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Module 4.1: Feedforward Neural Networks (a.k.a. multilayered
network of neurons)



The input to the network is an n-dimensional vector
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Finally, there is one output layer containing k neurons

(say, corresponding to k classes)

Each neuron in the hidden layer and output layer can
be split into two parts : pre-activation
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The input to the network is an n-dimensional vector

The network contains L — 1 hidden layers (2, in this
case) having n neurons each

Finally, there is one output layer containing k neurons
(say, corresponding to k classes)

Each neuron in the hidden layer and output layer can
be split into two parts : pre-activation and activation
(a; and h; are vectors)

The input layer can be called the 0-th layer and the
output layer can be called the (L)-th layer

W; € R™™ and b; € R" are the weight and bias
between layersi — 1 and i (0 < ¢ < L)

Wi € R™* and by, € RF are the weight and bias

between the last hidden layer and the output layer
(L = 3 in this case)



The pre-activation at layer i is given by
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The pre-activation at layer i is given by
az(x) =b; + Wihi—1($)
The activation at layer i is given by

hi(z) = g(as(x))
where g is called the activation function (for example,
logistic, tanh, linear, etc.)

The activation at the output layer is given by
f(@) = hp(z) = O(ar(x))

where O is the output activation function (for example,
softmax, linear, etc.)

To simplify notation we will refer to a;(x) as a; and 4
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The pre-activation at layer i is given by
a; = bi + Wihi—l
The activation at layer i is given by

h; = g(a;)

where g is called the activation function (for example,
logistic, tanh, linear, etc.)

The activation at the output layer is given by
f(z) = hg = O(ar)

where O is the output activation function (for example,
softmax, linear, etc.)
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Data: {xz;, yl}f\il

Model:

Ui = f(z;) = O(Wag(Wag(Wiz + b1) + b2) + b3)

Parameters:
0=Wi,..,Wr,b1,ba,....;br(L = 3)

Algorithm: Gradient Descent with Back-propagation
(we will see soon)



Data: {xz;, yl}f\il

Model:

Ui = f(z;) = O(Wag(Wag(Wiz + b1) + b2) + b3)

Parameters:

0 =Wi,.,Wr,b1,ba,...,br(L = 3)
Algorithm: Gradient Descent with Back-propagation
(we will see soon)

Objective/Loss/Error function: Say,

LNk
TN = >0 (i — vig)?

i=1 j=1

In general, min £ (0)

where .Z(0) is some function of the parameters



Module 4.2: Learning Parameters of Feedforward Neural Networks
(Intuition)



The story so far...

We have introduced feedforward neural networks

We are now interested in finding an algorithm for learning the parameters of this model



Recall our gradient descent algorithm
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:g:

hr,




Recall our gradient descent algorithm

Algorithm: gradient_descent()

t <« 0;

max_iterations < 1000;
Initialize wq, bo;

while t++ < maxz_iterations do
Wil < wy — NVwy;

bir1 < by — nVby;

end
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Recall our gradient descent algorithm

We can write it more concisely as

Algorithm: gradient_descent()

t <« 0;
max_iterations < 1000;
Initialize 0y = [WD, ..., W2, 09, ... 09];
while t++ < maxz_iterations do
‘ Orr1 < 0 — Vo
end

_ oz o26) o2(0) 02(0)1T
where V0, = [5552, . 5y B0 20 9oy 2

Now, in this feedforward neural network,

instead of # = |w,b] we have 0 =
[WlaWQa"7WL7b1ab27"abL]

We can still use the same algorithm for learning o
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y={715 82 77}
imdb Critics RT

Rating Rating Rating

[ T ]

Neural network with
L — 1 hidden layers

[T TTTI

isActor isDirector

Damon ~~ Nolan
€

The choice of loss function depends on
the problem at hand

We will illustrate this with the help of
two examples

Consider our movie example again but
this time we are interested in predicting
ratings

Here y; € R3

The loss function should capture how
much 7; deviates from y;



y={715 82 77}
imdb Critics RT

Rating Rating Rating

[ T ]

Neural network with
L — 1 hidden layers

[T TTTI

isActor isDirector

Damon ~~ Nolan
€

The choice of loss function depends on
the problem at hand

We will illustrate this with the help of
two examples

Consider our movie example again but
this time we are interested in predicting
ratings

Here y; € R3

The loss function should capture how

much 7; deviates from y;

If y; € R™ then the squared error loss can
capture this dewatlon
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A related question: What should the

output function ‘O’ be if y; € R?

f(z)
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A related question: What should the
output function ‘O’ be if y; € R?

More specifically, can it be the logistic
function?

No, because it restricts 7; to a value
between 0 & 1 but we want g; € R

So, in such cases it makes sense to have
‘O’ as linear function

f(x) = hr =O(ar)
= Woar, + bo

9 = f(zi) is no longer bounded
between 0 and 1

15
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y=1[1 0 0 0]
Apple  Mango Orange Banana
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Neural network with
L — 1 hidden layers

Now let us consider another problem for
which a different loss function would be
appropriate

Suppose we want to classify an image
into 1 of & classes

Here again we could use the squared

error loss to capture the deviation

But can you think of a better function?
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Notice that y is a probability distribution
Therefore we should also ensure that 3 is
a probability distribution
What choice of the output activation ‘O’
will ensure this ?
ap, =Wrhr—1 +bg
eL,j
g; =O(ar); = SE e
i=1
O(ay); is the j*" element of § and ay, ;
is the j* element of the vector a,.
This function is called the softmax

function
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Now that we have ensured that both y
& ¢ are probability distributions can you
think of a function which captures the
difference between them?
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& ¢ are probability distributions can you
think of a function which captures the
difference between them?

Cross-entropy

k
ZL(0) == yelog i
c=1
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y=1[1 0 0 0]
Apple  Mango Orange Banana

I I

Neural network with
L — 1 hidden layers

Now that we have ensured that both y
& ¢ are probability distributions can you
think of a function which captures the
difference between them?

Cross-entropy

k
ZL(0) == yelog i
c=1

Notice that

ye =1 if ¢ = £ (the true class label)
=0 otherwise
" Z(0) = —log g

19
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miniomize Z(0) = —log ys

or mangmize —Z(0) =logye
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So, for classification problem (where you have to
choose 1 of K classes), we use the following objective
function

miniemize Z(0) = —log ys

or mangmize —Z(0) =logye

But wait!
Is g a function of § = [Wy, Wa, ., W, b1, ba, ., br]?
Yes, it is indeed a function of

9o = [O(W3g(Wag(Wiz + b1) + ba) + b3)]s
What does 7, encode?

gth

Itis the probability that « belongs to the ¢" class (bring

it as close to 1).

log 9 is called the log-likelihood of the data.



Outputs

Real Values

Probabilities

Output Activation

Loss Function

21



Outputs

Real Values

Probabilities

Output Activation

Linear

Loss Function

21



Outputs

Real Values

Probabilities

Output Activation

Linear

Softmax

Loss Function

21



Outputs

Real Values

Probabilities

Output Activation

Linear

Softmax

Loss Function

Squared Error

21



Outputs

Real Values

Probabilities

Output Activation

Linear

Softmax

Loss Function

Squared Error

Cross Entropy

21



Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy

Of course, there could be other loss functions depending on the problem at hand but
the two loss functions that we just saw are encountered very often



Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error | Cross Entropy

Of course, there could be other loss functions depending on the problem at hand but
the two loss functions that we just saw are encountered very often

For the rest of this lecture we will focus on the case where the output activation is a
softmax function and the loss function is cross entropy
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Module 4.4: Backpropagation (Intuition)
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We need to answer two questions

How to choose the loss function .Z(6) ?

How to compute V6 which is composed of:
VW1, VWa, ..., VW1 € R™" VIV, € R*¥F
Vb1, Vb, ..., Vb1 € R"and Vb, € RF?
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How to choose the loss function .Z(6) ?
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Let us focus on this one
weight (Wllg).

Algorithm: gradient
descent()

t <+ 0;

max_iterations <—
1000;

Initialize 0Op;

while

t++ < max_iterations

do

| 041 « 0; — Vo
end
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Let us focus on this one
weight (Wllg).
To learn this weight using

SGD we need a formula
0.2(0)
oWr12*

We will see how to
calculate this.

for

Algorithm: gradient

descent()

t <+ 0;

max_iterations <—
1000;

Initialize 0Op;
while
t++ < max_iterations
do
| 041 « 0; — Vo
end
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First let us take the simple case when we
have a deep but thin network.
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First let us take the simple case when we

have a deep but thin network.

In this case it is easy to find the derivative

by chain rule.

63(9) . 8%(9) 8@ 8CLL11 8h21 8@21 8h11 8(111

oW1 0y Oari1 Oho1 Oazi Ohiy Oarn OWi1y

02(0)  0.2(0) Ohn
oW1 Oh11 OWin
02(9)  0.L(0) Oy
OWa11 Oha1 OWaiy
02(6)  0.2(6) dars

OWri1  Oar1 OWrn

(just compressing the chain rule)
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Let us see an intuitive explanation of backpropagation before we get into the
mathematical details
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We get a certain loss at the output and we try to figure
out who is responsible for this loss
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We get a certain loss at the output and we try to figure
out who is responsible for this loss

So, we talk to the output layer and say “Hey! You
are not producing the desired output, better take
responsibility".

The output layer says “Well, | take responsibility for my
part but please understand that | am only as the good
as the hidden layer and weights below me". After all

f(x)=9=0Wrhp_1+bL)
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So, we talk to W, bz, and hy and ask them “What is wrong

with you?"
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So, we talk to W, b, and hz and ask them “What is wrong
with you?"

W and by, take full responsibility but i, says “Well, please
understand that | am only as good as the pre-activation layer”

The pre-activation layer in turn says that | am only as good as
the hidden layer and weights below me.

We continue in this manner and realize that the responsibility
lies with all the weights and biases (i.e. all the parameters of
the model)

But instead of talking to them directly, it is easier to talk to
them through the hidden layers and output layers (and this is
exactly what the chain rule allows us to do)

0.£(0)  0.£(0) 0§ Oas Ohs daz Ohy  da

6W111 - 8@ 8&3 8h2 8a2 8h1 8(11 6W111
N—— —_————— —— ———

Talk to the Talk to the Talk to the Talktothe  and now
weight directly output layer  previous hidden  previous talk to
layer hidden layer the
weights



_0Z(0) 0y 0Oasz Ohsy 8&2% Oaq

8.2(0)
8W111 8y 8a3 8h2 8@2 8h1 8a1 8W111
~—— ——— —— ——
Talk to the Talk to the Talktothe  Talktothe andnow
weight directly output layer  previous hidden previous  talkto
layer hidden layer  the
weights
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Quantities of interest (roadmap for the remaining part):
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Gradient w.r.t. output units
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Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units
Gradient w.r.t. hidden units
Gradient w.r.t. weights and biases

0.£(0)  0Z(0) ) dazdhy daz Ol day

oW1
~——
Talk to the Talk to the Talktothe  Talktothe and now
weight directly output layer  previous hidden previous  talkto
layer hidden layer  the
weights

Our focus is on Cross entropy loss and Softmax output.
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— ————

29



Module 4.5: Backpropagation: Computing Gradients w.r.t. the
Output Units

30



Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units
Gradient w.r.t. hidden units

Gradient w.r.t. weights

0L0)  02(0) 0) daszdhy ay Ohy day

OWii 0y Oaz Ohg dag Ohy Bay Wiy
—_——— —— ——

———
Talk to the Talk to the Talktothe  Talktothe andnow

weight directly output layer  previous hidden previous  talkto
layer hidden layer  the
weights

Our focus is on Cross entropy loss and Softmax output.
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Let us first consider the partial derivative

w.r.t. i-th output
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Let us first consider the partial derivative
w.r.t. i-th output

Z(0) = —logye (£ =true class label)

_ —logd
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1
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Let us first consider the partial derivative
w.r.t. i-th output

Z(0) = —logye (£ =true class label)

52 (2(6) = 5 (~ o)
L iri—y
Ye
= 0 otherwise
More compactly,
0 Lii=s
2 =2
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the vector g
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oY1

0.2(0)
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We can now talk about the gradient w.r.t.

the vector g

1
— (o] ~2
Td1..1
= 1=
e —
~
|
Il
| — |
9o} <e}
Qe
e — |
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—
>
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We can now talk about the gradient w.r.t.

the vector g

1
ﬂ N =2
1313
= =
e —
I
_
Il
1
Q 5o}
R -
e — |
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0 Lio=s)
—(Z(0)) = ——
% (Z£(9)) 7

We can now talk about the gradient w.r.t.
the vector g

8.2(0) Tp=1
i
1 | Le=2
VyZ(0) = | i | =—=| .
2.2(0) Ye :
OYr Loy
1
=€
Ye

where ¢(?) is a k-dimensional vector whose

¢-th element is 1 and all other elements are 0.



What we are actually interested in is

d(—log J¢)
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What we are actually interested in is

02(0) _ 9(=logge)

dar;  Oay,
_ O(=logge) 99
09¢  Oar;

Does gy depend on ar,; ? Indeed, it does.

. cxp(aLe)

Y eaplaLs)

Having established this, we will now derive
the full expression on the next slide
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So far we have derived the partial derivative w.r.t. the
1-th element of ay,

0.2(0)
8CLL,1'

= —(Le=i — %)

We can now write the gradient w.r.t. the vector ay,
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Module 4.6: Backpropagation: Computing Gradients w.r.t. Hidden
Units
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Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units
Gradient w.r.t. hidden units

Gradient w.r.t. weights and biases

0L£(0)  8L(6) 89 0dazdhy daz by day

6W111 8@ 80,3 0/1,2 (')(1,2 0/1,1 0(11 (9W111
~—— —— ——
Talk to the Talk to the Talktothe  Talktothe and now
weight directly output layer  previous hidden previous  talkto
layer hidden layer  the

weights

Our focus is on Cross entropy loss and Softmax output.
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Chain rule along multiple paths: If a function p(z)
can be written as a function of intermediate results
¢i(z) then we have :
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¢i(z) then we have :
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p(2) is the loss function .Z(0)
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Intentionally left blank
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vai+1$(0) = ;VVH-L 0 of] =

0£(0) . .

8ai+1’k W7‘+17k,]

aiy1 = Wigr1hij + bipa
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0L(0) 9L(0) dair1m
8}11]' - 8ai+17m 8h”
m=1
k
_ 0.2(9)
- Z dait1,m ' tLmL]
m=1

Now consider these two vectors,

2.2(6)

Oaiy1,1 Wi'i‘l,l:j
vai+1$(0) = ;VVH-L 0 of] = :

0£(0) . .

8ai+1’k W7‘+17k,]

Wiy, j is the j-th column of Wi, 1;

aiy1 = Wigr1hij + bipa
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0L(0) 9L(0) dair1m
8}11]' - 8ai+17m 8h”
m=1
k
_ 0£(6)
o Z dait1,m ' tLmL]
m=1

Now consider these two vectors,

2.2(6)

Oaiy1,1 Wi'i‘l,l:j
Vamg(@) = ;VVH-L 0 of] = :

0£(0) . .

8ai+1’k W7‘+17k7.7

Wiy, j is the j-th column of W 1; see that,

aiy1 = Wigr1hij + bipa
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0L(0) 9L(0) dair1m
8}11]' - 8ai+17m 8h”
m=1
k
_ 0£(6)
o Z dait1,m ' tLmL]
m=1

Now consider these two vectors,

2.2(6)

Oaiy1,1 Wi'i‘l,l:j
Vamg(@) = ;VVH-L 0 of] = :

0£(0) . .

8ai+1’k W7‘+17k7.7

Wiy, j is the j-th column of W 1; see that,

(Wi-l-l, . ,j)Tvai+1$(9) =

aiy1 = Wigr1hij + bipa
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k
2.20) 9L(0) dair1m
8}11]' - 8ai+17m 8hm
m=1
k
_ 0£(6)
o Z dait1,m ' tLmL]
m=1

Now consider these two vectors,

2.2(6)
Oaiy1,1 Wi'i‘l»l:j
Vau—lg(g) = ;VVH-L 0 of] = :
0£(0) . .
Ba,qu’k W7‘+17k7.7

Wiy, j is the j-th column of W 1; see that,

(Wi-l-l, . ,j)Tvai+1$(9) =

aiy1 = Wirrhij + bipa
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We can now write the gradient w.r.t. h;

Vi, Z(6)

42



We can now write the gradient w.r.t. h;
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) (Wipr ) Vi, 216)

We can now write the gradient w.r.t. h;

0.2(0)
Ohi1

Vi, Z(6) = -

42



) = (Wisro ) Vars 2(0)

We can now write the gradient w.r.t. h;

0.2 (0
2O [(Wign,. 1)V, Z(6)
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f(é) = (Wit1,.)" V., Z(0)

We can now write the gradient w.r.t. h;

0L (0
8hl(~1) (VVH‘L o ,1)Tvai+1$(9)
2.2(b)

Vi ZL0) = | 2 | =
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f(é) = (Wit1,.)" V., Z(0)

We can now write the gradient w.r.t. h;

Z?ZEZ) (Wist, 1) Vs, Z(6)
o (Witt, 2)"Vay,, Z(6)

Vi, Z(6) = -
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f(é) = (Wit1,.)" V., Z(0)

We can now write the gradient w.r.t. h;

2O [(Wiss,- 1) Vs Z(6)
S| | Wi, 2) Vi, £(6)

Vi L(0) = | 7=
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We have, 8§L(0) = (Wi+1,.,j)Tvai+1$(9)
ij

We can now write the gradient w.r.t. h;

Wis1,. 2) Ve, ZL(0
Vu0) = | 7o | = |V Vom0
82;(0)
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We have, 808?;L(0) = (Wi+1,.,j)Tvai+1$(9)
ij

We can now write the gradient w.r.t. h;

Wis1,. 2) Ve, ZL(0
V(o) = | M | = | Ve O
852;(3) (VVH-L 0 ,n)TvaHrg(a)
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We have, 808?;L(0) = (Wi+1,.,j)Tvai+1$(9)
ij

We can now write the gradient w.r.t. h;

Z@ZEZ (Wit1,- 1) Vaiss Z(60)
Wis1,. 2) Ve, ZL(0
Vu0) = | 7o | = |V Vom0
852;(3) (VVH-L 0 ,n)TvaHrg(a)

= (Wit1)T (Varsy Z(6))
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We have, 8§L(9) = (Wi+1,.,j)TVai+1$(9)
ij

We can now write the gradient w.r.t. h;

Wit . 2) Ve, Z(0
Va2(0) = | 7 | = (Wi, 2) Vo (©)
852;;53) (Wit1,- )" Va1 -Z(0)

We are almost done except that we do not know
how to calculate V,,, , .2 (0) fori < L — 1

Aj+1
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We have, 85?;(9) = (Wi+1,.,j)TVai+1$(9)
ij

We can now write the gradient w.r.t. h;

Wist,. 2) Ve, 2(0
Vu )= | 72 | = | Ve
852;1(3) (VVH‘L' ") Vazﬂj(‘g)

We are almost done except that we do not know
how to calculate V,,,,.Z(0) fori < L — 1

Aj+1

We will see how to compute that
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8aij

0%

3hij 8aij
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i = 9(aij)]

g (ai;)

6hij

Va, Z(0)
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Va, Z(0)

0.2(6)
da;1
aé(e)]

dain

0.2(0)  0L(0) dhy

8aij

Va, Z(0)

B 3hij 8aij

L 0L(6)
= ohy Y
0.2(6)

ohin 9

(aij)

'(ail)}

[ hij = g(ais)]
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Va, Z(0)

0.2(6)
da;1
aé(e)]

dain

0.2(0)  0L(0) dhy

8aij

Va, Z(0)

B 3hij 8aij

L 0L(6)
= ohy Y
0.2(6)
ohin 9

(aij)

'(ail)}

[ hij = g(ais)]
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Va Z(0) =

0.2(6)
a1
8.?(9)]
8‘17,'77.
0L2(0)  0.2(0) Ohs;
da;; — Ohyj Jay

= a’;’;ff) g (aij) [ hij = glai)]

85;5?)9'(%1)}
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0.2(6)
a1
VaZ(0) :
0.2(6)

8(17,'77.
0L(0)  0L(0) Ohy;
8aij N 8hij aaij
0Z(0) .
~ Ohy g (aig) [ hij = g(ag)]
0.£(0)

g (ain)
02(0)

Ohin g/ (azn)
=V, Z(9)

Vai Z(0) =

Of..,9 (i), ..]
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Module 4.7: Backpropagation: Computing Gradients w.r.t.
Parameters
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Quantities of interest (roadmap for the remaining part):
Gradient w.r.t. output units
Gradient w.r.t. hidden units

Gradient w.r.t. weights and biases

0.L(0)  0L(0) 8y dazdhy daz Ohy Oa,

8W111 83) 8&3 ahg 80,2 8h1 80,1 ow 111
—_—— —\——
Talk to the Talk to the Talktothe  Talktothe andnow
weight directly output layer previous hidden previous  talk to
layer hidden layer  the
weights

Our focus is on Cross entropy loss and Softmax output.
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Recall that,

by + Wihy 1

ak =
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Recall that,

bx + Wihyg 1

ax —

hi—1,;

(-

Oay,
OWyij

46



Recall that,

ayx = by + Wihy_4

hi—1,;

8aki

8Wkij

0Z(0)

OWiij
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Recall that, _

ax = bk + Wihy_1
8a;ﬂ-
8Wkij
0.L£(0)  0.L(0) day
E)Wkij a 8aki 8Wkij

= hk—1,
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Recall that, _

ax = bk + Wihy_1
8am~
8Wkij
0.L£(0)  0.L(0) day
OWkij a 8aki 8Wkij
_ 02(0)

N 6@]“

= hk—1,

h—1,5

46



Recall that, _

ax = bk + Wihy_1
8am~
8Wkij
0.L£(0)  0.L(0) day
OWkij a 8aki 8Wkij
_ 02(0)

N 6@]“

= hk—1,

h—1,5

VWkg(g) =

46



Recall that,

ax = bx + Wihy 1
Dag;
8Wkij
0.L£(0)  0.L(0) day
OWkij a 8aki 8Wkij
_02(6)

N 6@]“

22(0) 020
OWr11  OWhia

= hg—1,5

h—1,5

Vw,-Z(6) =

46



Intentionally left blank
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like

Vw,Z(0)

ro2(0) L) 0.2(0)7
oW1 OWgia  OWpas
0.2(0) 0L0) 8L06) | 020)  0.2(9) day
OWio1  OWiaa  OWpias | OWhyy — Oagi Wy
0L0) 0L0) 020
LOWk31  OWiza  OWp3s
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like

Vw,-Z(0)

Vw,-Z(0)

ro.2(0) 02(0) 0.L(6)7
OWr11  OWiia  OWias
0.2(0) 0L0) 8L06) | 020)  0.2(9) day
OWio1  OWiaa  OWpias | OWhyy — Oagi Wy
0L0) 0L0) 020
LOWk31  OWiza  OWp3s
20 8.2(0) 8.2(6) .
8ak1 k_]-vl Bakl k_172 8ak1 k_173
8.2(9) 8.2(0) 8.2(6)
dan, =11 oo Mk-12 g, Mk-13
0.2(6) 8.2(6) 0.2(6)
L Bak;; hk_Ll 8ak3 hk_1’2 8ak5 -1, .
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like

YV, Z(0)

Vw,-Z(0)

roZ(0) 9L0) 9L(0)7
aI/Vkll aWle 8Wk13
2.2(0) 02(0) 0L0) | 0L£(0) _ 8L(0) day,
OWio1  OWgaa  OWiag | OWgi; — Oag; OWiyj
0L(0) 0L(0) 0L(0)
LOWks1  OWiza  OWigs
g0 9.2(0) 020); 7
Bagy k=11 ay; V=12 Tjgu k—13
02(0) 92(9) 0L(0)
Oaga hk_l’l dayo hk_1>2 dao hk—1,3
0.2(6) 8L (0) 8.2(8)
L Jags hk*Ll dans hk—1,2 Dans 1,3
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like

Vw,Z(0)

Vw,-Z(0)

ro2(0) L) 0.2(0)7
oW1 OWgia  OWpas
0.2(0) 0L0) 8L06) | 020)  0.2(9) day
OWio1  OWiaa  OWpias | OWhyy — Oagi Wy
0L0) 0L0) 020
LOWk31  OWiza  OWp3s
20 8.2(0) 8.2(6) 1
Bakl hk_lvl Bakl k_172 6ak1 k_173
8.2(9) 8.2(0) 8.2(6)
Bars k=11 Jay Mh—-12  Ha, Mk-13
2.2(0) 0.2(0) 2.2(8)
L 3ak3 hk*lvl 8ak3 hk71=2 8ak3 -1, d
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like

fo.2(0) 02(0) 0.2(8)7
OWr11  OWiia  OWias

_ ez oxw0) oz0) | 0L£06) _ 0.L0) day
kag(e) - OWgo1 OWiao OWya3 6Wkij T Oay; 8I/Vlm;j

0L0) 0L0) 020
LOWk31  OWiza  OWp3s

-8£,Ef) hk—l,l 85%2? hk—172 8(5%]5?) h ;,1‘3-
Vw,Z(0) = 852:,52) hi—11 852;52) hi—12 %ig) hi_13| =
EA(E) 02(9) 2.2(6)

L Days hk—l,l Dans hk—1,2 Tks]lk—l.:&_



Lets take a simple example of a W}, € R3*3 and see what each entry looks like

Vw,-Z(0)

Vw,-Z(0)

ro.2(0) 02(0) 0.L(6)7
oW1 OWgia  OWpas
0.2(0) 0L0) 8L06) | 020)  0.2(9) day
OWio1  OWiaa  OWpias | OWhyy — Oagi Wy
0L0) 0L0) 020
LOWk31  OWiza  OWp3s
ro.2(6) 8.2(6) 8.2(6) 5
(r)(l;,l k_lvl f)(l;‘,] k_172 f)(L;..] ”’;71‘3
8.2(9) 80.2(0) 8.2(6)
By 11 oy k=12 g k13
2.2(0) 0.2(0) 2.2(8)
| Day M-11 o 12 an 3]
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Lets take a simple example of a W}, € R3*3 and see what each entry looks like

Vw,-Z(0)

Vw,-Z(0)

ro.2(0) 02(0) 0.L(6)7

oW1 OWgia  OWpas

0.2(0) 0L0) 8L06) | 020)  0.2(9) day

OWio1  OWiaa  OWpias | OWhyy — Oagi Wy

0L0) 0L0) 020

LOWk31  OWiza  OWp3s

ro.2(6) 8.2(6) 8.2(6) 5

(r)(l;,l k_lvl f)(l;‘,] k_172 ()(L; 1 ”’71

8.2(9) 80.2(0) 8.2(60) T
Do, =11 ay Mk—1,2 3(”52 hip—13]| = Vo, Z(0) - hy 1
2.2(0) 0.2(0) 2.2(8)

| Day -11  Ba, Mh-12  Fag 3]
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Finally, coming to the biases
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Finally, coming to the biases
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Finally, coming to the biases | —logge |

agi = byi + Z Whijhi—1,;
J
02(0)  0.2(9) dars
Oby;  Oak; Oby
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Finally, coming to the biases | —logge |

agi = byi + Z Whijhi—1,;
J
02(0)  0.2(9) dars
Oby;  Oak; Oby
02()
 Odak
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Finally, coming to the biases

ag; = bg; + Z Whijhk—1,;
J
02(0)  0.2(9) dars
by Oay; Oby
_020)
 Odak

We can now write the gradient w.r.t. the vector by,
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Finally, coming to the biases

ag; = bg; + Z Whijhk—1,;
J
02(0)  0.2(9) dars
by Oay; Oby
_020)
 Odak

We can now write the gradient w.r.t. the vector by,

0.2(0)

Y10
kag (9) = aI.CQ

0.2(0)

Akn

49



Finally, coming to the biases

ag; = bg; + Z Whijhk—1,;
J
02(0)  0.2(9) dars
by Oay; Oby
_020)
 Odak

We can now write the gradient w.r.t. the vector by,

2.2(6)
Y10

Vi Z0) = | ** | =Va,2(0)
0.2(0)

Akn

49



Module 4.8: Backpropagation: Pseudo code
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Finally, we have all the pieces of the puzzle
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Finally, we have all the pieces of the puzzle

Va,-Z(6) (gradient w.r.t. output layer)
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Finally, we have all the pieces of the puzzle

Va,-Z(6) (gradient w.r.t. output layer)

Vi Z(0),Va, Z(0) (gradient w.r.t. hidden layers,1 < k < L)
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Finally, we have all the pieces of the puzzle

Va,-Z(6) (gradient w.r.t. output layer)

Vi Z(0),Va, Z(0) (gradient w.r.t. hidden layers,1 < k < L)

Vw,Z(0), Vi, Z£(0) (gradient w.r.t. weights and biases, 1 < k < L)
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Finally, we have all the pieces of the puzzle

Va,-Z(6) (gradient w.r.t. output layer)

Vi Z(0),Va, Z(0) (gradient w.r.t. hidden layers,1 < k < L)

Vw,Z(0), Vi, Z£(0) (gradient w.r.t. weights and biases, 1 < k < L)

We can now write the full learning algorithm
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Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize 6y = WP, ..., W2, 89,

W)
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Algorithm: gradient_descent()

t <+ 0;

mazx_iterations <— 1000;

Initialize 6o = WP, .., W2, 89, ..

while t++ < maz_iterations do

end

s
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Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = WP, .., W2, 89, ... 63];
while t++ < maz_iterations do

hi,ho,....,hp—1,a1,a2,...,ar,y = forward_propagation(;);

end
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Algorithm: gradient_descent()

t <+ 0;
max_iterations <— 1000;
Initialize 6y = WP, .., W2, 89, ... 63];
while t++ < maz_iterations do
hi,ho,....,hp—1,a1,a2,...,ar,y = forward_propagation(;);
V0, = backward_propagation(hi, ha,....,hp—1,a1,a2,....,a5,Y,9);

end
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Algorithm: gradient_descent()

t <+ 0;

max_iterations <— 1000;

Initialize 6y = WP, .., W2, 89, ... 63];

while t++ < maz_iterations do
hi,ho,....,hp—1,a1,a2,...,ar,y = forward_propagation(;);
V0, = backward_propagation(hi, ha,....,hp—1,a1,a2,....,a5,Y,9);
Op 1 < 0 — Vo

end
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Algorithm: forward_propagation(6)
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Algorithm: forward_propagation(6)

fork=1toL —1do

end
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Algorithm: forward_propagation(6)

fork=1toL —1do
ay = by, + Wihg_1;

end
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Algorithm: forward_propagation(6)

fork=1toL —1do
ap = by, + Wihyp_1;
b = g(ax);

end
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Algorithm: forward_propagation(6)

fork=1toL —1do
ap = by, + Wihyp_1;
b = g(ax);

end

ar =br, +Wrhp_1;
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Algorithm: forward_propagation(6)

fork=1toL —1do
ap = by, + Wihyp_1;
b = g(ax);

end

ar, =br, + Wrhr—q;

§=0(ar);
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

54



Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;
Va, Z(0) = —(e(y) —9);
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Vo, Z(0) = —(e(y) —9);
fork=Lto1ldo

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Va, Z(0) = —(e(y) —9);
fork=Lto1ldo

|| Compute gradients w.r.t. parameters ;

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Va, Z(0) = —(e(y) —9);

fork = Lto1ldo

|| Compute gradients w.r.t. parameters ;
Vi, Z(0) = Va, £ (0)hj_y ;

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Var Z(6) = —(e(y) — §)

fork = Lto1ldo

|| Compute gradients w.r.t. parameters ;
Vi Z(0) = Vo LORL ;

Ve, Z(0) = Vo, Z(0) 5

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Va, Z(0) = —(e(y) —9);

fork = Lto1ldo

|| Compute gradients w.r.t. parameters ;
Vw, Z(0) = Va, L (0)hig_y ;

Ve, Z(0) = Vo, Z(0) 5

|| Compute gradients w.r.t. layer below ;

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Va, Z(0) = —(e(y) —9);

fork = Lto1ldo

|| Compute gradients w.r.t. parameters ;
Vw, Z(0) = Va, L (0)hig_y ;

Vi, -Z(0) =V, Z9);

|| Compute gradients w.r.t. layer below ;
Vi Z(0) = Wi (Va, Z(0)) ;

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Va, Z(0) = —(e(y) —9);

fork = Lto1ldo

|| Compute gradients w.r.t. parameters ;

Vw, Z(0) = Va, L (0)hig_y ;

Ve, Z(0) = Vo, Z(0) 5

|| Compute gradients w.r.t. layer below ;

Vi Z(0) = Wi (Va, Z(0)) ;

|| Compute gradients w.r.t. layer below (pre-activation);

end
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Just do a forward propagation and compute all ;’s, a;’s, and ¥

Algorithm: back_propagation(hy, ho, ..., hp—1,a1,a2,...,ar,y, 1)

||Compute output gradient ;

Va, Z(0) = —(e(y) —9);

fork = Lto1ldo

|| Compute gradients w.r.t. parameters ;

Vw, Z(0) = Va, L (0)hig_y ;

Ve, Z(0) = Vo, Z(0) 5

|| Compute gradients w.r.t. layer below ;

Vi Z(0) = Wi (Va, Z(0)) ;

|| Compute gradients w.r.t. layer below (pre-activation);
Var 1 Z0) =V,  ZO)O.., ¢ (ar-15):---]5

end
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Module 4.9: Derivative of the activation function
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Now, the only thing we need to figure out is how to compute ¢
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9(z) = o(2)
B 1
S l4e
’ 1 d —z
() = (D g1+ e
1
= (71) (1_'_6,2)2 (7 _Z)
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Logistic function

9(2) = o(2)
B 1
S l4e
’ 1 d —z
() = (D g1+ e
1
= (71) (1 + 87’2)2 (76_2)
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Now, the only thing we need to figure out is how to compute ¢

Logistic function tanh
g9(z) =0(2) g(z) =tanh (2)
_ 1 _62 — e *
1+e 2 _ez 1L e—%
Wi 1 d .
/() = (Do)
1 —z
= (71) (1_'_6,2)2 (76 )
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Now, the only thing we need to figure out is how to compute ¢

Logistic function tanh
9(z) = o(2) g(z) =tanh (2)
1 €% — g%
T I+er —
1 d B — Gl _
QI(Z):(_l)i,Z*(l-FG “) (& re )@@ =a7)
(1 +16 )? dz i )( —(ez—e_z)jz(ez—I—e_z))
= (*Dm(*ﬁ’_z) gi&) = (& + )2
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Now, the only thing we need to figure out is how to compute ¢

Logistic function

tanh
9(z) = o(z) g(z) =tanh (2)
1 e — g ?
:l—l—efz :ez+€—z
/ ! ¢ Z e +e?)L(ef —e?
&) = (Dgremnt+te) (( e g (e - ) )
1 B /() — (& =& 7 e e )
= (*Dm(*e ) J (& + )2
1 (l4e?—1 _(eF4e®)?—(ef —eTF)?
T lte < 1+e* ) (e* +e72)?
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Now, the only thing we need to figure out is how to compute ¢

Logistic function

tanh
9(z) = 0(2) 9(z) = tanh ()
1 e* —e7*
T 1te? T te
, 1 d . z —2)d (o2 =2
/() = (D A+ ((e " >di_<§> - ) )
1 - oy =& € e e )
= (*Dm(*e ) g (e +e7%)?
1 (l+e?-1 _(F e —(eF—e7F)?
T lte ( 1+e~ ) o e;z)2
= 9(2)(1 - 9(2) -
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Now, the only thing we need to figure out is how to compute ¢

Logistic function tanh
g9(z) =0(2) g(z) =tanh (2)
1 e? — e %
:l—l—efz :ez+€—z
/ 1 d —z z —z\d (2 —z
76 =gt (@ e s )
) y () = — (& =& 7 e e )
= (*Dm(*e ) J (& + )2
1 ldte?—1 :(€z+e—z)27(6zie—z)2
T lte < 1+e* ) (6“26:)2
= 4()(1~ (=) R
=1—(g(2))
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