CS6015 : Linear Algebra and Random Processes Tutorial #3

Deadline: None

- This tutorial deals with the topics already covered in class till 1st October 2020 (mainly dealing with lectures 8, 9, 10).
- While this is optional, it is strongly recommended that students solve this tutorial.

NAME : Roll Number :

1. Reduce matrices A and B to echelon form, to find their ranks. Which variables are free?

	Γ1	2	0	1		[1	2	3
(i) A =	0	1	1	0	(ii) $\mathbf{B} =$	4	5	6
	1	2	0	1	(ii) B =	7	8	9

Find the special solutions to Ax = 0 and Bx = 0. Find all solutions.

Solution:

2. Under what conditions on b_1 and b_2 does Ax = b have a solution?

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & 7 \end{bmatrix} \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Find two vectors in the nullspace of A, and the complete solution to Ax = b.

Solution:

3. Find the complete solutions of the following:

a.	$\begin{bmatrix} 1 & 3 \\ 2 & 6 \\ -1 & -3 \end{bmatrix}$	$\begin{bmatrix} 3\\9\\3 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$	$= \begin{bmatrix} 1\\5\\5 \end{bmatrix}$
b.	$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 6 & 4 \\ 0 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 2\\8\\4 \end{bmatrix} \begin{bmatrix} w\\x\\y\\z \end{bmatrix}$	$= \begin{bmatrix} 1\\3\\1 \end{bmatrix}$

Solution:

- 4. Suppose Ax = b has infinitely many solutions, is it possible for Ax = b' (where $b' \neq b$) to have:
 - a. only one solution?
 - b. no solution?
 - c. infinite solutions?

Solution:

5. Suppose column 4 of a 3 x 5 matrix is all 0s. Then x_4 is certainly a _____ variable.

Solution:

6. Construct a matrix whose nullspace consists of all combinations of (2,2,1,0) and (3,1,0,1).

Solution:

7. Construct a matrix whose column space contains (1,1,0) and (0,1,1) and whose nullspace contains (1,0,1) and (0,0,1).

Solution:

8. Can a 3 x 3 matrix ever have a nullspace that equals its column space? If yes, give an example when it's possible. If not, argue why.

Solution:

- 9. Provide counter examples to show that the following statements are false
 - (a) A and A^T have the same nullspace.
 - (b) A and A^T have the same free variables.
 - (c) If R is the reduced form of matrix A, $\operatorname{rref}(A)$ then R^T is $\operatorname{rref}(A^T)$.

Solution:

10. Find the dimension and construct a basis for the four subspaces associated with each of the matrices:

(i) $A = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{bmatrix}$ (ii) $B = \begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Solution:

11. Describe the four subspaces in three-dimensional space associated with:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution:

- 12. A is an m x n matrix of rank r. Under what conditions on m, n, and r do the following hold true?
 - (a) A has a two-sided inverse. That is, $AA^{-1} = A^{-1}A = I$
 - (b) Ax = b has infinitely many solutions for every b

Solution:

13. Given that Ax = b always has at least one solution, show that the only solution to $A^T y = 0$ is y = 0. (Hint: What is the rank?)

Solution:

14. Find a matrix A that has V as its row space, and a matrix B that has V as its nullspace, if V is the subspace spanned by

$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\5\\0 \end{bmatrix}$$

Solution:

15. Given a 3 x 3 invertible matrix A, what are the bases for the four subspaces for A? Also give the bases for the four subspaces of the 3 x 6 matrix B = [A A].

Solution:

16. Suppose we exchange the first two rows of a matrix A, does it change any of the four subspaces? Which ones will remain the same?

Solution: