Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution:

Concept: Projection

2. (2 points) Consider a matrix A and a vector \mathbf{b} which does not lie in the column space of A. Let \mathbf{p} be the projection of \mathbf{b} on to the column space of A. If $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2\end{array}\right]$ and $\mathbf{p}=\left[\begin{array}{c}4 \\ 1 \\ 11 \\ 8\end{array}\right]$, find \mathbf{b}.

Solution:
3. (2 points) Consider the following statement: Two vectors \mathbf{b}_{1} and \mathbf{b}_{2} cannot have the same projection \mathbf{p} on the column space of A.
(a) Give one example where the above statement is True.

Solution:

(b) Give one example where the above statement is False.

Solution:

(c) Based on the above examples, state the generic condition under which the above statement will be True or False.

Solution: Any one of the following statements will do:
The condition is True except when

The condition is False except when
(and then explain your statement)
4. (2 points) (a) Find the projection matrix P_{1} that projects onto the line through $\mathbf{a}=$ $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and also the matrix P_{2} that projects onto the line perpendicular to a.

Solution:

(b) Compute $P_{1}+P_{2}$ and $P_{1} P_{2}$ and explain the result.

Solution:

Concept: Dot product of vectors
5. (1 point) Consider two vectors \mathbf{u} and \mathbf{v}. Let θ be the angle between these two vectors. Prove that

$$
\cos \theta=\frac{\mathbf{u}^{\top} \mathbf{v}}{\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}}
$$

Solution:

Concept: Vector norms
6. (1 point) The L_{p}-norm of a vector $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in \mathbb{R}^{n}$ is defined as:

$$
\|\mathbf{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\left|x_{3}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

(a) Prove that $\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$

Solution:

(b) True or False (explain with reason): $\|\mathbf{x}\|_{0}$ is a norm.

Solution:

Concept: Orthogonal/Orthornormal vectors and matrices
7. (1 point) Consider the following questions:
(a) Construct a 2×2 matrix, such that all its entries are +1 and -1 and its columns are orthogonal.

Solution:

(b) Now, construct a 4×4 matrix, such that all its entries are +1 and -1 , its columns are orthogonal and it contains the above matrix within it.

Solution:

8. (1 point) Consider the vectors $\mathbf{a}=\left[\begin{array}{l}4 \\ 5 \\ 2 \\ 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$
(a) What multiple of \mathbf{a} is closest to \mathbf{b} ?

Solution:

(b) Find orthonormal vectors \mathbf{q}_{1} and $\mathbf{q}_{\mathbf{2}}$ that lie in the plane formed by \mathbf{a} and \mathbf{b} ?

Solution:

9. (1 point) Suppose $\mathbf{a}_{\mathbf{1}}, \mathbf{\mathbf { a } _ { \mathbf { 2 } }}, \ldots, \mathbf{a}_{\mathbf{n}}$ are orthogonal vectors. Prove that they are also independent.

Solution:

10. (1 point) If Q_{1} and Q_{2} are orthogonal matrices,show that their product $Q_{1} Q_{2}$ is also an orthogonal matrix.

Solution:

Concept: Determinants
11. (2 points) A tri-diagonal matrix is a matrix which has 1's on the main diagonal as well as on the diagonals to the left and right of the main diagonal. For example,
$A_{4}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
$A_{5}=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$
Let A_{n} be an $n \times n$ tri-diagonal matrix. Prove that $\left|A_{n}\right|=\left|A_{n-1}\right|+\left|A_{n-2}\right|$

Solution:

12. (1 point) State True or False and explain your answer: $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$

Solution:

13. (1 point) This question is about properties 9 and 10 of determinants.
(a) Prove that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

Solution:

(b) (2 points) Prove that $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$

Solution:

14. (1 point) Let $\mathbf{u}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$.
(a) Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$

Solution:

(b) Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u}-\mathbf{v}$

Solution:

15. (2 points) The determinant of the following matrix can be computed as a sum of 120 (5!) terms.
$A=\left[\begin{array}{lllll}x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x\end{array}\right]$
State true or false with an appropriate explanation: All the 120 terms in the determinant will be 0 .

Solution:

