Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution:

Concept: Projection

2. (2 points) Consider a matrix A and a vector **b** which does not lie in the column space

of A. Let **p** be the projection of **b** on to the column space of A. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$ and

$$\mathbf{p} = \begin{bmatrix} 4\\1\\11\\8 \end{bmatrix}, \text{ find } \mathbf{b}.$$

Solution:

- 3. (2 points) Consider the following statement: Two vectors \mathbf{b}_1 and \mathbf{b}_2 cannot have the same projection \mathbf{p} on the column space of A.
 - (a) Give one example where the above statement is True.

Solution:

(b) Give one example where the above statement is False.

Solution:

(c) Based on the above examples, state the generic condition under which the above statement will be True or False.

Solution: Any one of the following statements will do:

The condition is True except when

The condition is False except when

(and then explain your statement)

4. (2 points) (a) Find the projection matrix P_1 that projects onto the line through $\mathbf{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and also the matrix P_2 that projects onto the line perpendicular to \mathbf{a} .

Solution:

(b) Compute $P_1 + P_2$ and P_1P_2 and explain the result.

Solution:

Concept: Dot product of vectors

5. (1 point) Consider two vectors **u** and **v**. Let θ be the angle between these two vectors. Prove that

$$cos\theta = rac{\mathbf{u}^{\top}\mathbf{v}}{||\mathbf{u}||_2||\mathbf{v}||_2}$$

Solution:

Concept: Vector norms

6. (1 point) The L_p -norm of a vector $\mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$ is defined as:

$$||\mathbf{x}||_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + |x_{3}|^{p} + \dots + |x_{n}|^{p})^{\frac{1}{p}}$$

(a) Prove that $||\mathbf{x}||_{\infty} = max_{1 \le i \le n} |x_i|$

Solution:

(b) True or False (explain with reason): $||\mathbf{x}||_0$ is a norm.

Solution:

Concept: Orthogonal/Orthornormal vectors and matrices

- 7. (1 point) Consider the following questions:
 - (a) Construct a 2×2 matrix, such that all its entries are +1 and -1 and its columns are orthogonal.

Solution:

(b) Now, construct a 4×4 matrix, such that all its entries are +1 and -1, its columns are orthogonal and it contains the above matrix within it.

Solution:

8. (1 point) Consider the vectors
$$\mathbf{a} = \begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$

(a) What multiple of **a** is closest to **b**?

Solution:

(b) Find orthonormal vectors $\mathbf{q_1}$ and $\mathbf{q_2}$ that lie in the plane formed by \mathbf{a} and \mathbf{b} ?

Solution:

9. (1 point) Suppose $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$ are orthogonal vectors. Prove that they are also independent.

Solution:

10. (1 point) If Q_1 and Q_2 are orthogonal matrices, show that their product Q_1Q_2 is also an orthogonal matrix.

Solution:

Concept: Determinants

11. (2 points) A tri-diagonal matrix is a matrix which has 1's on the main diagonal as well as on the diagonals to the left and right of the main diagonal. For example,

	Γ1	1	0	0										
$A_4 =$	1	1	1	0										
	0	1	1	1										
	0	0	1	1										
	1	1	1	0	0									
$A_{5} =$	0	1	1	1	0									
	0	0	1	1	1									
	0	0	0	1	1									
I at A	- L					: diamon	al mot	 Duorre	that	A	14	1	1 1 1	

Let A_n be an $n \times n$ tri-diagonal matrix. Prove that $|A_n| = |A_{n-1}| + |A_{n-2}|$

Solution:

12. (1 point) State True or False and explain your answer: det(A + B) = det(A) + det(B)

Solution:

- 13. (1 point) This question is about properties 9 and 10 of determinants.
 - (a) Prove that det(AB) = det(A)det(B)

Solution:

(b) (2 points) Prove that $det(A^{\top}) = det(A)$

Solution:

14. (1 point) Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.

(a) Find the area of the triangle whose vertices are $\mathbf{u},\mathbf{v},\mathbf{u}+\mathbf{v}$

Solution:

(b) Find the area of the triangle whose vertices are $\mathbf{u},\mathbf{v},\mathbf{u}-\mathbf{v}$

Solution:

15. (2 points) The determinant of the following matrix can be computed as a sum of 120 (5!) terms.

	$\int x$	x	x	x	$\begin{bmatrix} x \\ x \\ x \\ x \\ x \\ x \end{bmatrix}$
	x	x	x	x	x
A =	0	0	0	x	x
	0	0	0	x	x
	0	0	0	x	x

State true or false with an appropriate explanation: All the 120 terms in the determinant will be 0.

Solution: