non-critical
in G̃1, as all critical vertices of G̃1 are matched along rank-1 edges in any popular matching of G̃.

The deletion of b′

1 makes b1 critical in the resulting graph. Since a is non-critical, all of a’s top choice items have to be
critical as there is no edge between 2 non-critical vertices (Lemma 1, see Section 2) - thus a treats its unique last-resort item
ℓa as its s-item once b′

1 is deleted. In the resulting graph too, a has a partner to match in the set f (a) ∪ s(a).
Deleting all such duplicates b′ from G̃ we get the desired graph H in which every critical item in G1 is also critical in H1.

Further, since every person a still has a partner in f (a) ∪ s(a), it follows that H admits a popular matching. �

The above lemma makes it simple for us to decide which items in K should be duplicated - we maintain the invariant
that no critical item in G1 becomes non-critical due to duplication. Let OB, EB and UB denote the odd, even and unreachable
items respectively, in the current graph. Initially, the current graph is G1.

• No item b ∈ UB ∩ K should be duplicated. This is because making an extra copy b′ of such an item b makes both b and
b′ non-critical in the resulting graph restricted to rank-1 edges.

• Weduplicate all items b ∈ EB ∩K . This is becausemaking an extra copy b′ of such an item b does not change the criticality
status of b as well as b′ in the resulting graph restricted to rank-1 edges.

• For b ∈ OB we note the following: There exists an alternating path starting from an unmatched person a to an item
b ∈ OB . Duplicating such an item b creates an augmenting path from a to b; thus no critical item on rank-1 edges turns
non-critical by this change. However an item b ∈ OB can now belong to UB due to the above change. Hence we need
to update the status of all items b ∈ OB to check whether b belongs to OB or UB . For instance, let (f0, f1) be the top
choice for 3 people a1, a2, a3. Both f0 and f1 are odd, however once f ′

0 is introduced, we will have 3 people and 3 top items
(f0, f ′

0, f1), thus all these items are now unreachable on rank-1 edges. Hence we should not duplicate f1 now.

Our algorithm is presented in Fig. 3. The correctness of the algorithm follows from Lemma 5.

1. Let G1 denote the graph G on rank 1 edges; that is, G1 = (A ∪ B, E1).
2. Partition vertices in B w.r.t. a maximum cardinality matchingM1 in G1 as even(EB), unreachable(UB), odd(OB).
3. H0 = G.
4. For every b ∈ EB ∩ K do

• Add an extra copy of b to the graph H0.
5. Order the items in OB ∩ K as o1, . . . , ot .

For each i = 1 to t do:
• If oi is odd on rank 1 edges in Hi−1, then set dup(oi) = 1.

This defines the graph Hi, that is, Hi = Hi−1+ an extra copy of oi if dup(oi) = 1.
• Else Hi = Hi−1.

6. If Ht admits an A-complete matching, then return Ht as the graph G̃.
Otherwise output ‘‘there is no G̃ corresponding to ⟨G, K⟩ that admits a popular matching’’.

Fig. 3. Algorithm for a special case of 1-or-2 copies problem.

Theorem 3. There exists a polynomial time algorithm for the 1-or-2 copies problem with preferences lists of length 2 with ties
occurring at the top position only.

4. Bounded total copies problem

We now consider the following problem: suppose we are given an integer k and we have to decide whether there exist
∆1, . . . , ∆|B| where each ∆i ≥ 1 and

∑
i ∆i ≤ k, such that having ∆i + 1 copies of the i-th item, for 1 ≤ i ≤ |B|, enables

the resulting instance to admit a popular matching. We show that this problem can be solved in polynomial time.
Let G1 denote the graph in which every person adds edges to her f -items. Every even person in G1 adds an edge to her

s-item.We call this graph G′, that is where every person a has added edges to items in f (a) and every even person a in G1 has
added edges to items in s(a). LetM be anymaximum cardinality matching in G′. Since G does not admit a popular matching,
we know that |M| < |A|. The following theorem is useful here.

T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274 1273

Theorem 4. Let G = (A ∪B, E) be the given graph and let integer k denote an upper bound on the total extra copies of all items
that we can have in the augmented instance. Then there exists a new instance H = (A ∪ B̃, E) with extra copies of items that
admits a popular matching iff k ≥ |A| − |M|, where M denotes any maximum cardinality matching in G′.

