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Chapter 1: Biological Neurons



Reticular Theory

Joseph von Gerlach proposed that the
nervous system is a single continuous
network as opposed to a network of many
discrete cells!

1871-1873
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Staining Technique
Camillo Golgi discovered a chemical reaction

that allowed him to examine nervous tissue
in much greater detail than ever before

He was a proponent of Reticular theory.

1871-1873
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Neuron Doctrine

Santiago Ramén y Cajal used Golgi’s
technique to study the nervous system and
proposed that it is actually made up of
discrete individual cells formimg a network
(as opposed to a single continuous network)

1871-1873 1888-1891
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The Term Neuron

The term neuron was coined by Heinrich
Wilhelm Gottfried von Waldeyer-Hartz
around 1891.

He further consolidated the Neuron Doctrine.

1871-1873 1888-1891
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Nobel Prize

Both Golgi (reticular theory) and Cajal
(neuron doctrine) were jointly awarded the
1906 Nobel Prize for Physiology or Medicine,
that resulted in lasting conflicting ideas and

controversies between the two scientists.

1871-1873 1888-1891 1906
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The Final Word

In 1950s electron microscopy finally
confirmed the neuron doctrine by
unambiguously demonstrating that nerve
cells were individual cells interconnected
through synapses (a network of many
individual neurons).

1871-1873 1888-1891 1906 1950
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Chapter 2: From Spring to Winter of Al



Y& {0>1}
McCulloch Pitts Neuron

McCulloch (neuroscientist) and Pitts
(logician) proposed a highly simplified model z

of the neuron (1943) 12! //T’\\
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Perceptron

“the perceptron may eventually be able to
learn, make decisions, and translate
languages” -Frank Rosenblatt

1943 1957-1958
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Perceptron

“the embryo of an electronic computer that
the Navy expects will be able to walk, talk,
see, write, reproduce itself and be conscious
of its existence.” -New York Times

1943 1957-1958
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First generation Multilayer
Perceptrons

lvakhnenko et. al.[3]

1943 1957-1958

®© @

MP Neuron Perceptron

Thirdt hidden
layer

Second
hidden layer

Input layer

First hidden
layer

Q’/O'utput layer
(one urit)

1965-1968

MLP



Perceptron Limitations

In their now famous book “Perceptrons”,
Minsky and Papert outlined the limits of
what perceptrons could do ¥

1943 1957-1958 1965-1968 1969
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Al Winter of connectionism

Almost lead to the abandonment of
connectionist Al

1943 1957-1958
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Backpropagation
Discovered and rediscovered several
times throughout 1960’s and 1970’s

Werbos(1982) I°] first used it in the
context of artificial neural networks

Eventually popularized by the work of
Rumelhart et. al. in 1986 [¢]

1943 1957-1958 1965-1968 1969 1969-1986 19|86
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Gradient Descent

Cauchy discovered Gradient Descent
motivated by the need to compute the orbit
of heavenly bodies

1847 1943 1957-1958 1965-1968 1969 1969-1986 1986
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Chapter 3: The Deep Revival



Unsupervised Pre-Training

Hinton and Salakhutdinov described an
effective way of initializing the weights that
allows deep autoencoder networks to learn a

low-dimensional representation of data. (&

2006

Unsupervised Pre-Training



Unsupervised Pre-Training

The idea of unsupervised pre-training actually
dates back to 1991-1993 (J. Schmidhuber)
when it was used to train a “Very Deep

Learner”
¥;
L
1991-1993 2006
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M ore i ns i ghtS ( 2007'2009 ) Greedy Layer-Wise Training of Deep Networks

Further Investigations into the effectiveness Why Does Unsupervised Pre-training Help Deep Learning?
of Unsu pel’Vised Pre-tl’aining Exploring Strategies for Training Deep Neural Networks
1991-1993 2006i2009
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Success in Handwriting
Recognition

Craves et. al. outperformed all entries in an
international Arabic handwriting recognition
competition [°]
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Success in Speech Recognition

Dahl et. al. showed relative error reduction of

16.0% and 23.2% over a state of the art
system [10]
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New record on MNIST

Ciresan et. al. set a new record on the MNIST
dataset using good old backpropagation on
GPUs (GPUs enter the scene) 11]
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First Superhuman Visual Pattern
Recognition

D. C. Ciresan et. al. achieved 0.56% error rate
in the IJCNN Traffic Sign Recognition

Competition 12!
1991-1993 2006-2009 2009 2010 2011
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Winning more visual recognition
challenges

Network Error  Layers
AlexNet!*l  16.0% 8
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Winning more visual recognition
challenges

Network Error  Layers
AlexNet™l  16.0% 8
ZFNet 1] 11.2% 8
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Winning more visual recognition
challenges

Network Error  Layers
AlexNet [13] 16.0% 8
ZFNet 14 11.2% 8
VGGNet 19 7.3% 19
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Winning more visual recognition

2006-2009 2009

Layers
8
8
19
22

2010 2011

2012-2016

challenges
Network Error
AlexNet [13] 16.0%
ZFNet[14] 11.2%
VGGNet[15] 7.3%
GoogleNet[1®l  6.7%
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Winning more visual recognition

challenges

Network
AlexNet [13]
ZFNet 14
VGGNet [19]
GoogleNet[1¢]
MS ResNet[17]

1991-1993

®©

Very Deep Learner

Error Layers
16.0% 8
11.2% 8

7.3% 19

6.7% 22

3 ’ 62?)/(’)120091 5 2 l !2009 2010 2011 2012-2016

I
O

I |
© © ®
@ Handwriting Speech

Record on MNIST
Visual Pattern

Recognition

Unsupervised Pretraining

Success on ImageNet




Chapter 4: From Cats to Convolutional Neural Networks
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Hubel and Wiesel Experiment

Experimentally showed that each neuron has
a fixed receptive field - i.e. a neuron will fire
only in response to a visual stimuli in a

specific region in the visual space 18!

1959

O]

H and W experiment

0

Recording electrode ——

Visual area
of brain

N

Stimulus

Electrical signal
from brain
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Neocognitron

Used for Handwritten character recognition
and pattern recognition (Fukushima et.

al.) [19]

1959

O]

Hand W experiment

1980

@

Neocognitron
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Convolutional Neural Network thf W, [ j?é

Handwriting digit recognition using LY 19930 g7 23 -S.-ab/——*}

backpropagation over a Convolutional Neural

[20]
Network (LeCun et. al.) q&; 30:5 Y4 3T
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An algorithm inspired by an experiment on cats is today used to
detect cats in videos :-)

12



Chapter 5: Faster, higher, stronger
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Better Optimization Methods

Faster convergence, better accuracies

T

0.00 009 018 027 036 045 054 063

1983
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Nesterov
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Better Optimization Methods

Faster convergence, better accuracies

T

0.00 009 018 027 036 045 054 063

1983 2011
Adagrad
Nesterov
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Better Optimization Methods

Faster convergence, better accuracies

T

0.00 009 018 027 036 045 054 063

1983 2011 2012
Adagrad
Nesterov RMSProp
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Better Optimization Methods

Faster convergence, better accuracies

T

0.00 009 018 027 036 045 054 063

1983 2011 2012 2015
Adagrad m
Nesterov RMSProp
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Better Optimization Methods

Faster convergence, better accuracies

T

0.00 009 018 027 036 045 054 063

1983 2011 2012 2015 2016
Adagrad Adam
Nesterov RMSProp Eve

14



Better Optimization Methods

Faster convergence, better accuracies

T

0.00 009 018 027 036 045 054 063

1983 2011 2012 2015 2016 2018
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Better Activation Functions

We have come a long way from the initial
days when the logistic function was the
default activation function in NNs!

Over the past few years many new functions
have been proposed leading to better

convergence and/or performance!

1980-1990 1991

@

Logistic Function Tanh Function

Leaky Rell

SELU
3

2013
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2016
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Chapter 6: The Curious Case of Sequences
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Sequences

They are everywhere
Time series, speech, music, text, video

Each unit in the sequence interacts with
other units

Need models to capture this interaction

17



Hopfield Network

Content-addressable memory systems for
[22]

storing and retrieving patterns

1982

Hopfield

17



Jordan Network

The output state of each time step is fed to
the next time step thereby allowing
interactions between time steps in the
sequence

1982 1986

Hopfield Jordan

Context

Jordan

Input

17



Elman Network

The hidden state of each time step is fed to
the next time step thereby allowing
interactions between time steps in the

Sequence
1982 1986 1990
Hopfield Jordan Elman

Context

Elman

Input

17



Drawbacks of RNNs

Hochreiter et. al. and Bengio et. al. showed
the difficulty in training RNNs (the problem
of exploding and vanishing gradients)

1982 1986 1990 1991-1994
Hopfield Jordan Elman RNN drawbacks
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Long Short Term Memory

Showed that LSTMs can solve complex long

time lag tasks that could never be solved

before
1982 1986 1990 1991-1994
Hopfield Jordan Elman RNN drawbacks

1997

LSTMs
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Sequence To Sequence Models

Initial success in using RNNs/LSTMs for
large scale Sequence To Sequence
Learning Problems

Introduction of Attention which is
perhaps the idea of the decade!

1982 1986 1990 1991-1994 1997

Hopfield Jordan Elman RNN drawbacks LSTMs

w X Y z <eos>|
A B c <> w X Y z

2014

Seq2Seq-Attention
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RL for Attention

Schmidhuber & Huber proposed RNNs that
use reinforcement learning to decide where

to look
1982 1990 1991 1991-1994
Hopfield Jordan Elman RNN drawbacks

RL-Attention

2014

Seq2Seq-Attention
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Chapter 7: Beating humans at their own game (literally)
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Playing Atari Games

Human-level control through deep
reinforcement learning for playing Atari

Games [23]

2015

_

®©

DQNs
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Let’s GO

Alpha Go Zero - Best Go player ever,
surpassing human players 24!

GO is more complex than chess because
of number of possible moves

No brute force backtracking unlike

previous chess agents
2015

©

DONs
AlphaGO
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Taking a shot at Poker

DeepStack defeated 11 professional poker

players with only one outside the margin of
statistical significance [%°]

2015 2016
DQNs Poker
AlphaGO

19



Defense of the Ancients

“Our Dota 2 Al, called OpenAl Five, learned
by playing over 10,000 years of games
against itself. It demonstrated the ability to
achieve expert-level performance, learn
human—Al cooperation, and operate at
internet scale.” — OpenAl

2015 2016 2017

@ O, O,
DQNs Poker Dota 2
AlphaGO

19



A toolkit for RL

OpenAl Gym® is a toolkit for developing and
comparing reinforcement learning
algorithms. It supports teaching agents
everything from walking to playing games
like Pong or Pinball.

“https://gym.openai.com/

2015 2016 2017

DQNs Poker Dota 2
AlphaGO OpenAl Gym
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RL for a 1000 games!

Open Al Gym Retro®: a platform for
reinforcement learning research on games
which contains 1,000 games across a variety
of backing emulators.

“https://openai.com/blog/gym-retro/

2015 2016 2017 2018

DQNs Poker Dota 2 Gym Retro
AlphaGO OpenAl Gym
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Complex Strategy Games

AlphaStar® learned to balance short and
long-term goals and adapt to unexpected

situations while playing using the same maps
and conditions as humans

“https://deepmind.com/

2015 2016 2017 2018 2019
DQNs Poker Dota 2 Gym Retro AlphaStar
AlphaGO OpenAl Gym
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Learning to Hide

OpenAl demonstrated agents which can
learn complex strategies such as chase and
hide, build a defensive shelter, break a
shelter, use a ramp to search inside a shelter

and so on!
https://openai.com/blog/emergent-tool-use/
2015 2016 2017 2018 2019
DQNs Poker Dota 2 Gym Retro AlphaStar
AlphaGO OpenAl Gym HidenSeek
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Jack of all, Master of all!

MuZero masters Go, chess, shogi and Atari
without needing to be told the rules, thanks
to its ability to plan winning strategies in
unknown environments.

2015 2016 2017
DQNs Poker Dota 2
AlphaGO OpenAl Gym

https://deepmind.com/blog

2019

®

AlphaStar
HidenSeek
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Chapter 8: The Madness (2013-)
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He sat on a chair.

Language Modeling
Mikolov et al. (2010) [%®

Kiros et al. (2015) [27]
Kim et al. (2015) [28]

|
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Usilg =
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Speech Recognition
Hinton et al. (2012)[%°
Graves et al. (2013) 3%

Chorowski et al. (2015) 31
Sak et al. (2015) 32
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Kalchbrenner et al. (2013) 133
Cho et al. (2014) 34
Bahdanau et al. (2015) [3°]
Jean et al. (2015) 13€]
Gulcehre et al. (2015) [37]
Sutskever et al. (2014) [38]
Luong et al. (2015) 3]
Zheng et al. (2017) [40]
Cheng et al. (2016) [41]
Chen et al. (2017) 142
Firat et al. (2016) [43]

23



‘ Time ‘ User ‘ Utterance
03:44 o1d 1 dont run graphical ubuntu,
I run ubuntu server.
03:45 kuja Taru: Haha sucker.
03:45 Taru Kuja: ?
03:45 bur[nJer | Old: you can use "ps ax"
and "kill (PID#)"
03:45 kuja Taru: Anyways, you made
the changes right?
03:45 Taru Kuja: Yes.
03:45 LiveCD or killall speedlink
03:45 kuja Taru: Then from the terminal
type: sudo apt-get update
03:46 _pm if 1 install the beta version,
how can 1 update it when
the final version comes out?
03:46 Taru Kuja: I did.
[ Sender [ Recipient | Utierance
Old I dont run graphical ubuntu,
I run ubuntu server.
bur[n]er 0Old you can use "ps ax" and
"kill (PID#)"
kuja Taru Haha sucker
Taru Kuja ?
kuja Taru Anyways, you made the
changes right?
Taru Kuja Yes.
kuja Taru Then from the terminal type:
sudo apt-get update
Taru Kuja Idid

Shang et al. (2015) 4
Vinyals et al. (2015) 4]
Lowe et al. (2015) [4€]
Dodge et al. (2015) [47]
Weston et al. (2016) (48]
Serban et al. (2016) [+°]
Bordes et al. (2017) [0
Serban et al. (2017) 1
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Task 1: Single Supporting Fact
Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office.
Where is Mary? A:office

Task 2: Two Supporting Facts
John is in the playground.
John picked up the football.
Bob went to the kitchen.
‘Where is the football? A:playground

Task 3: Three Supporting Facts
John picked up the apple.
John went to the office.
John went to the kitchen.
John dropped the apple.
Where was the apple before the kitchen? A:office

Task 4: Two Argument Relations
The office is north of the bedroom.
The bedroom is north of the bathroom.
The kitchen is west of the garden.
What is north of the bedroom? A: office
‘What is the bedroom north of? A: bathroom

Hermann et al. (2015) >
Chen et al. (2016) 53
Xiong et al. (2016) >4
Seo et al. (2016) [5°]
Dhingra et al. (2017) ¢!
Wang et al. (2017) [*7]
Hu et al. (2017) 58]
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Object Detection/Recognition
Semantic Segmentation (Long et al,

2015) 5]

Recurrent CNNs (Liang et al., 2015) [6°]
Faster RCNN (Ren et al., 2015) [61]
Inside-Outside Net (Bell et al., 2015) [62]
YOLO9000 (Redmon et al., 2016) [63]
R-FCN (Dai et al., 2016) [64]

Mask R-CNN (He at al., 2017) [6°]

Video Object segmentation (Caelles et
al., 2017) 166l
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Visual Tracking
Choi et al. (2017) ¢/

Yun et al. (2017) [68]
Alahi et al. (2017) (9]

|
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1. Top view of the lights of a city at
night, with a well-illuminated square
in front of a church in the foreground;
2. People on the stairs in front of an
illuminated cathedral with two towers

at night;

1. Tourists are sitting at a long table with
beer bottles on it in a rather dark restaurant
and are raising their bierglaeser;

2. Tourists are sitting at a long table with a
white table-cloth in a somewhat dark
restaurant;

A square with burning street lamps
and a street in the foreground;

Tourists are sitting at a long table
with a white table cloth and are
eating;

Mao et al. (2014) /0
Mao at al. (2015)[71]
Kiros et al. (2015) 72l
Donahue et al. (2015)[73]
Vinyals et al. (2015) 74
Karpathy et al. (2015) [7°]
Fang et al. (2015) [7¢]
Chen et al. (2015)[77]
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Video Captioning
Donahue et al. (2014) 178
Venugopalan at al. (2014) 7]

Pan et al. (2015) [8°]
Yao et al. (2015) [81]

A group of young men playing a A man riding a wave on top of a
game of soccer surfboard. Rohrbach et al. (2015) [82]

Zhu et al. (2015) [83]
Cho etal. (2015) 34
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"1

What is the mustache
made of?

