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Chapter 1: Biological Neurons

3



Reticular Theory
Joseph von Gerlach proposed that the
nervous system is a single continuous
network as opposed to a network of many
discrete cells!
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Staining Technique
Camillo Golgi discovered a chemical reaction
that allowed him to examine nervous tissue
in much greater detail than ever before

He was a proponent of Reticular theory.

1871-1873

Reticular theory

1888-1891

Neuron Doctrine

1906

Nobel Prize

1950

Synapse

4



Neuron Doctrine
Santiago Ramón y Cajal used Golgi’s
technique to study the nervous system and
proposed that it is actually made up of
discrete individual cells formimg a network
(as opposed to a single continuous network)
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The Term Neuron
The term neuron was coined by Heinrich
Wilhelm Gottfried von Waldeyer-Hartz
around 1891.

He further consolidated the Neuron Doctrine.
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Nobel Prize
Both Golgi (reticular theory) and Cajal
(neuron doctrine) were jointly awarded the
1906 Nobel Prize for Physiology or Medicine,
that resulted in lasting conflicting ideas and
controversies between the two scientists.
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The Final Word
In 1950s electron microscopy finally
confirmed the neuron doctrine by
unambiguously demonstrating that nerve
cells were individual cells interconnected
through synapses (a network of many
individual neurons).
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Chapter 2: From Spring to Winter of AI
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McCulloch Pitts Neuron
McCulloch (neuroscientist) and Pitts
(logician) proposed a highly simplified model
of the neuron (1943) [2]
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Perceptron
“the perceptron may eventually be able to
learn, make decisions, and translate
languages” -Frank Rosenblatt
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Perceptron
“the embryo of an electronic computer that
the Navy expects will be able to walk, talk,
see, write, reproduce itself and be conscious
of its existence.” -New York Times
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First generation Multilayer
Perceptrons
Ivakhnenko et. al. [3]
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Perceptron Limitations
In their now famous book “Perceptrons”,
Minsky and Papert outlined the limits of
what perceptrons could do [4]
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AI Winter of connectionism
Almost lead to the abandonment of
connectionist AI
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Backpropagation

• Discovered and rediscovered several
times throughout 1960’s and 1970’s

• Werbos(1982) [5] first used it in the
context of artificial neural networks

• Eventually popularized by the work of
Rumelhart et. al. in 1986 [6]
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Gradient Descent
Cauchy discovered Gradient Descent
motivated by the need to compute the orbit
of heavenly bodies
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Universal Approximation
Theorem
A multilayered network of neurons with a
single hidden layer can be used to
approximate any continuous function to any
desired precision [7]
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Chapter 3: The Deep Revival
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Unsupervised Pre-Training
Hinton and Salakhutdinov described an
effective way of initializing the weights that
allows deep autoencoder networks to learn a
low-dimensional representation of data. [8]
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Unsupervised Pre-Training
The idea of unsupervised pre-training actually
dates back to 1991-1993 (J. Schmidhuber)
when it was used to train a “Very Deep
Learner”
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More insights (2007-2009)
Further Investigations into the effectiveness
of Unsupervised Pre-training
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Success in Handwriting
Recognition
Graves et. al. outperformed all entries in an
international Arabic handwriting recognition
competition [9]
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Success in Speech Recognition
Dahl et. al. showed relative error reduction of
16.0% and 23.2% over a state of the art
system [10]
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New record on MNIST
Ciresan et. al. set a new record on the MNIST
dataset using good old backpropagation on
GPUs (GPUs enter the scene) [11]
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First Superhuman Visual Pattern
Recognition
D. C. Ciresan et. al. achieved 0.56% error rate
in the IJCNN Traffic Sign Recognition
Competition [12]
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Winning more visual recognition
challenges

Network Error Layers
AlexNet [13] 16.0% 8

ZFNet [14] 11.2% 8
VGGNet [15] 7.3% 19

GoogLeNet [16] 6.7% 22
MS ResNet [17] 3.6% 152!!
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Chapter 4: From Cats to Convolutional Neural Networks

10



Hubel and Wiesel Experiment
Experimentally showed that each neuron has
a fixed receptive field - i.e. a neuron will fire
only in response to a visual stimuli in a
specific region in the visual space [18]
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Neocognitron
Used for Handwritten character recognition
and pattern recognition (Fukushima et.
al.) [19]
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Convolutional Neural Network
Handwriting digit recognition using
backpropagation over a Convolutional Neural
Network (LeCun et. al.) [20]
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LeNet-5
Introduced the (now famous) MNIST dataset
(LeCun et. al.) [21]
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An algorithm inspired by an experiment on cats is today used to
detect cats in videos :-)
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Chapter 5: Faster, higher, stronger
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Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond AdamAdam/BatchNorm

14



Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond AdamAdam/BatchNorm

14



Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond AdamAdam/BatchNorm

14



Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond AdamAdam/BatchNorm

14



Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond AdamAdam/BatchNorm

14



Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond Adam

Adam/BatchNorm

14



Better Optimization Methods
Faster convergence, better accuracies

1983

Nesterov

2011

Adagrad

2012

RMSProp

2015

Adam

2016

Eve

2018

Beyond AdamAdam/BatchNorm

14



Better Activation Functions
We have come a long way from the initial
days when the logistic function was the
default activation function in NNs!

Over the past few years many new functions
have been proposed leading to better
convergence and/or performance!
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Chapter 6: The Curious Case of Sequences
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Sequences

• They are everywhere

• Time series, speech, music, text, video

• Each unit in the sequence interacts with
other units

• Need models to capture this interaction
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Hopfield Network
Content-addressable memory systems for
storing and retrieving patterns [22]
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Jordan Network
The output state of each time step is fed to
the next time step thereby allowing
interactions between time steps in the
sequence
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Elman Network
The hidden state of each time step is fed to
the next time step thereby allowing
interactions between time steps in the
sequence
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Drawbacks of RNNs
Hochreiter et. al. and Bengio et. al. showed
the difficulty in training RNNs (the problem
of exploding and vanishing gradients)
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Long Short Term Memory
Showed that LSTMs can solve complex long
time lag tasks that could never be solved
before
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Sequence To Sequence Models

• Initial success in using RNNs/LSTMs for
large scale Sequence To Sequence
Learning Problems

• Introduction of Attention which is
perhaps the idea of the decade!
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RL for Attention
Schmidhuber & Huber proposed RNNs that
use reinforcement learning to decide where
to look

1982

Hopfield

1986

Jordan

1990

Elman

1991-1994

RNN drawbacks

1997

LSTMs

2014

Seq2Seq-Attention

1991

RL-Attention

17



Chapter 7: Beating humans at their own game (literally)
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Playing Atari Games

• Human-level control through deep
reinforcement learning for playing Atari
Games [23]
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Let’s GO

• Alpha Go Zero - Best Go player ever,
surpassing human players [24]

• GO is more complex than chess because
of number of possible moves

• No brute force backtracking unlike
previous chess agents
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Taking a shot at Poker
DeepStack defeated 11 professional poker
players with only one outside the margin of
statistical significance [25]
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Defense of the Ancients
“Our Dota 2 AI, called OpenAI Five, learned
by playing over 10,000 years of games
against itself. It demonstrated the ability to
achieve expert-level performance, learn
human–AI cooperation, and operate at
internet scale.” – OpenAI

2015

DQNs

2015

AlphaGO

2016

Poker

2017

Dota 2

2017

OpenAI Gym

2018

Gym Retro

2019

AlphaStar

2019

HidenSeek

2020

MuZero

19



A toolkit for RL
OpenAI Gyma is a toolkit for developing and
comparing reinforcement learning
algorithms. It supports teaching agents
everything from walking to playing games
like Pong or Pinball.

ahttps://gym.openai.com/
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RL for a 1000 games!
Open AI Gym Retroa: a platform for
reinforcement learning research on games
which contains 1,000 games across a variety
of backing emulators.

ahttps://openai.com/blog/gym-retro/
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Complex Strategy Games
AlphaStara learned to balance short and
long-term goals and adapt to unexpected
situations while playing using the same maps
and conditions as humans

ahttps://deepmind.com/
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Learning to Hide
OpenAI demonstrated agents which can
learn complex strategies such as chase and
hide, build a defensive shelter, break a
shelter, use a ramp to search inside a shelter
and so on!

https://openai.com/blog/emergent-tool-use/
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Jack of all, Master of all!
MuZero masters Go, chess, shogi and Atari
without needing to be told the rules, thanks
to its ability to plan winning strategies in
unknown environments.

https://deepmind.com/blog
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Chapter 8: The Madness (2013-)
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He sat on a chair. Language Modeling
• Mikolov et al. (2010) [26]

• Kiros et al. (2015) [27]

• Kim et al. (2015) [28]
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Speech Recognition
• Hinton et al. (2012) [29]

• Graves et al. (2013) [30]

• Chorowski et al. (2015) [31]

• Sak et al. (2015) [32]
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Machine Translation
• Kalchbrenner et al. (2013) [33]

• Cho et al. (2014) [34]

• Bahdanau et al. (2015) [35]

• Jean et al. (2015) [36]

• Gulcehre et al. (2015) [37]

• Sutskever et al. (2014) [38]

• Luong et al. (2015) [39]

• Zheng et al. (2017) [40]

• Cheng et al. (2016) [41]

• Chen et al. (2017) [42]

• Firat et al. (2016) [43]
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Conversation Modeling
• Shang et al. (2015) [44]

• Vinyals et al. (2015) [45]

• Lowe et al. (2015) [46]

• Dodge et al. (2015) [47]

• Weston et al. (2016) [48]

• Serban et al. (2016) [49]

• Bordes et al. (2017) [50]

• Serban et al. (2017) [51]
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Question Answering
• Hermann et al. (2015) [52]

• Chen et al. (2016) [53]

• Xiong et al. (2016) [54]

• Seo et al. (2016) [55]

• Dhingra et al. (2017) [56]

• Wang et al. (2017) [57]

• Hu et al. (2017) [58]
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Object Detection/Recognition
• Semantic Segmentation (Long et al,

2015) [59]

• Recurrent CNNs (Liang et al., 2015) [60]

• Faster RCNN (Ren et al., 2015) [61]

• Inside-Outside Net (Bell et al., 2015) [62]

• YOLO9000 (Redmon et al., 2016) [63]

• R-FCN (Dai et al., 2016) [64]

• Mask R-CNN (He at al., 2017) [65]

• Video Object segmentation (Caelles et
al., 2017) [66]
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Visual Tracking
• Choi et al. (2017) [67]

• Yun et al. (2017) [68]

• Alahi et al. (2017) [69]
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Image Captioning
• Mao et al. (2014) [70]

• Mao at al. (2015) [71]

• Kiros et al. (2015) [72]

• Donahue et al. (2015) [73]

• Vinyals et al. (2015) [74]

• Karpathy et al. (2015) [75]

• Fang et al. (2015) [76]

• Chen et al. (2015) [77]
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Video Captioning
• Donahue et al. (2014) [78]

• Venugopalan at al. (2014) [79]

• Pan et al. (2015) [80]

• Yao et al. (2015) [81]

• Rohrbach et al. (2015) [82]

• Zhu et al. (2015) [83]

• Cho et al. (2015) [34]
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Visual Question Answering
• Santoro et al. (2017) [84]

• Hu at al. (2017) [85]

• Johnson et al. (2017) [86]

• Ben-younes et al. (2017) [87]

• Malinowski et al. (2017) [88]

• Kazemi et al. (2016) [89]
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Video Question Answering
• Tapaswi et. al. 2016 [90]

• Zeng et. al. 2016 [91]

• Maharaj et. al. 2017 [92]

• Zhao et. al. 2017 [93]

• Yu Youngjae et. al. 2017 [94]

• Xue Hongyang et. al. 2017 [95]

• Mazaheri et. al. 2017 [96]
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Video Summarization
• Chheng 2007 [97]

• Ajmal 2012 [98]

• Zhang Ke 2016 [99]

• Zhong Ji 2017 [100]

• Panda 2017 [101]
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Generating Authentic Photos
• Variational Autoencoders

(Kingma et. al., 2013) [102]

• Generative Adversarial
Networks (Goodfellow et. al.,
2014) [103]

• Plug & Play generative nets
(Nguyen et al., 2016) [104]

• Progressive Growing of GANs
(Karras et al., 2017) [105]
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Generating Raw Audio
• Wavenets (Oord et. al.,

2016) [106]
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Pixel RNNs
• (Oord et al., 2016) [107]

• (Oord et al., 2016) [108]

• (Salimans et al., 2017) [109]
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Chapter 9: The Rise of the Transformers
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Rule Based Systems
Intial Machine Translation Systems used hand
crafted rules and dictionaries to translate
sentences between few politically important
language pairs (e.g., English -Russian). They
could not live upto the initial hype and were
panned by the ALPAC report (1966)
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Statistical MT
The IBM Models for Machine Translation gave
a boost to the idea of data driven statistical
NLP which then ruled NLP for the next 2
decades till Deep Learning took over!
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Neural MT
The introduction of seq2seq models and
attention [35] (perhaps, the idea of the
decade!) lead to a paradigm shift in NLP
ushering the era of bigger, hungrier (more
data), better models!

Source: Bahdanau et. al. [35]
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The Transformer Revolution
It is rare for a field to see two dramatic
paradigm shifts in a short span of 4 years!
Since their inception transformers have taken
the NLP world by storm leading to the
development of insanely big models trained
on obscene amounts of data! Source: Vaswani et. al. [110]
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The Transformer Revolution
Most NLP applications today are driven by
BERT and its variants. The key idea here was
to learn general langauge characteristics
using large amounts of unlabeled corpora
and then fine-tune the model for specific
downstream tasks. Source: Devlin et. al. [111]
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The Billion Parameter Club
The models are becoming bigger and bigger
and bigger!

Source: https://msturing.org/
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The Trillion Parameter Club
Trained on 100 languages, with a total of 13B
examples, 1 Trillion Parameters on 2048 TPUs!

This is insane!
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From Language To Vision
A vision modela based as closely as possible
on the Transformer architecture originally
designed for text-based tasks (another
paradigm shift from CNNs which have been
around since 1980s!)

aSource:https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html
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From Language To Vision
DALL·Ea is a 12-billion parameter version of
GPT-3 trained to generate images from text
descriptions, using a dataset of text–image
pairs.

ahttps://openai.com/blog/dall-e/
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Chapter 10: Calls for Sanity (Interpretable, Fair, Responsible,
Green AI)

38



The Paradox of Deep Learning
Why does deep learning work so well despite

• high capacity (susceptible to overfitting)

• numerical instability (vanishing/exploding gradients)

• sharp minima (leading to overfitting)

• non-robustness (see figure)

• Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!∗

• Hopefully this will bring sanity to the proceedings !

∗https://arxiv.org/pdf/1710.05468.pdf
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Tell me why!
Workshop on Human Interpretability in
Machine Learning

We still do not know much about why DL models
do what they do!
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Tell me why!
Clever Hans was a horse that was supposed to be
able to do lots of difficult mathematical sums
and solve complicated problems. Turns out, it
was giving the right answers by watching the
reactions of the people watching him.

A repository to benchmark machine learning
systems’ vulnerability to adversarial examples.
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Tell me why!
Push for analyzing and interpreting neural
networks for NLP
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Tell me why!
Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable. –
Christoph Molnar

Source: IML: Christoph Molnar
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Be Fair and Responsible!

Source: https://fairmlclass.github.io/ (Moritz Hardt) 41



Be Fair and Responsible!
“There’s software used across the country to
predict future criminals. And it’s biased
against blacks.” - Propublica

Source:
https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing
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Be Fair and Responsible!
“Facial Recognition Is Accurate, if You’re a
White Guy” - MIT Media

Source: Joy Buolamwini (Youtube)2016
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Be Fair and Responsible!
In 2018, nearly 70 civil rights and research
organizations wrote a letter to Jeff Bezos
demanding that Amazon stop providing face
recognition technology to governments.
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Be Fair and Responsible!
Microsoft refuses to sell police its
facial-recognition technology, following
similar moves by Amazon and IBM
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Be Fair and Responsible!
“Due to our concerns about malicious
applications of the technology, we are not
releasing the trained model.” – – OpenAI
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Be Fair and Responsible!
What started off as an innocuous project for
mimicking facial expressions has since lead
to many apps and creation of fake videos for
blackmailing, pronography and swaying
elections!
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Be Fair and Responsible!
“Models are only as good as the data. Be
responsible while curating data.” – Bender et.
al.
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Push for Green AI
The computations required for deep learning
research have been doubling every few months,
resulting in an estimated 300,000x increase from
2012 to 2018 – AllenAI

Ironically, deep learning was inspired by the human
brain, which is remarkably energy efficient.

https://openai.com/blog/ai-and-compute/
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Push for Green AI
Call for energy and policy considerations for Deep
Learning
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Push for Green AI
“Is it fair that the residents of the Maldives (likely
to be underwater by 2100) or the 800,000 people
in Sudan affected by drastic floods pay the
environmental price of training and deploying
ever larger English LMs, when similar large-scale
models aren’t being produced for Dhivehi or
Sudanese Arabic?” – Bender et. al.

2019

GreenAI

2019

Energy-Aware NLP

2021

Stochastic Parrots

43



Chapter 11: The AI revolution in Scientific Research (exciting
times ahead!)
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Accelerating Scientific Discoverya

ahttps://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://ocean.org/stories/spotting-seals-from-space
https://www.quantamagazine.org/how-artificial-intelligence-is-changing-science-20190311/
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Accelerating Scientific Discoverya

ahttps://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://ocean.org/stories/spotting-seals-from-space
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Accelerating Scientific Discoverya

ahttps://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://ocean.org/stories/spotting-seals-from-space
https://www.quantamagazine.org/how-artificial-intelligence-is-changing-science-20190311/ 45



https://github.com/ChristosChristofidis/awesome-deep-learning

46
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Source: https://www.cbinsights.com/research/artificial-intelligence-top-startups/

iSource: https://www.cbinsights.com/research/artificial-intelligence-top-startups/
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