Proof. We first show that k has to be at least |A|−|M|. We need to show that adding an extra copy of any item increases the
size of the maximum cardinality matching in the resulting graph restricted to f and s-items by at most 1. This is easy to see
since adding an extra copy of an s-item b does not change the f /s-status of the item b and its duplicate. Thus if bwas critical
in the graph restricted to f -items and s-items, then having a duplicate b′ increases the size of the maximum cardinality
matching in this graph by at most 1. Regarding f -items, note that this item is critical on rank-1 edges before its duplicate
was introduced. Hence the duplicate introduced might make the copy of the item an s-item, however the contribution to
the size of the maximummatching in the graph restricted to f -items and s-items is at most 1.

Since each extra copy of some item increases the size of a maximum matching by at most one, we need to have at least
|A| − |M| extra copies of some items so that the resulting graph admits a popular matching.

To show the other side of the implication, let k ≥ |A| − |M|. We will show that it is possible to construct a new instance
H such that H ′ (the graph H restricted to f -items and s-items) admits an A-complete matching.

Since G does not admit a popular matching, there exists an α ∈ A such that α is unmatched in G′; note that such an α
is even or non-critical in G′. Further, the f -item b for such a person is odd in G′. Let H1 be the same as the graph G, except
that we add an extra copy b′ of b and we match α to b′. Note that none of the sets s(a) for a ∈ A has changed in H1 as no
critical vertex turns non-critical after adding the duplicate b′. This is because the item b was odd before the duplication; so
either b and b′ are still odd or they become unreachable now. Thus each person matched inM continues to remain matched
in any maximum cardinality matching in H ′

1. Further, we have an extra person matched to b′. It is easy to see that the same
step can be repeated, until we have an A-complete matching in some H ′

i . This process is guaranteed to halt after |A| − |M|

iterations and the resulting graph H|A|−|M| is indeed our desired graph H that admits a popular matching. �

The algorithm to construct such a graph H from the given instance G(A ∪ B, E) follows from the proof of sufficiency of
the above theorem. The algorithm is described in Fig. 4.

1. Construct the graph G′
= (A ∪ B, E ′) where E ′

= {(a, b) : a ∈ A, b ∈ f (a) ∪ s(a)}.
2. H0 = G, H ′

0 = G′, Let M denote a maximum cardinality matching in H ′

0.
3. i = 0.
4. WhileM is not A-complete matching do:

• Let a be any unmatched person in H ′

i .
• Let b = f (a) [such a b is odd in H ′

i since a is even in H ′

i].
• Add an extra copy of b and call the new instance Hi+1.
• Construct the graph H ′

i+1 corresponding to Hi+1 and updateM to be a maximum cardinality matching in H ′

i+1.
• i = i + 1.

5. Output the graph Hi.

Fig. 4. Algorithm for bounded total copies problem.

The above while loop runs for |A| − |M| iterations, each time adding one more copy of some item. Note that the same
itemmight get chosen in various iterations and thus individual copies are not necessarily bounded. For example, if the input
had n people with identical preference lists: top item is b1, followed by b2, and so on, then our algorithm would add n − 1
copies of item b1. It is also easy to see thatM is a popular matching in the final graph.

5. Summary

Given a bipartite graph G = (A ∪ B, E) of people and items where people have preferences over items, we showed that
the problem of deciding if there exists an (x1, . . . , x|B|) ∈ {1, 2}|B| such that having xi copies of the i-th items enables the
resulting graph to have a popular matching is NP-hard. We reduced the monotone 1-in-3 SAT problem to an instance of the
above problem.

Our reductions constructed instances where the maximum length of a preference list is 2 when preference lists can have
ties and themaximum length of a preference list is 3when preference lists are strict.We showed that the problem is solvable
in polynomial time when preference lists have length at most 2 with a unique second choice item. Also, the variant of this
problemwhere the total number of extra copies is bounded rather than a bound on the number of copies of individual items,
is solvable in polynomial time.