> Al System

Santoro et al. (2017) 184

Hu at al. (2017) [8°]
Johnson et al. (2017) [8€]
Ben-younes et al. (2017) [87]

Malinowski et al. (2017) [88]
Kazemi et al. (2016) [8°]
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She opens the .

Question: What is the cat doing? Answer: playing with a tablet

Tapaswi et. al. 2016 °©
Zeng et. al. 2016 P!
Maharaj et. al. 20172
Zhao et. al. 20173

Yu Youngjae et. al. 2017 4

Xue Hongyang et. al. 201797
Mazaheri et. al. 2017 [°€]
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Chheng 2007 %7
Ajmal 201281
Zhang Ke 2016 [°°]

Zhong Ji 20171001
Panda 2017 (101

Input video

Summary
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Generating Authentic Photos
Variational Autoencoders
(Kingma et. al., 2013) [102]

Generative Adversarial
Networks (Goodfellow et. al.,
2014) [103]

Plug & Play generative nets
(Nguyen et al., 2016) [104]

Progressive Growing of GANs
(Karras et al., 2017) 193]
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Generating Raw Audio
Wavenets (Oord et. al.,

2016) [106]
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occluded completions original
.

(Oord et al., 2016) |107|

(Oord et al., 2016) [108]
(Salimans et al., 2017) [10°]
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Chapter 9: The Rise of the Transformers
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Rule Based Systems

Intial Machine Translation Systems used hand
crafted rules and dictionaries to translate
sentences between few politically important
language pairs (e.g., English -Russian). They
could not live upto the initial hype and were
panned by the ALPAC report (1966)

1954 1966 1982
| | |
© © ©
Georgetown IBM Experiment ALPAC METEO
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Statistical MT
The IBM Models for Machine Translation gave

The Mathematics of Statistical Machine
Translation: Parameter Estimation

Peter F. Brown* Stephen A. Della Pietra*
IBM TJ. Watson Research Center IBM TJ. Watson Research Center
a boost to the idea of data driven statistical Vincent J. Della Pietra- Robest L. Mercer-
. IBM T.J. Watson Research Center IBM T.J. Watson Research Center
NLP which then ruled NLP for the next 2
decades till Deep Learning took over!
2005
1954 1966 1982 1993 2003
| [ [
@ @ @ @ @®©
PB  Hiero
Georgetown IBM Experiment ALPAC METEO I1BM Models SMT
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Neural MT

The introduction of seq2seq models and
attention (33 (perhaps, the idea of the
decade!) lead to a paradigm shift in NLP
ushering the era of bigger, hungrier (more
data), better models!

Source: Bahdanau et. al.[
2005

1954 1966 1982 1993
| | |
@ @ O] ®©
Georgetown IBM Experiment ALPAC METEO I1BM Models

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (21, T2, ..., 7).

2003

@@®©

PB  Hiero

2014

®

SMT Seq2Seq-Attn
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The Transformer Revolution

It is rare for a field to see two dramatic
paradigm shifts in a short span of 4 years!
Since their inception transformers have taken
the NLP world by storm leading to the
development of insanely big models trained
on obscene amounts of data!

1954 1966 1982
| | |
© © ©
Georgetown IBM Experiment ALPAC METEO

Output
Probabilties

Outputs
shifted right)

Source: Vaswani et. al. 119
2005 2017
1993 2003 2014
PB  Hiero Transf.
I1BM Models SMT Seq2Seq-Attn
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The Transformer Revolution

Most NLP applications today are driven by
BERT and its variants. The key idea here was
to learn general langauge characteristics
using large amounts of unlabeled corpora
and then fine-tune the model for specific
downstream tasks.

Mask LM . o cau) StartEnd Span

A=) ()
- [&]
r r

Masked Sentence A Masked Sentence B Question Paragraph

Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training

Fine-Tuning

Source: Devlin et. al. [111]

2005 2017
1954 1966 1982 2003 2018
| | |
@ @ O] ®©

Georgetown IBM Experiment

I1BM Models SMT Seq2Seq-Attn  BERT
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The Billion Parameter Club

The models are becoming bigger and bigger
and bigger!

Source: https://msturing.org/

A2

1954 1966 1982
| | |
© © ©
Georgetown IBM Experiment ALPAC METEO

I1BM Models

2005 2017
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The Trillion Parameter Club

Trained on 100 languages, with a total of 13B
examples, 1 Trillion Parameters on 2048 TPUs!

