Rank Maximal Matchings

Meghana Nasre

talk based on paper by
R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, K. Paluch
Outline of the Talk

• Matchings – preliminaries.
• Rank maximal matchings.
 • Problem definition.
 • Some intuition.
• Dulmage Mendelsohn decomposition.
• An efficient algo for RMM.
Matching in a graph

A matching M is a set of vertex disjoint edges.
Matching in a graph

A matching \mathcal{M} is a set of vertex disjoint edges.

- **Goal:** compute a maximum sized matching.
A matching M is a set of vertex disjoint edges.

- **Maximal**: M is not a strict subset of any other matching. There may exist a larger sized matching.
Maximal vs. Maximum matchings

A matching \mathcal{M} is a set of vertex disjoint edges.

- **Maximal:** \mathcal{M} is not a strict subset of any other matching. There may exist a larger sized matching.

- **Maximum:** Has size as large as possible amongst all matchings. Every maximum matching is maximal.
Alternating paths

A path having alternate matched and unmatched edges.
Augmenting paths

An alternating path starting and ending in free vertices.
Augmenting paths

An alternating path starting and ending in free vertices.

- How are augmenting paths useful?
- Properties of augmenting paths.
Using augmenting paths

Berge’s Theorem (1957): A matching M is maximum iff M does not admit an augmenting path with respect to it.

- Assume P is an augmenting path.
Using augmenting paths

Berge’s Theorem (1957): A matching M is maximum iff M does not admit an augmenting path with respect to it.

- Assume P is an augmenting path.
- $M' = M \oplus P$.

![Diagram showing augmenting path](image-url)
Berge’s Theorem

- If no aug. path w.r.t. $\mathcal{M} \Rightarrow \mathcal{M}$ is maximum.

Proof (by contradiction)

- Suppose \mathcal{M} does not admit any aug. path and still it is not maximum.
- Some other matching \mathcal{M}' is maximum.
Using augmenting paths

Berge’s Theorem

- If no aug. path w.r.t. $M \Rightarrow M$ is maximum.

Proof (by contradiction)

- Suppose M does not admit any aug. path and still it is not maximum.
- Some other matching M' is maximum.
- Consider $M \oplus M'$.
- Construct an aug. path w.r.t. M.
Input: \(G = (V, E) \).

Goal: Compute a max. cardinality matching.
Computing max. matchings

Input: $G = (V, E)$.
Goal: Compute a max. cardinality matching.

G is bipartite.
- Hopcroft and Karp (1973): $O(m\sqrt{n})$ time algorithm.
Computing max. matchings

Input: $G = (V, E)$.

Goal: Compute a max. cardinality matching.

G is bipartite.

- Hopcroft and Karp (1973): $O(m\sqrt{n})$ time algorithm.

General graphs.

- Edmond’s Blossom shrinking algorithm (1963): $O(n^4)$ time.
- Micali and Vazirani (1980): $O(m\sqrt{n})$ time algorithm.
Outline of the Talk

- Matchings – preliminaries.
- Rank maximal matchings.
 - Problem definition.
 - Some intuition.
- Dulmage Mendelsohn Decomposition.
- An efficient algorithm for RMM.
Rank Maximal Matchings

Input: Bipartite graph $G = (\mathcal{A} \cup \mathcal{P}, E)$.

- Every $a \in \mathcal{A}$ has a preference ordering over the edges.

Goal: Compute a matching that matches as many applicants to their rank-1 posts, subject to that as many to rank-2 and so on.
Rank Maximal Matchings

Input: Bipartite graph \(G = (\mathcal{A} \cup \mathcal{P}, E) \).

- Every \(a \in \mathcal{A} \) has a preference ordering over the edges.

Goal: Compute a matching that matches as many applicants to their rank-1 posts, subject to that as many to rank-2 and so on.

Signature of matching: \(\langle x_1, x_2, \ldots, x_{r+1} \rangle \).

\(x_j \): the number of applicants matched to their rank-\(i \) posts.
Comparing two matchings

Input: Bipartite graph $G = (\mathcal{A} \cup \mathcal{P}, E)$.

- Every $a \in \mathcal{A}$ has a preference ordering over the edges.

| M: $\langle x_1, x_2, \ldots, x_{r+1} \rangle$ | M': $\langle y_1, y_2, \ldots, y_{r+1} \rangle$ |

- x_i: # of applicants matched to their rank-i post in M.
Comparing two matchings

Input: Bipartite graph $G = (A \cup P, E)$.

- Every $a \in A$ has a preference ordering over the edges.

\[
M : \langle x_1, x_2, \ldots, x_{r+1} \rangle \quad \quad M' : \langle y_1, y_2, \ldots, y_{r+1} \rangle
\]

- x_i: # of applicants matched to their rank-i post in M.
- M is better than M' w.r.t. rank-maximality ($M \succ M'$) iff:
 - there exists an index $1 \leq k \leq r$:
 - for $1 \leq i < k$, $x_i = y_i$ and $x_k > y_k$.
Comparing two matchings

Input: Bipartite graph \(G = (\mathcal{A} \cup \mathcal{P}, E) \).

- Every \(a \in \mathcal{A} \) has a preference ordering over the edges.

\[
\begin{align*}
M & : \langle x_1, x_2, \ldots, x_{r+1} \rangle \\
M' & : \langle y_1, y_2, \ldots, y_{r+1} \rangle
\end{align*}
\]

- \(x_i \): \# of applicants matched to their rank-\(i \) post in \(M \).
- \(M \) is better than \(M' \) w.r.t. rank-maximality (\(M \succ M' \)) iff:
 - there exists an index \(1 \leq k \leq r \):
 - for \(1 \leq i < k \), \(x_i = y_i \) and \(x_k > y_k \).

- **Goal:** Compute a matching that has best signature.
Comparing two matchings

Input: Bipartite graph $G = (\mathcal{A} \cup \mathcal{P}, E)$.
 - Every $a \in \mathcal{A}$ has a preference ordering over the edges.

$$
\begin{align*}
M: & \langle x_1, x_2, \ldots, x_{r+1} \rangle \\
M': & \langle y_1, y_2, \ldots, y_{r+1} \rangle
\end{align*}
$$

- x_i: # of applicants matched to their rank-i post in M.
- M is better than M' w.r.t. rank-maximality ($M \succ M'$) iff:
 - there exists an index $1 \leq k \leq r$:
 - for $1 \leq i < k$, $x_i = y_i$ and $x_k > y_k$.
- **Goal**: Compute a matching that has best signature.
- Can be achieved by converting the problem to a max-weight matching problem with edge of rank-i given a weight of n^{r-i}.
Greedy approach

- Greedily match applicants to their rank-1, subject to this, greedily match applicants to their rank-2 and so on.
Greedy approach

- Greedily match applicants to their rank-1, subject to this, greedily match applicants to their rank-2 and so on.

- Choice of rank-1 edges forces a signature of $\langle 2, 0, 1 \rangle$.
Greedy approach

- Greedily match applicants to their rank-1, subject to this, greedily match applicants to their rank-2 and so on.

- Optimal signature of \(\langle 2, 1, 0 \rangle \).
Graph on rank-1 edges

\[G_1 \]
Graph on rank-1 edges

Some observations

- For a RMM, the signature is $\langle 2, \times, \times \rangle$
Some observations

- For a RMM, the signature is $\langle 2, \times, \times \rangle$
- p_2 and p_4 must be matched to some rank-1 applicant.
Some observations

• For a RMM, the signature is $\langle 2, \times, \times \rangle$

• p_2 and p_4 must be matched to some rank-1 applicant.

• Safe to delete higher ranked edges incident on p_2 and p_4.

Graph on rank-1 edges

G_1

A

P

$a_1 - a_2 - a_3$

$p_1 - p_2 - p_3 - p_4$
Some observations

- For a RMM, the signature is $\langle 2, \times, \times \rangle$
- p_2 and p_4 must be matched to some rank-1 applicant.
- Safe to delete higher ranked edges incident on p_2 and p_4.
- Unclear which of a_1, a_2 gets matched to rank-1 post in an RMM.
• Matchings – preliminaries.
• Rank maximal matchings.
 • Problem definition.
 • Some intuition.
• Dulmage Mendelsohn decomposition.
• An efficient algorithm for RMM.
Need to study DM decomposition

• Which vertices remain matched in every max. matching?
• Which edges can NEVER belong to a max. matching?
• How to use these answers to solve RMM efficiently.
Maximum matchings – some observations

- Size of max. matching: 3.
- Every max. matching matches \{a_3, a_4, p_1, p_4\}.
- No max. matching contains \((a_3, p_1) \).

Vertices that some max. matching leaves unmatched:

\{a_1, a_2, p_2, p_3\}
Sets Odd, Even, Unreachable

- Bipartite graph G.
- Max. matching M.
- Define 3 sets of vertices:
 - even (\mathcal{E})
 - odd (\mathcal{O})
 - unreachable (\mathcal{U})
Sets Odd, Even, Unreachable

- Bipartite graph G.
- Max. matching M.
- Define 3 sets of vertices:
 - even (\mathcal{E})
 - odd (\mathcal{O})
 - unreachable (\mathcal{U})

- Even (\mathcal{E}): set of vertices which are reachable via even length alternating paths from a free vertex x.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sets_odd_even_unreachable.png}
\end{figure}
Sets Odd, Even, Unreachable

- Bipartite graph G.
- Max. matching M.
- Define 3 sets of vertices:
 - even (E)
 - odd (O)
 - unreachable (U)

- Even (E): set of vertices which are reachable via even length alternating paths from a free vertex x.
- Odd (O): set of vertices which are reachable via odd length alternating paths from a free vertex x.
Sets Odd, Even, Unreachable

- Bipartite graph G.
- Max. matching M.
- Define 3 sets of vertices:
 - even (\mathcal{E})
 - odd (\mathcal{O})
 - unreachable (\mathcal{U})