Acknowledgements

We thank Sourav Chakraborty for discussions that motivated this work and Prajakta Nimbhorkar for helpful discussions.
We also thank the anonymous reviewers for their helpful comments.

1274 T. Kavitha, M. Nasre / Theoretical Computer Science 412 (2011) 1263–1274

Appendix

The popular matchings algorithm

Below is the algorithm from [3] to compute a popular matching in G = (A ∪ B, E).

• Construct the graph G′
= (A ∪ B, E ′), where E ′

= {(a, b) : a ∈ A and b ∈ f (a) ∪ s(a)}.
• Construct a maximummatchingM of G1 = (A ∪ B, E1).
• Remove any edge in G′ between a vertex in O and a vertex in O ∪ U.

[No maximum matching of G1 contains such an edge.]
• AugmentM in G′ until it is a maximummatching of G′.
• ReturnM if it is A-complete, otherwise return ‘‘no popular matching’’.

References

[1] A. Abdulkadiroǧlu, T. Sönmez, Random serial dictatorship and the core from random endowments in house allocation problems, Econometrica 66 (3)
(1998) 689–701.

[2] D.J. Abraham, K. Cechlárová, D.F. Manlove, K. Mehlhorn, Pareto-optimality in house allocation problems, in: Proceedings of 15th Annual International
Symposium on Algorithms and Computation, 2004, pp. 3–15.

[3] D.J. Abraham, R.W. Irving, T. Kavitha, K. Mehlhorn, Popular matchings, SIAM Journal on Computing 37 (4) (2007) 1030–1045.
[4] R. Denman, S. Foster, Using clausal graphs to determine the computational complexity of k-bounded positive one-in-three sat, Discrete Applied

Mathematics 157 (7) (2009) 1655–1659.
[5] P. Gärdenfors, Match making: assignments based on bilateral preferences, Behavioural Sciences 20 (1975) 166–173.
[6] R.L. Graham, M. Grotschel, L. Lovasz, Chapter 3, matchings and extensions, 1995, pp. 179–232.
[7] C.-C. Haung, T. Kavitha, D. Michail, M. Nasre, Bounded unpopularity matching, in: Proceedings of the 11th Scandinavian Workshop on Algorithm

Theory, 2008, pp. 127–137.
[8] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, K. Paluch, Rank-maximal matchings, ACM Transactions on Algorithms 2 (4) (2006) 602–610.
[9] R.W. Irving, D.F. Manlove, S. Scott, The stable marriage problem with master preference lists, Discrete Applied Mathematics 156 (15) (2008)

2959–2977.
[10] T. Kavitha, J. Mestre, M. Nasre, Popular mixed matchings, in: Proceedings of the 36th International Colloquium on Automata, Languages and

Programming, 2009, pp. 574–584.
[11] T. Kavitha, M. Nasre, Popular matchings with variable job capacities, in: Proceedings of 20th Annual International Symposium on Algorithms and

Computation, 2009, pp. 423–433.
[12] M. Mahdian, Random popular matchings, in: Proceedings of the 8th ACM Conference on Electronic Commerce, 2006, pp. 238–242.
[13] D. Manlove, C. Sng, Popular matchings in the capacitated house allocation problem, in: Proceedings of the 14th Annual European Symposium on

Algorithms, 2006, pp. 492–503.
[14] R.M. McCutchen, The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences,

in: Proceedings of the 15th Latin American Symposium on Theoretical Informatics, 2008, pp. 593–604.
[15] J. Mestre, Weighted popular matchings, in: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, 2006,

pp. 715–726.
[16] A.E. Roth, A. Postlewaite, Weak versus strong domination in a market with indivisible goods, Journal of Mathematical Economics 4 (1977) 131–137.
[17] T. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th Annual ACMSymposiumon Theory of Computing, 1978, pp. 216–226.

	Popular matchings with variable item copies
	Introduction
	Related work
	Our contributions

	Preliminaries
	Illustrative example

	The 1-or-2 copies problem
	Overview of the reduction
	Gadget corresponding to a clause
	Putting it together
	Strict lists
	Master preference list
	Lists of length 2 with ties in the top position only

	Bounded total copies problem
	Summary
	Acknowledgements
	Appendix
	References