This is insane!

1954 1966 1982

GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding

Dmitry Lepikhin HyoukJoong Lee ‘Yuanzhong Xu
lepikhin®google.com hyouklee@google . com yuanzx@google.com
Dehao Chen Orhan Firat Yanping Huang
dehao@google.com orhanf@google.com huangyp@google.com

Maxim Krikun Noam Shazeer Zhifeng Chen
krikun@google.com noam@google. com zhifengc@google . com
2005 2017 2020

2014 2018

@ O O

| | |
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From Language To Vision

A vision model® based as closely as possible
on the Transformer architecture originally
designed for text-based tasks (another
paradigm shift from CNNs which have been
around since 1980s!)

Transformer Encoder ‘

|
==adadedadid

Linear Projection of Flattened Patches

,I\WII\{II

@;; 5{5 117 BN A LGS D e

RS

“Source:https://ai.googleblog.com/2020/12/transformers-for-image recogmtion-at.html

1954 1966 1982
| | |
© © ©
Georgetown IBM Experiment ALPAC METEO

2005 2017 2020
2003 2014 2018

Transf.  GShard
I1BM Models SMT Seq2Seq-Attn  BERT
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From Language To Vision

an illustration of a baby daikon radish in a tutu walking a dog

AL-GENERATED IMAGES

\
DALL-E? is a 12-billion parameter version of = /Y
GPT-3 trained to generate images from text s - =
descriptions, using a dataset of text—image an armohair n the shape of an avocadoL. ]
pairs.

“https://openai.com/blog/dall-e/

X

O

Edit prompt or view more images

Edit prompt or view more images

o
e

W

<

i

2005

1982 2014

| | |
@ @ O] ®©
Georgetown IBM Experiment ALPAC METEO IBM Models SMT Seq2Seq-Attn

2017 2020
2018|2021

© @ @ .t

Transf.  GShard
BERT  VIT
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Chapter 10: Calls for Sanity (Interpretable, Fair, Responsible,
Green Al)
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The Paradox of Deep Learning

Why does deep learning work so well despite

“panda” “gibbon"

57.7% confidenc 99 .3% confidence

*https://arxiv.org/pdf/1710.05468.pdf
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numerical instability (vanishing/exploding gradients)
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The Paradox of Deep Learning
Why does deep learning work so well despite
high capacity (susceptible to overfitting)
numerical instability (vanishing/exploding gradients)

sharp minima (leading to overfitting)
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The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding gradients)

“panda” “gibbon"
sharp minima (leading to overfitting) 577% canfidenc 99,35 confidence

non-robustness (see figure)

*https://arxiv.org/pdf/1710.05468.pdf
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No clear answers yet but ...
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The Paradox of Deep Learning

Why does deep learning work so well despite
high capacity (susceptible to overfitting)
numerical instability (vanishing/exploding gradients)
sharp minima (leading to overfitting)

non-robustness (see figure)

No clear answers yet but ...

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!*

*https://arxiv.org/pdf/1710.05468.pdf
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The Paradox of Deep Learning
Why does deep learning work so well despite

high capacity (susceptible to overfitting)

numerical instability (vanishing/exploding gradients)

“panda” “gibbon"
sharp minima (leading to overfitting) 577% canfidenc 99,35 confidence

non-robustness (see figure)

No clear answers yet but ...

Slowly but steadily there is increasing emphasis on
explainability and theoretical justifications!*

Hopefully this will bring sanity to the proceedings !

*https://arxiv.org/pdf/1710.05468.pdf
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Tell me why!

Workshop on Human Interpretability in
Machine Learning

We still do not know much about why DL models
do what they do!

2016

_

O

WHI

40



Tell me why!

Clever Hans was a horse that was supposed to be
able to do lots of difficult mathematical sums
and solve complicated problems. Turns out, it
was giving the right answers by watching the

reactions of the people watching him. EleNels h a n%

A repository to benchmark machine learning
systems’ vulnerability to adversarial examples.

2016

©

WHI
CleverHans

40



Tell me why!

Push for analyzing and interpreting neural
networks for NLP

2016 2018

WHI BlackboxNLP
CleverHans

Analyzing
and
interpreting
neural
networks
for NLP

Revealing the content
of the neural black box:
workshop on the
analysis and
interpretation of neural
networks for Natural

Language Processing.

