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Module 11.1 : The convolution operation
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x0 x1 x2

st =
∞∑
a=0

xt−aw−a = (x∗w)t

input

convolution
filter

Suppose we are tracking the position
of an aeroplane using a laser sensor at
discrete time intervals

Now suppose our sensor is noisy

To obtain a less noisy estimate we
would like to average several measure-
ments

More recent measurements are more
important so we would like to take a
weighted average
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st =

6∑
a=0

xt−aw−a

w−6 w−5 w−4 w−3 w−2 w−1 w0

W 0.01 0.01 0.02 0.02 0.04 0.4 0.5

X 1.00 1.10 1.20 1.40 1.70 1.80 1.90 2.10 2.20 2.40 2.50 2.70

S 0.00 1.80 0.00 0.00 0.00 0.00 0.00

s6 = x6w0 + x5w−1 + x4w−2 + x3w−3 + x2w−4 + x1w−5 + x0w−6

In practice, we would only sum over a
small window

The weight array (w) is known as the
filter

We just slide the filter over the input and
compute the value of st based on a win-
dow around xt

Here the input (and the kernel) is one
dimensional

Can we use a convolutional operation on
a 2D input also?
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st =

6∑
a=0

xt−aw−a

w−6 w−5 w−4 w−3 w−2 w−1 w0

W 0.01 0.01 0.02 0.02 0.04 0.4 0.5

X 1.00 1.10 1.20 1.40 1.70 1.80 1.90 2.10 2.20 2.40 2.50 2.70

S 0.00 1.80 1.96 0.00 0.00 0.00 0.00

s6 = x6w0 + x5w−1 + x4w−2 + x3w−3 + x2w−4 + x1w−5 + x0w−6

In practice, we would only sum over a
small window

The weight array (w) is known as the
filter

We just slide the filter over the input and
compute the value of st based on a win-
dow around xt

Here the input (and the kernel) is one
dimensional

Can we use a convolutional operation on
a 2D input also?
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st =

6∑
a=0

xt−aw−a

w−6 w−5 w−4 w−3 w−2 w−1 w0

W 0.01 0.01 0.02 0.02 0.04 0.4 0.5

X 1.00 1.10 1.20 1.40 1.70 1.80 1.90 2.10 2.20 2.40 2.50 2.70

S 0.00 1.80 1.96 2.11 0.00 0.00 0.00

s6 = x6w0 + x5w−1 + x4w−2 + x3w−3 + x2w−4 + x1w−5 + x0w−6

In practice, we would only sum over a
small window

The weight array (w) is known as the
filter

We just slide the filter over the input and
compute the value of st based on a win-
dow around xt

Here the input (and the kernel) is one
dimensional

Can we use a convolutional operation on
a 2D input also?
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st =

6∑
a=0

xt−aw−a

w−6 w−5 w−4 w−3 w−2 w−1 w0

W 0.01 0.01 0.02 0.02 0.04 0.4 0.5

X 1.00 1.10 1.20 1.40 1.70 1.80 1.90 2.10 2.20 2.40 2.50 2.70

S 0.00 1.80 1.96 2.11 2.16 2.28 0.00

s6 = x6w0 + x5w−1 + x4w−2 + x3w−3 + x2w−4 + x1w−5 + x0w−6

In practice, we would only sum over a
small window

The weight array (w) is known as the
filter

We just slide the filter over the input and
compute the value of st based on a win-
dow around xt

Here the input (and the kernel) is one
dimensional

Can we use a convolutional operation on
a 2D input also?
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st =

6∑
a=0

xt−aw−a

w−6 w−5 w−4 w−3 w−2 w−1 w0

W 0.01 0.01 0.02 0.02 0.04 0.4 0.5

X 1.00 1.10 1.20 1.40 1.70 1.80 1.90 2.10 2.20 2.40 2.50 2.70

S 0.00 1.80 1.96 2.11 2.16 2.28 2.42

s6 = x6w0 + x5w−1 + x4w−2 + x3w−3 + x2w−4 + x1w−5 + x0w−6

In practice, we would only sum over a
small window

The weight array (w) is known as the
filter

We just slide the filter over the input and
compute the value of st based on a win-
dow around xt

Here the input (and the kernel) is one
dimensional

Can we use a convolutional operation on
a 2D input also?
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Sij = (I ∗K)ij =

m−1∑
a=0

n−1∑
b=0

Ii−a,j−bKa,bIi+a,j+bKa,b

We can think of images as 2D inputs

We would now like to use a 2D filter
(m× n)

First let us see what the 2D formula
looks like

This formula looks at all the preced-
ing neighbours (i− a, j − b)

In practice, we use the following for-
mula which looks at the succeeding
neighbours
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a b c d

e f g h

i j k `

w x

y z

aw+bx+ey+fz bw+cx+fy+gz cw+dx+gy+hz

ew+fx+iy+jz fw+gx+jy+kz gw+hx+ky+`z

Output

Input

Kernel

Let us apply this idea to a toy ex-
ample and see the results
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Sij = (I ∗K)ij =

bm2 c∑
a=b−m

2 c

bn2 c∑
b=b−n

2 c
Ii−a,j−bKm

2
+a,n

2
+b

pixel of interest

For the rest of the discussion we will
use the following formula for convolu-
tion

In other words we will assume that
the kernel is centered on the pixel of
interest

So we will be looking at both preceed-
ing and succeeding neighbors
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Let us see some examples of 2D convolutions applied to images

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



13/1

1 1 1
∗ 1 1 1 =

1 1 1

blurs the image
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0 -1 0
∗ -1 5 -1 =

0 -1 0

sharpens the image
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1 1 1
∗ 1 -8 1 =

1 1 1

detects the edges
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We will now see a working example of 2D convolution.
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We just slide the kernel over the input
image

Each time we slide the kernel we get
one value in the output

The resulting output is called a fea-
ture map.

We can use multiple filters to get mul-
tiple feature maps.
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Question

In the 1D case, we slide a one dimensional
filter over a one dimensional input

In the 2D case, we slide a two dimen-
stional filter over a two dimensional out-
put

What would happen in the 3D case?

A B C B A B C

a b c d

e f g h

i j k l
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INPUT

R G B

OUTPUT

filter

What would a 3D filter look like?

It will be 3D and we will refer to it as a volume

Once again we will slide the volume over the
3D input and compute the convolution oper-
ation

Note that in this lecture we will assume that
the filter always extends to the depth of the
image

In effect, we are doing a 2D convolution oper-
ation on a 3D input (because the filter moves
along the height and the width but not along
the depth)

As a result the output will be 2D (only width
and height, no depth)

Once again we can apply multiple filters to get
multiple feature maps
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Module 11.2 : Relation between input size, output size
and filter size
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So far we have not said anything explicit about the dimensions of the
1 inputs
2 filters
3 outputs

and the relations between them

We will see how they are related but before that we will define a few quantities
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H1

D1

W1

F

D1

F

H2

D2

W2

We first define the following quantit-
ies

Width (W1), Height (H1) and Depth
(D1) of the original input

The Stride S (We will come back to
this later)

The number of filters K

The spatial extent (F ) of each filter
(the depth of each filter is same as
the depth of each input)

The output is W2 ×H2 ×D2 (we will
soon see a formula for computing W2,
H2 and D2)
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==

pixel of interest

==

Let us compute the dimension (W2, H2) of
the output

Notice that we can’t place the kernel at the
corners as it will cross the input boundary

This is true for all the shaded points (the
kernel crosses the input boundary)

This results in an output which is of smaller
dimensions than the input
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===

pixel of interest

=

pixel of interest

==

In general, W2 = W1 − F + 1

H2 = H1 − F + 1

We will refine this formula further

Let us compute the dimension (W2, H2) of
the output

Notice that we can’t place the kernel at the
corners as it will cross the input boundary

This is true for all the shaded points (the
kernel crosses the input boundary)

This results in an output which is of smaller
dimensions than the input

As the size of the kernel increases, this be-
comes true for even more pixels

For example, let’s consider a 5 × 5 kernel

We have an even smaller output now
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0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

=

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

=

We now have,

W2 = W1 − F + 2P + 1

H2 = H1 − F + 2P + 1

We will refine this formula further

What if we want the output to be of same
size as the input?

We can use something known as padding

Pad the inputs with appropriate number of 0
inputs so that you can now apply the kernel
at the corners

Let us use pad P = 1 with a 3 × 3 kernel

This means we will add one row and one
column of 0 inputs at the top, bottom, left
and right
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0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

=

So what should our final formula look like,

W2 =
W1 − F + 2P

S
+ 1

H2 =
H1 − F + 2P

S
+ 1

What does the stride S do?

It defines the intervals at which the
filter is applied (here S = 2)

Here, we are essentially skipping
every 2nd pixel which will again
result in an output which is of
smaller dimensions
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H1

D1

W1

filter

H2

D2 = K

W2

W2 = W1−F+2P
S + 1

H2 = H1−F+2P
S + 1

D2 = K

Finally, coming to the depth of the
output.

Each filter gives us one 2D output.

K filters will give us K such 2D out-
puts

We can think of the resulting output
as K ×W2 ×H2 volume

Thus D2 = K
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Let us do a few exercises

227

3

227

11

3

11

96 filters

Stride = 4

Padding = 0

W2 = W1−F+2P
S

+ 1

H2 = H1−F+2P
S

+ 1

∗ =

H2 =?

D2 =?

W2 =?

55 = 227−11
4

+ 1

W2 =?

96

H2 =?

W2 =?55 = 227−11
4

+ 1
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Let us do a few exercises

32

1

32

5

1

5

6 filters

Stride = 1

Padding = 0

W2 = W1−F+2P
S

+ 1

H2 = H1−F+2P
S

+ 1

∗ =

H2 =?

D2 =?

W2 =?

28 = 32−5
1

+ 1

W2 =?

6

H2 =?

W2 =?28 = 32−5
1

+ 1
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Module 11.3 : Convolutional Neural Networks
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Putting things into perspective

What is the connection between this operation (convolution) and neural net-
works?

We will try to understand this by considering the task of “image classification”

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



32/1

Features

Raw pixels
car, bus, monument, flower

EdgeDetector
car, bus, monument, flower

SIFT/HOG
car, bus, monument, flower

static feature extraction (no learning) learning weights of classifier
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0 0 0 0 0
0 1 1 1 0
0 1 -8 1 0
0 1 1 1 0
0 0 0 0 0

Features

car, bus, monument, flower

ClassifierInput

-1.21358689e-03 3.23652686e-03 · · · · · · -2.06615720e-02
-1.52757822e-03 2.36130832e-03 · · · · · · -1.19824838e-02

...
...

...
...

...
...

-8.25322699e-04 -5.14897937e-03 · · · · · · -9.90395527e-03

car, bus, monument, flower

Learn these weights

Instead of using handcrafted kernels such as edge detectors can we learn meaningful ker-
nels/filters in addition to learning the weights of the classifier?
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0 0 0 0 0
0 1 1 1 0
0 1 -8 1 0
0 1 1 1 0
0 0 0 0 0

Features

car, bus, monument, flower

ClassifierInput

-1.21358689e-03 3.23652686e-03 · · · · · · -2.06615720e-02
-1.52757822e-03 2.36130832e-03 · · · · · · -1.19824838e-02

...
...

...
...

...
...

-8.25322699e-04 -5.14897937e-03 · · · · · · -9.90395527e-03

-0.02337041 -0.03243878 · · · · · · -0.04728875
-0.05375158 -0.05350766 · · · · · · -0.04323674

...
...

...
...

...
...

-0.00792501 -0.00503319 · · · · · · 0.00174674

-0.01871333 -0.01075948 · · · · · · 0.04684572
0.00104325 0.01935937 · · · · · · 0.01016542

...
...

...
...

...
...

0.03008777 0.00335217 · · · · · · -0.02791128

car, bus, monument, flower

Even better: Instead of using handcrafted kernels (such as edge detectors)can we learn
multiple meaningful kernels/filters in addition to learning the weights of the clas-
sifier?
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car, bus, monument, flower

ClassifierInput

backpropagation

-0.01112582 0.02185669 · · · · · · 0.00015161
-0.00687587 0.01229961 · · · · · · 0.00214013

...
...

...
...

...
...

-0.00372989 -0.00886137 · · · · · · -0.01974954

-1.21358689e-03 3.23652686e-03 · · · · · · -2.06615720e-02
-1.52757822e-03 2.36130832e-03 · · · · · · -1.19824838e-02

...
...

...
...

...
...

-8.25322699e-04 -5.14897937e-03 · · · · · · -9.90395527e-03

Can we learn multiple layers of meaningful kernels/filters in addition to
learning the weights of the classifier?

Yes, we can !

Simply by treating these kernels as parameters and learning them in addition to the
weights of the classifier (using back propagation)

Such a network is called a Convolutional Neural Network.
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Okay, I get it that the idea is to learn the kernel/filters by just treating them
as parameters of the classification model

But how is this different from a regular feedforward neural network

Let us see
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16

2

..
.

10 classes(digits)

This is what a regular feed-forward
neural network will look like

There are many dense connections
here

For example all the 16 input neurons
are contributing to the computation
of h11

Contrast this to what happens in the
case of convolution
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. . .
16

2 * =
h11

h11

h12h12

h12

h13h14

Only a few local neurons participate
in the computation of h11

For example, only pixels 1, 2, 5, 6
contribute to h11

The connections are much sparser

We are taking advantage of the
structure of the image(interactions
between neighboring pixels are more
interesting)

This sparse connectivity reduces
the number of parameters in the
model
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But is sparse connectivity really good
thing ?

Aren’t we losing information (by los-
ing interactions between some input
pixels)

Well, not really

The two highlighted neurons (x1 &
x5)
∗ do not interact in layer 1

But they indirectly contribute to the
computation of g3 and hence interact
indirectly

∗ Goodfellow-et-al-2016
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16

4x4 Image

Kernel 1

Kernel 2

Another characteristic of
CNNs is weight sharing

Consider the following net-
work

Do we want the kernel
weights to be different for dif-
ferent portions of the image?

Imagine that we are trying
to learn a kernel that detects
edges

Shouldn’t we be applying the
same kernel at all the por-
tions of the image?
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16

In other words shouldn’t the orange
and pink kernels be the same

Yes, indeed

This would make the job of learning
easier(instead of trying to learn the
same weights/kernels at different loc-
ations again and again)

But does that mean we can have only
one kernel?

No, we can have many such kernels
but the kernels will be shared by all
locations in the image

This is called “weight sharing”
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So far, we have focused only on the convolution operation

Let us see what a full convolutional neural network looks like
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32

32

Input

A
28

28

Convolution Layer 1

S = 1,F = 5,
K = 6,P = 0,

Param = 150

14

14

Pooling Layer 1

S = 1,F = 2,
K = 6,P = 0,

Param = 0

10

10

Convolution Layer 2

S = 1,F = 5,
K = 16,P = 0,

Param = 2400

5

5

Pooling Layer 2

S = 1,F = 2,
K = 16,P = 0,

Param = 0

FC 1(120)

Param
= 48120

FC 2(84)

Param
= 10164

Output(10)

Param
= 850

It has alternate convolution and pooling layers

What does a pooling layer do?

Let us see
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Input

*

1 filter

=

1 4 2 1

5 8 3 4

7 6 4 5

1 3 1 2

maxpool

2x2 filters (stride 2)

8 4

7 5

1 4 2 1

5 8 3 4

7 6 4 5

1 3 1 2

maxpool

2x2 filters (stride 1)

8 8 4

8 8 5

7 6 5

Instead of max pooling we can also do average pooling
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We will now see some case studies where convolution neural networks have been
successful
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LeNet-5 for handwritten character recognition

32

32

Input

A
28

28

Convolution Layer 1

S = 1,F = 5,
K = 6,P = 0,

Param =?

S = 1,F = 5,
K = 6,P = 0,

Param = 150

14

14

Pooling Layer 1

S = 1,F = 2,
K = 6,P = 0,

Param =?

S = 1,F = 2,
K = 6,P = 0,

Param = 0

10

10

Convolution Layer 2

S = 1,F = 5,
K = 16,P = 0,

Param =?

S = 1,F = 5,
K = 16,P = 0,

Param = 2400

5

5

Pooling Layer 2

S = 1,F = 2,
K = 16,P = 0,

Param =?

S = 1,F = 2,
K = 16,P = 0,

Param = 0

FC 1(120)

Param
=?

Param
= 48120

FC 2(84)

Param
=?

Param
= 10164

Output(10)

Param
=?

Param
= 850
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How do we train a convolutional neural network ?
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b c d

e f g

h i j

w x

y z

` m

n o

Output

` m

n o

Output

` m

n o

Output

` m

n o

Output

Input Kernel

We can thus train a convolution
neural network using
backpropagation by thinking of it as
a feedforward neural network with
sparse connections

b c d e f g h i j

onml

A CNN can be implemented as a
feedforward neural network

wherein only a few weights(in color)
are active

the rest of the weights (in gray) are
zero
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Module 11.4 : CNNs (success stories on ImageNet)
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ImageNet Success Stories(roadmap for rest of the talk)

AlexNet

ZFNet

VGGNet
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ILSVRC’10

28.2

ILSVRC’10

28.2

ILSVRC’11

25.8

ILSVRC’11

25.8

ILSVRC’12
AlexNet

16.4

ILSVRC’12
AlexNet

16.4

ILSVRC’13
ZFNet

11.7

ILSVRC’13
ZFNet

11.7

ILSVRC’14
VGG

7.3

ILSVRC’14
VGG

7.3

ILSVRC’14
GoogleNet

6.7

ILSVRC’14
GoogleNet

6.7

ILSVRC’15
ResNet

3.57

ILSVRC’15
ResNet

3.57shallow 8 layers 8 layers

19 layers 22 layers

152 layers
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ImageNet Success Stories(roadmap for rest of the talk)

AlexNet

ZFNet

VGGNet
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3

227

227

Input

11

11

96

55

55

Convolution

3

3

96

27

27

MaxPooling

5

5

256

23

23

Convolution

3
3

256

11

11

MaxPooling

3
3

384

9

9

Convolution

3
3

384

7

7

Convolution

3
3

256

5

5

Convolution

3
3

256

2

2

MaxPooling

dense

4096

dense

4096

dense

1000

Total Parameters: 27.55M
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Let us look at the
connections in the
fully connected lay-
ers in more detail

We will first stretch
out the last conv
or maxpool layer to
make it a 1d vector

This 1d vector is
then densely connec-
ted to other lay-
ers just as in a
regular feedforward
neural network

256

2

2

MaxPooling

make linear

2× 2× 256 = 1024

dense

4096

dense

4096

dense

1000
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ImageNet Success Stories(roadmap for rest of the talk)

AlexNet

ZFNet

VGGNet
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MaxPooling
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5
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3
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MaxPooling

3
3

3
3
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9

9
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9

Convolution
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3
3

3
3

384

7

7
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7

7

Convolution
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3
3

3
3

256

5

5

512

5

5

Convolution

Convolution

3
3

3
3

256

2
2

256

2
2

MaxPooling

MaxPooling

dense

4096

dense

4096

dense

4096

dense

4096

dense

1000

dense

1000

Difference in Total No. of Parameters

1.45M
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ImageNet Success Stories(roadmap for rest of the talk)

AlexNet

ZFNet

VGGNet
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64 maxpool
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Conv

11
2
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128 maxpool

56
5
6
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Conv

56
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6

256 maxpool

28
2
8

256

Conv

28
2
8

512

maxpool

14

1
4

512

Conv

14

1
4

512

maxpool

7

7

512

fc fc

4096 4096

softmax

1000

Kernel size is 3 × 3 throughout

Total parameters in non FC layers = ∼ 16M

Total Parameters in FC layers = (512 × 7 × 7 × 4096) + (4096 × 4096) + (4096 × 1024) =
∼ 122M

Most parameters are in the first FC layer (∼ 102M)
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Module 11.5 : Image Classification continued
(GoogLeNet and ResNet)
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D
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D

f

f

1

H1

W1

Max Pooling

D

1

1

1

H

W

convolution

D

3

3

1

H2

W2

convolution

D

5

5

1

H3

W3

convolution

Consider the output at a certain layer
of a convolutional neural network

After this layer we could apply a max-
pooling layer

Or a 1 × 1 convolution

Or a 3 × 3 convolution

Or a 5 × 5 convolution

Question: Why choose between
these options (convolution, maxpool-
ing, filter sizes)?

Idea: Why not apply all of them at
the same time and then concatenate
the feature maps?
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convolution

D

5

5

1

H3

W3

convolution

Well this naive idea could result in a
large number of computations

If P = 0 & S = 1 then convolving a
W ×H ×D input with a F × F ×D
filter results in a (W − F + 1)(H −
F + 1) sized output

Each element of the output requires
O(F × F ×D) computations

Can we reduce the number of compu-
tations?
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D

H

W

D

1

1

1

H

W

D1

H

W

Yes, by using 1 × 1 convolutions

Huh?? What does a 1×1 convolution
do ?

It aggregates along the depth

So convolving a D×W×H input with
D1 1×1 (D1 < D) filters will result in
a D1×W ×H output (S = 1, P = 0)

If D1 < D then this effectively re-
duces the dimension of the input and
hence the computations

Specifically instead of O(F × F ×D)
we will need O(F × F ×D1) compu-
tations

We could then apply subsequent 3×3,
5 × 5 filter on this reduced output
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1 × 1 convolutions

(dimensionality re-

duction)

3 × 3 convolutions

(on reduced input)

5 × 5 convolutions

(on reduced input)

3 × 3 convolutions

(on reduced input)

5 × 5 convolutions

(on reduced input)

1 × 1 convolutions

(dimensionality re-

duction)

3 × 3 Maxpooling

(dimensionality re-

duction)

1 × 1 convolutions

1 × 1 convolutions

(dimensionality re-

duction)

1 × 1 convolutions

3 × 3 convolutions

(on reduced input)

5 × 5 convolutions

(on reduced input)

1 × 1 convolutions

Filter
concatenation

256

28

28

But we might want to use different
dimensionality reductions before the
3 × 3 and 5 × 5 filters

So we can use D1 and D2 1 × 1 fil-
ters before the 3 × 3 and 5 × 5 filters
respectively

We can then add the maxpooling
layer followed by dimensionality re-
duction

And a new set of 1 × 1 convolutions

And finally we concatenate all these
layers

This is called the Inception module

We will now see GoogLeNet which
contains many such inception mod-
ules
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7

7

1024

7 × 7 × 1024

flatten

1000

pick average

1024

W ∈ R1024×1000

flatten

1024

Important Trick: Got rid of the
fully connected layer

Notice that output of the last layer is
7 × 7 × 1024 dimensional

What if we were to add a fully connec-
ted layer with 1000 nodes (for 1000
classes) on top of this

We would have 7×7×1024×1000 =
49M parameters

Instead they use an average pooling of
size 7 × 7 on each of the 1024 feature
maps

This results in a 1024 dimensional
output

Significantly reduces the number of
parameters

12× less parameters than AlexNet

2× more computations
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GoogLeNet

ResNet

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 11



67/1

Suppose we have been able to train a
shallow neural network well

Now suppose we construct a deeper
network which has few more layers (in
orange)

Intuitively, if the shallow network
works well then the deep network
should also work well by simply learn-
ing to compute identity functions in
the new layers

Essentially, the solution space of a
shallow neural network is a subset of
the solution space of a deep neural
network
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But in practice it is observed that this
doesn’t happen

Notice that the deep layers have a
higher error rate on the test set
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H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Consider any two stacked layers in a
CNN

The two layers are essentially
learning some function of the input

What if we enable it to learn only a
residual function of the input?
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H(x)

x

relu

relu

F (x)

x

relu

relu

H(x) = F (x) + x

Identity

Why would this help?

Remember our argument that a
deeper version of a shallow network
would do just fine by learning identity
transformations in the new layers

This identity connection from the in-
put allows a ResNet to retain a copy
of the input

Using this idea they were able to train
really deep networks
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ResNet, 152 layers

1st place in all five main tracks

ImageNet Classification: “Ultra-
deep” 152-layer nets

ImageNet Detection: 16% better
than the 2nd best system

ImageNet Localization: 27% bet-
ter than the 2nd best system

COCO Detection: 11% better than
the 2nd best system

COCO Segmentation: 12% better
than the 2nd best system
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ResNet, 152 layers

Bag of tricks

Batch Normalizaton after every
CONV layer

Xavier/2 initialization from [He et al]

SGD + Momentum(0.9)

Learning rate:0.1, divided by 10 when
validation error plateaus

Mini-batch size 256

Weight decay of 1e-5

No dropout used
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