- Even (\mathcal{E}): set of vertices which are reachable via even length alternating paths from a free vertex x.
- Odd (\mathcal{O}): set of vertices which are reachable via odd length alternating paths from a free vertex x.
- Unreachable (\mathcal{U}): vertices which are neither odd nor even.
Sets Odd, Even, Unreachable

- Bipartite graph G.
- Max. matching M.
- Define 3 sets of vertices:
 - even (\mathcal{E})
 - odd (\mathcal{O})
 - unreachable (\mathcal{U})

- Even (\mathcal{E}): set of vertices which are reachable via even length alternating paths from a free vertex x.
- Odd (\mathcal{O}): set of vertices which are reachable via odd length alternating paths from a free vertex x.
- Unreachable (\mathcal{U}): vertices which are neither odd nor even.
Property 1

- Define 3 sets of vertices:
 - even (\(E\))
 - odd (\(O\))
 - unreachable (\(U\))

- \(E, O, U\) form a partition of \(A \cup P\).
Property 2

Define 3 sets of vertices:
- even \((E)\)
- odd \((O)\)
- unreachable \((U)\)

\(\mathcal{E}, \mathcal{O}, \mathcal{U}\) sets are invariant of the max. matching.
Property 3

- Define 3 sets of vertices:
 - even \((\mathcal{E})\)
 - odd \((\mathcal{O})\)
 - unreachable \((\mathcal{U})\)

- No max. matching contains an \(\mathcal{O}\mathcal{O}\), \(\mathcal{O}\mathcal{U}\) edge.
Dulmage Mendelsohn decomposition (1958)

- Bipartite graph G. Max. matching M.
- Define 3 sets of vertices:
 - even (\mathcal{E})
 - odd (\mathcal{O})
 - unreachable (\mathcal{U})
- The sets $\mathcal{E}, \mathcal{O}, \mathcal{U}$ are partitions of the vertex set.
- The sets are invariant of the maximum matching.
- Every max. matching has cardinality $|\mathcal{O}| + |\mathcal{U}|/2$.
- No max. matching has edges of the form $(\mathcal{O}, \mathcal{O})$, $(\mathcal{O}, \mathcal{U})$.
- G does not have edges of the form $(\mathcal{E}, \mathcal{E})$, $(\mathcal{E}, \mathcal{U})$.
Outline of the Talk

• Matchings – preliminaries.
• Rank maximal matchings.
 • Problem definition.
 • Some intuition.
• Dulmage Mendelsohn decomposition.
• An efficient algorithm for RMM.
An efficient combinatorial algorithm

Main idea:

• Reduce the problem of computing RMM into a problem of computing max. cardinality matching in suitably defined graphs.
An efficient combinatorial algorithm

Main idea:

- Reduce the problem of computing RMM into a problem of computing max. cardinality matching in suitably defined graphs.

- $G_i = (A \cup P, E_1 \cup E_2 \cup \ldots \cup E_i)$.
- **Goal:** Compute M_i in which is RMM in G_i.
An efficient combinatorial algorithm

Main idea:

- Reduce the problem of computing RMM into a problem of computing max. cardinality matching in suitably defined graphs.

\[G_i = (A \cup P, E_1 \cup E_2 \cup \ldots \cup E_i). \]

- **Goal:** Compute \(M_i \) in which is RMM in \(G_i \).
- Easy for \(G_1 \), simply a max. matching on rank-1 edges.
- How about \(G_2 \)?
An efficient combinatorial algorithm

Start with $G'_1 = (A \cup P, E_1), M_1$.
for $i = 1, \ldots, r$ do

- Partition vertices w.r.t. M_i, call them O_i, E_i, U_i.
- Delete all higher than i ranked edges incident on O_i, U_i.
- Delete all edges that are labeled $(O_i O_i), (O_i U_i)$.
- Add edges in E_{i+1} and call the resulting graph G'_{i+1}.
- Compute a max. matching M_{i+1} in G'_{i+1} by augmenting M_i.
An efficient combinatorial algorithm

Start with $G'_1 = (A \cup P, E_1), M_1$.

for $i = 1, \ldots, r$ do

- Partition vertices w.r.t. M_i, call them O_i, E_i, U_i.
- Delete all higher than i ranked edges incident on O_i, U_i.
- Delete all edges that are labeled $(O_i O_i), (O_i U_i)$.
- Add edges in E_{i+1} and call the resulting graph G'_{i+1}.
- Compute a max. matching M_{i+1} in G'_{i+1} by augmenting M_i.

Note: $G'_i \subseteq G_i$.

Invariants:

- No edge that we delete is present in any RMM.
- Every RMM is a maximum matching in G'_i.
Summary

- RMM are very different from maximum matchings.
- A classical decomposition result gives the best known combinatorial algorithm.
- DM decomposition used subsequently to find:
 - Capacitated RMM.
 - Another notion of optimality – popular matchings.
 - Popular matchings in a two sided setting (stable marriage problem).
- DM is a special case of the Gallai Edmonds Decomposition (1965–1968) for general graphs.
Thank You.