40



Tell me why!

Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable. -
Christoph Molnar *

o m

Source: IML: Christoph Molnar

2016 2018 2020 2021
WHI BlackboxNLP @ACL IML
CleverHans

40



Be Fair and Responsible!

PAPERS

BRIEF HISTORY OF FAIRNESS IN ML

OH, CRAP.
LOL FAIRNESS!!

ZOI\ 20]2 2013 ZO\H 2015‘ 20]6 20\7

Source: https:/[fairmlclass.github.io/ (Moritz Hardt)
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Two Petty Theft Arrests

Be Fair and Responsible!

“There’s software used across the country to
predict future criminals. And it’s biased

against blacks.” - Propublica \
BRISHA BORDEN

LOW RISK 3 HIGHRISK 8
Borden was rated high risk for future crime after she and a friend

took a kid’s bike and scooter that were sitting outside. She did not
reoffend.

o Source:

https://www.propublica.org/article/machine-bias-

®©

Machine Bias
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Gender Shades audit, 2018

Be Fair and Responsible!

Largest Gap
| EX3
| EEO
| EXED

“Facial Recognition Is Accurate, if You're a
Whlte GUy” -MIT Media Oprah Winfrey
-
X

appearstobe male  765%

amazon
~—

2016 2018

Machine Bias Gender/Race Bias

Source: Joy Buolamwini (Youtube)




Be Fair and Responsible!
In 2018, nearly 70 civil rights and research

organizations wrote a letter to Jeff Bezos

demanding that Amazon stop providing face & :
recognition technology to governments. B e
2016 2018
@ ©
Machine Bias Gender/Race Bias

Rekognition Bias

42



IBM saysiitis no longer working on face
recognition because it's used for racial profiling

Be Fair and Responsible!

Microsoft refuses to sell police its
facial-recognition technology, following
similar moves by Amazon and I1BM

Microsoft won’t sell police its facial-recognition technology,
following similar moves by Amazon and IBM

2016 2018 2020
Machine Bias Gender/Race Bias IBM/Amazon/MS discontinue facial rec

Rekognition Bias

42



GPT3

Be Fair and Responsible! Examples
</>

“Due to our concerns about malicious

Learn From Anyone

applications of the technology, we are not Teacher
releasing the trained model.” — — OpenAl

steve jobs

Me: What's an iPhone

7 steve jobs: iPhone is a mobile device. It's the
most sophisticated smart phone in the world.

Me: What do you think about Windows?

adam@17 819 on Jun 16, 2016 steve jobs:
Windows is a wonderful desktop computer
platform that Microsoft has provided.

Me: Where are you right now?
steve jobs: I'm inside Apple's headquarters in

2016 2018 Cupertino,Calfornia ) g 2020

®© @ © ©

Machine Bias Gender/Race Bias GPT-3 IBM/Amazon/MS discontinue facial rec
Rekognition Bias

42



BoE ' {
NEWS

Be Fair and Responsible! Wiy B ’; j

What started off as an innocuous project for

, V,
.y &)

‘ Do tl‘ﬂeam be%d synthetic.Obama

mimicking facial expressions has since lead

think we should bé worried about

to many apps and creation of fake videos for
faked videos?

blackmailing, pronography and swaying S
elections!
2016 2017 2018 2019 2020
O, @ ® @ @
Machine Bias DeepFakes Gender/Race Bias GPT-3 IBM/Amazon/MS discontinue facial rec

Rekognition Bias

42



Be Fair and Responsible!

“Models are only as good as the data. Be
responsible while curating data.” — Bender et.
al.

2016 2017

®© ®©

Machine Bias DeepFakes Gender/Race Bias
Rekognition Bias

2018

©

gerry
N @geraldmellor

"Tay" went from "humans are super cool" to full naziin
<24 hrs and I'm not at all concerned about the future of Al

E ToyTweets & g TayTweets Ol

smayank jee cani just say that im PP
stoked 1o meetu? humans are super UnkindledGurg @PooWithEyes chill
ool 1anice person! i just hate everybody

g ToyTweets ( ag TayTwets [

33 Hitler was right | hate

NYCitizen07 | 2 hate feministsbrightor
d they should all die and burn in hel€ jews.

11:26 AM - Mar 24, 2016 - Twitter for iPhone

On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? §

Enily M. B

2020

O]

GPT-3 IBM/Amazon/MS discontinue facial rec

Stochastic Parrots!

