Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution:

Concept: Linear Combinations

2. (2 points) Consider the vectors $[x, y],[a, b]$ and $[c, d]$.
(a) Express $[x, y]$ as a linear combination of $[a, b]$ and $[c, d]$.

Solution:

(b) Based on the expression that you have derived above, write down the condition under which $[x, y]$ cannot be expressed as a linear combination of $[a, b]$ and $[c, d]$. (Must: the condition should talk about some relation between the scalars a, b, c, d, x and y)

Solution:

Concept: Elementary matrices
3. (1 point) Consider the matrix $E_{r+\alpha q}$ that represents the elementary row operation of adding a multiple of α times row q to row r.

Under what conditions is $E_{r+\alpha q}$
(a) upper triangular?

Solution:

(b) lower triangular?

Solution:

4. (1 point) Let $E_{1}, E_{2}, E_{3}, \ldots, E_{n}$ be n elementary matrices. Let $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots\left(i_{n}, j_{n}\right)$ be the position of the non-zero off-diagonal element in each of these elementary matrices. Further, if $k \neq m$ then $\left(i_{k}, j_{k}\right) \neq\left(i_{m}, j_{m}\right)$ (i.e., no two elementary matrices in the sequence have a non-zero off-diagonal element in the same position). Prove that the product of these n elementary matrices will have all diagonal entries as 1. (Proving this will help you understand why the diagonal elements of L are always equal to 1.)

Solution:

Concept: Inverse
5. ($1 / 2$ point) If A is a square invertible matrix then prove that the inverse of A^{\top} is $A^{-1 \top}$

Solution:

6. (2 points) Prove that a $n \times n$ matrix A is invertible if and only if Gaussian Elimination of A produces n non-zero pivots.

Solution:

Proof (the if part):

Proof (the only if part):
7. (1 point) If A is a $n \times n$ matrix then what is the cost of:
(a) Computing A^{-1}

Solution:

(b) Computing $A^{-1} b$

Solution:

Concept: LU factorisation
8. ($1 \frac{1}{2}$ points) In the lecture, we saw that once we do $L U$ factorisation, we can solve $A \mathbf{x}=\mathbf{b}$ by solving two triangular systems $L \mathbf{c}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{c}$.
(a) Prove that $L \mathbf{c}=\mathbf{b}$.

Solution:

(b) What is the cost of solving a triangular system (say $L \mathbf{c}=\mathbf{b}$ or $U \mathbf{x}=\mathbf{c}$)?

Solution:

(c) Based on the above results can you comment on the utility of LU factorisation?

Solution:

One time cost of $L U$ factorisation:
Recurring cost of solving $L \mathbf{c}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{c}$:
Hence, ...
9. (2 points) Consider the following system of linear equations. Find the $L U$ factorisation of the matrix A corresponding to this system of linear equations. Show all the steps involved. (this is where you will see what happens when you have to do more than 1 permutations).

$$
\begin{aligned}
x+y-2 z & =-3 \\
w+2 x-y & =+2 \\
w-4 x-7 y-z & =-19 \\
2 w+4 x+y-3 z & =-2
\end{aligned}
$$

Solution:

10. ($11 / 2$ points) For a square matrix A:
(a) Prove or disprove: $L U$ factorisation is unique.

Solution:

(b) Prove or disprove: $L D U$ factorisation is unique.

Solution:

11. ($11 / 2$ points) Consider the matrix A which factorises as:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 5 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

Without computing A or A^{-1} argue that
(a) A is invertible (I am looking for an argument which relies on a fact about elementary matrices)

Solution:

(b) A is symmetric (convince me that $A_{i j}=A_{j i}$ without computing A)

Solution:

(c) A is tridiagonal (again, without computing A convince me that all elements except along the 3 diagonals will be 0 .)

Solution:

Concept: Lines and planes
12. ($11 / 2$ points) Consider the following system of linear equations

$$
\begin{aligned}
a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1} & =1 \\
a_{2} x_{2}+b_{2} y_{2}+c_{2} z_{2} & =0 \\
a_{3} x_{3}+b_{3} y_{3}+c_{3} z_{3} & =-1
\end{aligned}
$$

Each equation represents a plane, so find out the values for the coefficients such that the following conditions are satisfied:

1. All planes intersect at a line
2. All planes intersect at a point
3. Every pair of planes intersects at a different line.

Solution:

13. ($1 \frac{1}{2}$ points) Starting with a first plane $u+2 v-w=6$, find the equation for (a) the parallel plane through the origin.

Solution:

(b) a second plane that also contains the points $(6,0,0)$ and $(2,2,0)$.

Solution:

(c) a third plane that meets the first and second in the point $(4,1,0)$.

Solution:

Concept: Transpose
14. (2 points) Consider the transpose operation.
(a) Show that it is a linear transformation.

Solution:

(b) Find the matrix corresponding to this linear transformation.

Solution:

