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Module 16.1: Introduction to Encoder Decoder Models
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We will start by revisiting the
problem of language modeling
Informally, given ‘t − i’ words we are
interested in predicting the tth word
More formally, given y1, y2, ..., yt−1 we
want to find

y∗ = argmax P(yt|y1, y2, ..., yt−1)

Let us see how we model
P(yt|y1, y2...yt−1) using a RNN
We will refer to P(yt|y1, y2...yt−1) by
shorthand notation: P(yt|yt−1

1 )
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We are interested in

P(yt = j|y1, y2...yt−1)

where j ∈ V and V is the set of all
vocabulary words
Using an RNN we compute this as

P(yt = j|yt−1
1 ) = softmax(Vst + c)j

In other words we compute

P(yt = j|yt−1
1 ) = P(yt = j|st)

= softmax(Vst + c)j

Notice that the recurrent connections
ensure that st has information about
yt−1
1
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Data:

India, officially the Republic
of India, is a country in South
Asia. It is the seventh-largest
country by area, .....

Data: All sentences from any large
corpus (say wikipedia)
Model:

st = σ(Wst−1 + Uxt + b)
P(yt = j|yt−1

1 ) = softmax(Vst + c)j

Parameters: U,V,W, b, c
Loss:

L (θ) =

T∑
t=1

Lt(θ)

Lt(θ) = − log P(yt = ℓt|yt−1
1 )

where ℓt is the true word at time step
t
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What is the input at each time step?
It is simply the word that we
predicted at the previous time step
In general

st = RNN(st−1, xt)

Let j be the index of the word
which has been assigned the max
probability at time step t − 1

xt = e(vj)

xt is essentially a one-hot vector
(e(vj))representing the jth word in the
vocabulary
In practice, instead of one hot
representation we use a pre-trained
word embedding of the jth word
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Notice that s0 is not computed but
just randomly initialized
We learn it along with the other
parameters of RNN (or LSTM or
GRU)
We will return back to this later
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st = σ(U xt + Wst−1 + b)st

ht

ht

st = RNN( st−1, xt)

s̃t = σ(W(ot ⊙ st−1) + Uxt + b)
st = it ⊙ st−1 + (1− it)⊙ s̃t

ht

st = GRU( st−1, xt)

s̃t = σ(W ht−1 + Uxt + b)
st = ft ⊙ st−1 + it ⊙ s̃t

ht = ot ⊙ σ(st)

ht, st = LSTM( ht−1, st−1, xt)

Before moving on we will see a compact way of writing the function computed
by RNN, GRU and LSTM
We will use these notations going forward
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So far we have seen how to model the
conditional probability distribution
P(yt|yt−1

1 )

More informally, we have seen how
to generate a sentence given previous
words
What if we want to generate a
sentence given an image?
We are now interested in P(yt|yt−1

1 , I)
instead of P(yt|yt−1

1 ) where I is an
image
Notice that P(yt|yt−1

1 , I) is again a
conditional distribution
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CNN

s0 = fc7(I)
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Earlier we modeled P(yt|yt−1
1 ) as

P(yt|yt−1
1 ) = P(yt = j|st)

Where st was a state capturing all the
previous words
We could now model P(yt = j|yt−1

1 , I)
as P(yt = j|st, fc7(I))
where fc7(I) is the representation
obtained from the fc7 layer of an
image

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 16



11/63

There are many ways of making P(yt = j) conditional on fc7(I)
Let us see two such options
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Option 1

CNN
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Option 1: Set s0 = fc7(I)
Now s0 and hence all subsequent st’s
depend on fc7(I)
We can thus say that P(yt = j)
depends on fc7(I)
In other words, we are computing
P(yt = j|st, fc7(I))
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Option 2

CNN
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Option 2: Another more explicit
way of doing this is to compute

st = RNN(st−1, [xt, fc7(I))]

In other words we are explicitly using
fc7(I) to compute st and hence
P(yt = j)
You could think of other ways of
conditioning P(yt = j) on fc7
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Let us look at the full
architecture
A CNN is first used to encode
the image
A RNN is then used to decode
(generate) a sentence from the
encoding
This is a typical encoder
decoder architecture
Both the encoder and decoder
use a neural network
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Let us look at the full
architecture
A CNN is first used to encode
the image
A RNN is then used to decode
(generate) a sentence from the
encoding
This is a typical encoder
decoder architecture
Both the encoder and decoder
use a neural network
Alternatively, the encoder’s
output can be fed to every step
of the decoder
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Module 16.2: Applications of Encoder Decoder models
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For all these applications we will try to answer the following questions
What kind of a network can we use to encode the input(s)? (What is an
appropriate encoder?)
What kind of a network can we use to decode the output? (What is an
appropriate decoder?)
What are the parameters of the model ?
What is an appropriate loss function ?
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Encoder

Decoder Lt(θ) = − log P(yt = j|yt−1
1 , fc7 )
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Task: Image captioning
Data: {xi = imagei, yi = captioni}N

i=1

Model:
Encoder:

s0 = CNN(xi)

Decoder:
st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , I) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Wconv, b
Loss:

L (θ) =
T∑

i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , I)

Algorithm: Gradient descent with
backpropagation
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Task: Textual entailment
Data: {xi = premisei, yi = hypothesisi}N

i=1

Model (Option 1):
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =
T∑

i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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Task: Textual entailment
Data: {xi = premisei, yi = hypothesisi}N

i=1

Model (Option 2):
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, [hT, e(ŷt−1)])

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =

T∑
i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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Task: Machine translation
Data: {xi = sourcei, yi = targeti}N

i=1

Model (Option 1):
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =
T∑

i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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Task: Machine translation
Data: {xi = sourcei, yi = targeti}N

i=1

Model (Option 2):
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, [hT, e(ŷt−1)])

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =
T∑

i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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Task: Transliteration
Data: {xi = srcwordi, yi = tgtwordi}N

i=1

Model (Option 1):
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =
T∑

i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 16



24/63

i/p : I N D I A

o/p : š ' @ i y a

x1

Ii/p:

x2

N

x3

D

x4

I

x5

A

ht

<Go>

o/p: š

0
0
0
0
1

š

'

0
0
1
0
0

'

@

0
1
0
0
0

@

i

0
0
0
0
1

i

y

0
0
0
1
0

y

a

0
0
0
1
0

st

Task: Transliteration
Data: {xi = srcwordi, yi = tgtwordi}N

i=1

Model (Option 2):
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, [e(ŷt−1), hT])

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =
T∑

i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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Question: What
is the bird’s color

O/p: White

What is the bird’s color

CNN

s

h̃t ĥI

White
Task: Image Question Answeing
Data: {xi = {I, q}i, yi = Answeri}N

i=1

Model:
Encoder:
ĥI = CNN(I), h̃t = RNN(h̃t−1, qit)

s = [h̃T; ĥI]

Decoder:
P(y|q, I) = softmax(Vs + b)

Parameters: V, b, Uq, Wq, Wconv, b
Loss:

L (θ) = − log P(y = ℓ|I, q)

Algorithm: Gradient descent with
backpropagation
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Task: Document Summarization
Data: {xi = Documenti, yi =
Summaryi}N

i=1

Model:
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT

st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =

T∑
i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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. . .

o/p : A man walking on a rope

CNN CNN

. . .

. . .

. . .

. . .

CNN

A man walking on a rope
Task: Video Captioning
Data: {xi = videoi, yi = desci}N

i=1

Model:
Encoder:

ht = RNN(ht−1,CNN(xit))
Decoder:

s0 = hT

st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, Wdec, V, b, Wconv, Uenc,
Wenc, b
Loss:

L (θ) =

T∑
i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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. . .

o/p: Surya Namaskar

CNN CNN

. . .

. . .

. . .

. . .

CNN

Suryanamaskar
Task: Video Classification
Data: {xi = Videoi, yi = Activityi}N

i=1

Model:
Encoder:

ht = RNN(ht−1,CNN(xit))
Decoder:

s = hT

P(y|I) = softmax(Vs + b)

Parameters: V, b, Wconv, Uenc, Wenc, b
Loss:

L (θ) = − log P(y = ℓ|Video)

Algorithm: Gradient descent with
backpropagation
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Task: Dialog
Data: {xi = Utterancei, yi =
Responsei}N

i=1

Model:
Encoder:

ht = RNN(ht−1, xit)
Decoder:

s0 = hT (T is length of input)

st = RNN(st−1, e(ŷt−1))

P(yt|yt−1
1 , x) = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b
Loss:

L (θ) =

T∑
i=1

Lt(θ) = −
T∑

t=1

log P(yt = ℓt|yt−1
1 , x)

Algorithm: Gradient descent with
backpropagation
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And the list continues ...
Try picking a problem from your domain and see if you can model it using the
encoder decoder paradigm
Encoder decoder models can be made even more expressive by adding an
“attention” mechanism
We will first motivate the need for this and then explain how to model it
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Module 16.3: Attention Mechanism
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Option 2
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Let us motivate the task of attention with
the help of MT
The encoder reads the sentences only once
and encodes it
At each timestep the decoder uses this
embedding to produce a new word
Is this how humans translate a sentence ?
Not really!
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o/p : I am going home
t1 : [ 1 0 0 0 0 ]
t2 : [ 0 0 0 0 1 ]
t3 : [ 0 0 0.5 0.5 0 ]
t4 : [ 0 1 0 0 0 ]

i/p : Main ghar ja raha hoon

Humans try to produce each word in
the output by focusing only on certain
words in the input
Essentially at each time step we come
up with a distribution on the input
words
This distribution tells us how much
attention to pay to each input words
at each time step
Ideally, at each time-step we should
feed only this relevant information
(i.e. encodings of relevant words) to
the decoder
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Option 2

i/p : Main ghar ja raha hoon

o/p : I am going home

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x5

hoon

hi

c

<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

si

Let us revisit the decoder that we have
seen so far
We either feed in the encoder information
only once(at s0)
Or we feed the same encoder information
at each time step
Now suppose an oracle told you which
words to focus on at a given time-step t
Can you think of a smarter way of feeding
information to the decoder?
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x5

hoon

hi

+ c3

α1,3 α2,3 α3,3 α4,3 α5,3

+ c2

α1,2 α2,2α3,2α4,2 α5,2

+

α1,4α2,4α3,4 α4,4 α5,4

c4 +

α1,5 α2,5α3,5α4,5 α5,5

c5

We could just take a weighted average
of the corresponding word representations
and feed it to the decoder
For example at timestep 3, we can
just take a weighted average of the
representations of ‘ja’ and ‘raha’
Intuitively this should work better
because we are not overloading the
decoder with irrelevant information
(about words that do not matter at this
time step)
How do we convert this intuition into a
model ?
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x4

hoon

hi

+ ct

α1,2 α2,2 α3,2 α4,2 α5,2

Of course in practice we will not have this
oracle
The machine will have to learn this from
the data
To enable this we define a function

ejt = fATT(st−1, cj)

This quantity captures the importance of
the jth input word for decoding the tth

output word (we will see the exact form
of fATT later)
We can normalize these weights by using
the softmax function

αjt =
exp(ejt)

M∑
j=1

exp(ejt)
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x4

hoon

hi

+ ct

α1,2 α2,2 α3,2 α4,2 α5,2

αjt =
exp(ejt)

M∑
j=1

exp(ejt)

αjt denotes the probability of focusing on
the jth word to produce the tth output
word
We are now trying to learn the α’s instead
of an oracle informing us about the α’s
Learning would always involve some
parameters
So let’s define a parametric form for α’s
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x4

hoon

hi

+ ct

α1,2 α2,2 α3,2 α4,2 α5,2

From now on we will refer to the decoder
RNN’s state at the t-th timestep as st and
the encoder RNN’s state at the j-th time
step as cj

Given these new notations, one (among
many) possible choice for fATT is

ejt = VT
att tanh(Uattst−1 + Wattcj)

Vatt ∈ Rd , Uatt ∈ Rd×d, Watt ∈ Rd×d are
additional parameters of the model
These parameters will be learned along
with the other parameters of the encoder
and decoder
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x4

hoon

hi

+ ct

α1,2 α2,2 α3,2 α4,2 α5,2

Wait a minute !
This model would make a lot of sense if
were given the true α’s at training time

αtrue
tj = [0, 0, 0.5, 0.5, 0]

αpred
tj = [0.1, 0.1, 0.35, 0.35, 0.1]

We could then minimize L (αtrue, αpred)
in addition to L (θ) as defined earlier
But in practice it is very hard to get αtrue
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x4

hoon

hi

+ ct

α1,2 α2,2 α3,2 α4,2 α5,2

For example, in our translation example
we would want someone to manually
annotate the source words which
contribute to every target word
It is hard to get such annotated data
Then how would this model work in the
absence of such data ?
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x4

hoon

hi

+ ct

α1,2 α2,2 α3,2 α4,2 α5,2

It works because it is a better modeling
choice
This is a more informed model
We are essentially asking the model to
approach the problem in a better (more
natural) way
Given enough data it should be able
to learn these attention weights just as
humans do
That’s the hope (and hope is a good
thing)
And in practice indeed these models work
better than the vanilla encoder decoder
models
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Let us revisit the MT model that we saw earlier and answer the same set of
questions again (data, encoder, decoder, loss, training algorithm)
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<Go>

o/p: I

0
0
0
0
1

I

am

0
0
1
0
0

am

going

0
1
0
0
0

going

home

0
0
0
0
1

home

<STOP>

0
0
0
1
0

x1

Maini/p:

x2

ghar

x3

ja

x4

raha

x5

hoon

hi

+ c3

α1,3 α2,3 α3,3 α4,3 α5,3

+ c2

α1,2 α2,2α3,2α4,2 α5,2

+

α1,4α2,4α3,4 α4,4 α5,4

c4 +

α1,5 α2,5α3,5α4,5 α5,5

c5

Task: Machine Translation
Data: {xi = sourcei, yi = targeti}N

i=1

Encoder:
ht = RNN(ht−1, xt)

s0 = hT

Decoder:
ejt = VT

attntanh(Uattnhj + Wattnst)

αjt = softmax(ejt)

ct =
T∑

j=1

αjthj

st = RNN(st−1, [e(ŷt−1), ct])

ℓt = softmax(Vst + b)

Parameters: Udec, V, Wdec, Uenc, Wenc, b,
Uattn, Vattn

Loss and Algorithm remains same
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You can try adding an attention component to all the other encoder decoder
models that we discussed earlier and answer the same set of questions (data,

encoder, decoder, loss, training algorithm)
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Can we check if the attention model actually learns something meaningful ?
In other words does it really learn to focus on the most relevant words in the
input at the t-th timestep ?
We can check this by plotting the attention weights as a heatmap (we will see
some examples on the next slide)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 16



46/63

Figure: Example output of attention-based
summarization system [Rush et al. 2015.]

Figure: Example output of attention-based
neural machine translation model [Cho et al.
2015].

The heat map shows a soft alignment between the input and the generated
output.
Each cell in the heat mapsssss corresponds to αtj (i.e., the importance of the
jth input word for predicting the tth output word as determined by the model)
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Module 16.4: Attention over images
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A man throwing
a frisbee in a park

How do we model an attention mechanism
for images?
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<Go>

o/p:main

0
0
0
0
1

main

ghar

0
0
1
0
0

ghar

ja

0
1
0
0
0

ja

raha

0
0
0
0
1

raha

hoon

0
0
0
1
0

hoon

<STOP>

0
0
0
1
0

hi

x1

Ii/p:

x2

am

x3

going

x4

home

hi

+ ct

α1 α2 α3 α4

How do we model an attention mechanism
for images?
In the case of text we have a
representation for every location (time
step) of the input sequence
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Encoder

CNN

h0

How do we model an attention mechanism
for images?
In the case of text we have a
representation for every location (time
step) of the input sequence
But for images we typically use
representation from one of the fully
connected layers
This representation does not contain any
location information
So then what is the input to the attention
mechanism?
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Input

22
4

22
4

Conv

22
4

22
4

64 maxpool

11
2

11
2

64
Conv

11
2

11
2

128 maxpool

56
56

128

Conv
56

56

256 maxpool

28
28

256

Conv

28
28

512

maxpool

14

14

512

Conv

14

14

512

maxpool

7

7

512

fc fc

4096 4096

softmax

1000

Well, instead of the fc7 representation we
use the output of one of the convolution
layers which has spatial information
For example the output of the 5th

convolutional layer of VGGNet is a 14×
14× 512 size feature map
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…
1 2 196

512

+

αt1 αt196

14

14

512

Well, instead of the fc7 representation we
use the output of one of the convolution
layers which has spatial information
For example the output of the 5th

convolutional layer of VGGNet is a 14×
14× 512 size feature map
We could think of this as 196 locations
(each having a 512 dimensional
representation)
The model will then learn an attention
over these locations (which in turn
correspond to actual locations in the
images)
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Let us look at some examples of attention over images for the task of image
captioning
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Figure: Examples of the attention-based model attending to the correct object (white
indicates the attended regions,underlines indicates the corresponding word) [Kyunghyun
Cho et al. 2015.]
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Module 16.5: Hierarchical Attention

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 16



57/63

Context
U: Can you suggest a good movie?
B: Yes, sure. How about Logan?
U: Okay, who is the lead actor?

Response
B: Hugh Jackman, of course

Consider a dialog between a user (u)
and a bot (B)
The dialog contains a sequence of
utterances between the user and the
bot
Each utterance in turn is a sequence
of words
Thus what we have here is a
“sequence of sequences” as input
Can you think of an encoder for such
a sequence of sequences?
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<Go>

o/p:Hugh

0
0
0
0
1

I

Jackman

0
0
1
0
0

am

of

0
1
0
0
0

going

course

0
0
0
0
1

home

<STOP>

0
0
0
1
0

Can you
…

movie? Yes sure
…
Logan? Okay who

…

actor?

We could think of a two level
hierarchical RNN encoder
The first level RNN operates on the
sequence of words in each utterance
and gives us a representation
We now have a sequence of utterance
representations (red vectors in the
image)
We can now have another RNN
which encodes this sequence and
gives a single representations for the
sequences of utterances
The decoder can then produce an
output sequence conditioned on this
utterance
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Politics is the process of making decisions
applying to all members of each group.
More narrowly, it refers to achieving and …

Politics is

…

decisionsapplying to

…
group Morenarrowly

…

and

Politics

Let us look at another example
Consider the task of document
classification or summarization
A document is a sequence of sentences
Each sentence in turn is a sequence of
words
We can again use a hierarchical RNN
to model this
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Politics is the process of making decisions
applying to all members of each group.
More narrowly, it refers to achieving and …

Politics is

…

decisionsapplying to

…
group Morenarrowly

…

and

Politics

Data: {Documenti, classi}N
i=1

Word level (1) encoder:
h1

ij = RNN(h1
ij−1,wij)

si = h1
iTi [T is length of sentence i]

Sentence level (2) encoder:
h2

i = RNN(h2
i−1, si)

s = h2
K [K is number of sentences]

Decoder:
P(y|document) = softmax(Vs + b)

Params: W1
enc, U1

enc, W2
enc, U2

enc, V, b
Loss: Cross Entropy
Algorithm: Gradient Descent with
backpropagation
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Figure: Hierarchical Attention Network
[Yang et al.]

How would you model attention in
such a hierarchical encoder decoder
model ?
We need attention at two levels
First we need to attend to important
(most informative) words in a
sentence
Then we need to attend to important
(most informative) sentences in a
document
Let us see how to model this
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Figure: Hierarchical Attention Network
[Yang et al.]

Data: {Documenti, classi}N
i=1

Word level (1) encoder:
hij = RNN(hij−1,wij)

uij = tanh(Wwhij + bw)

αij =
exp(uT

ij uw)∑
t exp(uT

ituw)

si =
∑

j
αijhij

Sentence level (2) encoder:

hi = RNN(hi−1, si)

ui = tanh(Wshi + bs)

αi =
exp(uT

i us)∑
i exp(uT

i us)

s =
∑

i
αihi
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Figure: Hierarchical Attention Network
[Yang et al..]

Decoder:

P(y|document) = softmax(Vs + b)

Parameters:
Ww,Ws,V, bw, bs, b, uw, us

Loss: cross entropy
Algorithm: Gradient Descent and
backpropagation
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