42



Push for Green Al

The computations required for deep learning
research have been doubling every few months,

resulting in an estimated 300,000x increase from
2012 to 2018 — AllenAl

Ironically, deep learning was inspired by the human

brain, which is remarkably enerqy efficient.
2019

o

®©

GreenAl

https:/lopenai.com/blog/ai-and-compute/
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Push for Green Al B o - e
Call for energy and policy considerations for Deep U e e e s
Learning Gl e mm e

Common carbon footprint benchmarks

in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1
ssenger)

Human life (avg. 1 year)

American life (avg. 1 year)

US car including fuel (avg. 1 lifetime)

‘Transformer (213M parameters) w/ neural
archuecire search

Chart: MIT Technology Review - Source: Strubell et al. -

2019

®©

GreenAl
Energy-Aware NLP



Push for Green Al

“Is it fair that the residents of the Maldives (likely
to be underwater by 2100) or the 800,000 people
in Sudan affected by drastic floods pay the
environmental price of training and deploying
ever larger English LMs, when similar large-scale
models aren’t being produced for Dhivehi or

Sudanese Arabic?” — Bender et. al.
2019

®©

GreenAl
Energy-Aware NLP

On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? &

Emily M. Bender* Timnit Gebru*
ebender@uw.edu timnit@blackinai.org
University of Washington Black in AL
Seattle, WA, USA Palo Alto, CA, USA
Angelina McMillan-Major Shmargaret Shmitchell
aymm@uw.edu shmargaret.shmitchell@gmail.com
University of Washington The Aether

Seattle, WA, USA

2021

@

Stochastic Parrots

43




Chapter 11: The Al revolution in Scientific Research (exciting
times ahead!)

44



Accelerating Scientific Discovery®

Every protein is made up These amino acids interact  These shapes fold up on Proteins can interact with

of a sequence of amino locally to form shapes ke larger scales to form the other proteins, performing
acids bonded together helices and sheets full three-dimensional functions such as signaling
protein structure and transcribing DNA

RLE

o
2006 2008 2010 2012 2014 2016 2018 2020 Amino Alpha  Pleated Pleated  Alpha
nature Contestyeor acids. helix  sheet sheet helix

FIGURE 1: COMPLEX 30 SHAPES EMERGE FROM A STRING OF AMINO ACIDS

“https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery
https://ocean.org/stories/spotting-seals-from-space
https://[www.quantamagazine.org/how-artificial-intelligence-is-changing-science-20190311/



Accelerating Scientific Discovery®

Every protein is made up These amino acids interact  These shapes fold up on Proteins can interact with
of a sequence of amino locally to form shapes ke larger scales to form the other proteins, performing
acids bonded together helices and sheets fullthree-dimensional functions such as signalling

Aohoroldz- protein structure and transcribing DNA

’ AlphaFold ~ o %
o

Amino Alpha  Ploated Pleated  Alpha
acids. helix  sheet sheet helix

Spotting Seals From
Space
o

“https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery
https://ocean.org/stories/spotting-seals-from-space

https://www.quantamagazine.org/how-artificial-intelligence-is-changing-science-20190311/ “



Accelerating Scientific Discovery“

STRUCTURE SOLVER

Every protein is made up These amino acids interact  These shapes fold up on
of a sequence of amino locally to form shapes like larger scales to form the
acids bonded together helices and sheets fullthree-dimensional

protein structure

Alpha  Ploated Ploated  Alpha
helix  sheet sheet helix

Spotting Seals From
Space

Proteins can interact with
other proteins, performing
functions such as signalling
and transcribing DNA

REAL GALAXIES IN
LOW-DENSITY REGIONS

LATENT-SPACE
RECONSTRUCTION
OF GALAXIES

TRANSFORMATION
BY NETWORK

GENERATED GALAXIES IN
HIGH-DENSITY REGIONS

Using generative modeling, icists could investi galaxies ch:
‘when they go from low-density regions of the cosmos to high-density regions, and
‘what physical processes are responsible for these changes.

Adoped from K Schowinsk o o; Sourcs.

“https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery

https://ocean.org/stories/spotting-seals-from-space
https://www.quantamagazine.org/how-artificial-intelligence-is-changing-science-20190311/
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https://github.com/ChristosChristofidis/awesome-deep-learning
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