Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution:

Concept: System of linear equations
2. (2 points) This question has two parts as mentioned below:
(a) Find a 2×3 system $\mathrm{Ax}=\mathrm{b}$ whose complete solution is

$$
x=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+w\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]
$$

(b) Now find a 3×3 system which has these solutions exactly when $b_{1}+b_{2}=b_{3}$. (Note: $b=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{T}$.)

Solution:

3. (2 points) Consider the matrices A and B below
(i) $\mathrm{A}=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right]$ (ii) $\mathrm{B}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
(a) Write down the row reduced echelon form of matrices A and B (also mention the steps involved).

Solution:

(b) Find all solutions to $A \mathbf{x}=0$ and $B \mathbf{x}=0$.

Solution:

(c) Write down the basis for the four fundamental subspaces of A.
(d) Write down the basis for the four fundamental subspaces of B.

Concept: Rank
4. ($1 \frac{1}{2}$ points) Consider the matrices A and B as given below:

$$
A=\left[\begin{array}{ccc}
6 & 4 & 2 \\
-3 & -2 & -1 \\
9 & 6 & x
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{lll}
3 & 1 & 3 \\
y & 2 & y
\end{array}\right]
$$

Give the values for entries x and y such that the ranks of the matrices A and B are
(a) 1

Solution:

(b) 2

Solution:

(c) 3

Solution:

Concept: Nullspace and column space
5. ($1 / 2$ point) State True or False and explain you answer: The nullspace of R is the same as the nullspace of U (where R is the row reduced echelon form of A and U is the matrix in $L U$ decomposition of A).

Solution: True/False because ...
6. (1 point) Suppose column $1+$ column $2+$ column $5=0$ in a 4×5 matrix A.
(a) What is a special solution for $A \mathbf{x}=\mathbf{0}$

Solution:

(b) Describe the null space of A.

Solution:

7. (2 points) Consider the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$. The column space of this matrix is a 2 dimensional plane. What is the equation of this plane? (You need to write down the steps you took to arrive at the equation)

Solution:

8. (1 point) True or false? (If true give logical, valid reasoning or give a counterexample if false)
a. If the row space equals the column space then $A^{T}=A$

Solution:
b. If $A^{T}=-A$ then the row space of A equals the column space.

Solution:

9. (1 point) Which of the four fundamental subspaces are the same for the following pairs of matrices of different sizes? (Assume A is a $m \times n$ matrix)
(a) $[A]$ and $\left[\begin{array}{l}A \\ A\end{array}\right]$

Solution:

(b) $\left[\begin{array}{l}A \\ A\end{array}\right]$ and $\left[\begin{array}{ll}A & A \\ A & A\end{array}\right]$

Solution:

10. (2 points) For each of the questions below, construct a matrix A which satisfies the given condition or argue why the given condition cannot be satisfied?
(a) A matrix whose row space is equal to its column space

Solution:

(b) A matrix whose null space is equal to its column space

Solution:

(c) A matrix for which all the four fundamental subspaces are equal

Solution:

11. (1 point) True or false? If A is a $m \times m$ square matrix then $\mathcal{N}(A)=\mathcal{N}\left(A^{2}\right)$ (If true give logical, valid reasoning or give a counterexample if false)

Solution:

12. (2 points) Consider matrices A and B and their product $A B$. For each of the questions below fill in the blanks with one of the following options: $<,>,=, \leq, \geq$, can't say. Explain your answer.
(a) $\operatorname{dim}(\mathcal{C}(A B)) \ldots-\ldots-\ldots-\ldots--\ldots \operatorname{dim}(\mathcal{C}(A))$

Solution:

(b) $\operatorname{dim}(\mathcal{C}(A B))$ $\operatorname{dim}(\mathcal{C}(B))$

Solution:

(c) $\operatorname{dim}\left(\mathcal{C}\left((A B)^{\top}\right)\right)$

Solution:

Solution:

Concept: Free variables
13. ($2 \frac{1}{2}$ points) True or False (with reason if true or example to show it is false).
(a) A square matrix has no free variables

Solution: True/False because ...
(b) An invertible matrix has no free variables

Solution: True/False because ...
(c) An $m \times n$ matrix has no more than n pivot variables.

Solution: True/False because ...
(d) An $m \times n$ matrix has no more than m pivot variables.

Solution: True/False because ...
(e) Matrices A and A^{T} have the same number of pivots.

Solution: True/False because ...

Concept: Reduced Echelon Form
14. ($1 / 2$ point) Suppose R is $m \times n$ matrix of rank r, with pivot columns first:

$$
R=\left[\begin{array}{ll}
I & F \\
0 & 0
\end{array}\right]
$$

(a) Find a right-inverse B with $R B=I$ if $r=m$.

Solution:

