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Module 7.1: Introduction to Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7



X; feed forward neural network which

< > @ An autoencoder is a special type of

does the following

W*
T o Encodes its input x; into a hidden
@ Q Q @ h representation h
W T @ Decodes the input again from this
hidden representation
< > i @ The model is trained to minimize a

certain loss function which will ensure
that X; is close to x; (we will see some
such loss functions soon)
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w* 1
© QTQ O)n
h = g(Wx; + b)

% = f(W*h + c)

Let wus consider the case where
dim(h) < dim(x;)

If we are still able to reconstruct X;
perfectly from h, then what does it
say about h?

h is a loss-free encoding of x;. It cap-
tures all the important characteristics
of Xi

Do you see an analogy with PCA?

An autoencoder where dim(h) < dim(x;) is
called an under complete autoencoder J
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@ Let us consider the case when
< > X; dim(h) > dim(x;)

W T @ In such a case the autoencoder could
learn a trivial encoding by simply

< Q @ h copying x; into h and then copying

h into X;

< > @ Such an identity encoding is useless
Xj

in practice as it does not really tell us
anything about the important char-
h = g(Wx; +b) acteristics of the data

f(i = f(W*h + C)

An autoencoder where dim(h) > dim(x;) is
called an over complete autoencoder J
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The Road Ahead
e Choice of f(x;) and g(x;)

@ Choice of loss function
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The Road Ahead
@ Choice of f(x;) and g(x;)

@ Choice of loss function
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@ Suppose all our inputs are binary
< >>‘<i — f(W*h +¢) (each z;; € {0,1})

e Which of the following functions

W*
T would be most apt for the decoder?
© O O O)r=sowern

W %X; = tanh(W*h + ¢)

X =W*h+c
< > i %; = logistic(W*h + c)

0 1 1 0 1 (binary inputs) e Logistic as it naturally restricts all
outputs to be between 0 and 1

g is typically chosen as the sigmoid
function J
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e Suppose all our inputs are real (each

o Which of the following functions

W*
T would be most apt for the decoder?
O O O O)r-swsm

W T %; = tanh(W*h + c)

f(i =W*h +cC
< > = %; = logistic(W*h + ¢)

025 05 125 35 4.5 e What will logistic and tanh do?
(real valued inputs) o They will restrict the reconstruc-
. . . ted %; to lie between [0,1] or [-1,1]
A‘gam., g is tyPlcally chosen as the whereas we want %; € R”
sigmoid function
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The Road Ahead
e Choice of f(x;) and g(x;)

@ Choice of loss function

sh M. Khapr



@ Consider the case when the inputs are real
< > Xi valued

- @ The objective of the autoencoder is to recon-
w T struct X; to be as close to x; as possible

Q Q O O h @ This can be formalized using the following
objective function:

D ) DI
Xi WW*,c,b m
=1 j=1
m
1

h =g(Wx; +b) ie., min — (% —xi)" (X —x;)
. i W,W*.c,b m ;
%= f(W"h+c)
@ We can then train the autoencoder just like
a regular feedforward network using back-

propagation

@ All we need is a formula, for
which we will see now

2.2(6) 2.2(0)
s and 5y
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hy = X;
az
W*
h;
az
w
hO = Xj

@ Note that the loss function is
shown for only one training
example.

o 0£(0) _ 0Z(0)| Ohy Oap
oW o 61’12 aaz oW

ow - 81’12 8&2 8h1 831 ow

° 83(9) - 83(9) 3h2 8a2 ahl 8a1

@ We have already seen how to calculate the expres-
sion in the boxes when we learnt backpropagation
0Z(0) 02(0)
ohy 0%
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@ Consider the case when the inputs are
< >>‘q = f(W*h+c) binary

@ We use a sigmoid decoder which will
produce outputs between 0 and 1, and

w= |
@ O Q @ h = g(Wx; +b) can be interpreted as probabilities.

W T @ For a single n-dimensional i*" input we
can use the following loss function
Xi n
< > min{—Z(xij log:%ij + (]. —xij)log(l —(%ZJ))}
j=1

0 1 1 0 1 (binary inputs)

8.L(0)

. o ) @ Again we need is a formula for 5> and
What value of £;; will minimize this 92(0) 1 use backpropasation
function? ow e propagatio

o Ifxzjzl'?
o If.’ﬂw:O?

Indeed the above function will be
minimized when &;; = z;; !
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2(0) = n log 4 1 L 1— 2 ° 8%(9) o 83(9) ahz 8&2
(0) = _]gl(xw og &ij + (1 — wij) log(1 — &45)) ow* Ohy Oag| OW*
ha -0 © © © , 0L(0) _ 92(6) Oha| dag 9hy Day
ow N 6h2 88.2 ahl 8&1 ow
hy w @ We have already seen how to
a calculate the expressions in the
11,74 square boxes when we learnt BP
ho = x; o The first two terms on RHS can be
‘ computed as:
83(9) . _x,;j + 1 —xij
9.2(6) Ohy; @y 11—y
a1 ahj J J
0ZL(0 2 _ . .
0L(0) _ 8h§2) v o(az;)(1 — o(ag;))
8h2 .
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Module 7.2: Link between PCA and Autoencoders
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o We will now see that the encoder part

Xj y PCA of an autoencoder is equivalent to
PCA if we
e use a linear encoder
h = e use a linear decoder
e use squared error loss function
e normalize the inputs to
b'd
Xi PTXTXP=D A 1 1
Tij = Tm Tij — E};ﬂcg‘
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o First let us consider the implication
- Xj y PCA of normalizing the inputs to

1 1 &
Tij = NG (xij - ;ﬂfk])

@ The operation in the bracket ensures

. T T * that the data now has 0 mean along
! PrX"XpP=D each dimension j (we are subtracting

the mean)

o Let X' be this zero mean data mat-
rix then what the above normaliza—
tion gives us is X = fX

o Now (X)TX = L(X")TX' is the co-
variance matrix (recall that covari-
ance matrix plays an important role

in PCA)
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o First we will show that if we use lin-
X y PCA ear decoder and a squared error loss
function then

@ The optimal solution to the following
objective function

is obtained when we use a linear en-
coder.
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HgnZZ(mlj *fij)2 (1)

i=1 j=1
@ This is equivalent to

min (| X — HW”|p)? Al =
W+*H

(just writing the expression (1) in matrix form and using the definition of ||A||r) (we
are ignoring the biases)

@ From SVD we know that optimal solution to the above problem is given by
HW* =U. < ZriV <),
@ By matching variables one possible solution is

H=U <Xk
W = V.,Tgk

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7



We will now show that H is a linear encoding and find an expression for the encoder
weights W

H=U <xXkk
= (XXTYXXTY WU xSk (pre-multiplying (X XT)(XXT)"' =1)
= (xXvTuh)(UsvTvsTuT) U <1k (using X = URVT)
= XVvyTuT(UssTun) U xSy VTV =1)
= XVETuTu(e=sh) " 'UTU xSk ke (ABO) ' =cCc~'B7'A™
= XVvyT(=E2D)UTU <1 Sk (UTu =1)
= XVSTST S WU, Sk (AB)"' =B~ 4™
= XVET' 1Sk (UTU. <k =1 <k)
= XVI < (S'L<e=355)

H=XV <

Thus H is a linear transformation of X and W =V, <4,
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e We have encoder W =V <,

From SVD, we know that V is the matrix of eigen vectors of X7 X

o From PCA, we know that P is the matrix of the eigen vectors of the covariance
matrix

o We saw earlier that, if entries of X are normalized by

1 1 —
Ty = 7\/5 (l‘ij T ;xk3>

then X7 X is indeed the covariance matrix

@ Thus, the encoder matrix for linear autoencoder(W) and the projection
matrix(P) for PCA could indeed be the same. Hence proved
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Remember
The encoder of a linear autoencoder is equivalent to PCA if we

@ use a linear encoder
@ use a linear decoder
@ use a squared error loss function

o and normalize the inputs to

1 1 —
Boe = x”_7§ Thi
Y v m K ’r)’Lk_1 J
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Module 7.3: Regularization in autoencoders
(Motivation)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7



pen even in undercomplete autoen-
coders it is an even more serious prob-
T lem for overcomplete auto encoders

W*
@ Q Q Q O @ h o Here, (as stated earlier) the model

can simply learn to copy x; to h and
w ] '

< > e While poor generalization could hap-
X

then h to X;

< > Xj e To avoid poor generalization, we need
to introduce regularization

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7



@ The simplest solution is to add a Lo-
< > X regularization term to the objective
function
w= ]
. I O~ 2 2
O©OOO0On ,mn =55 @—n A
=1 j=1
w1

< e This is very easy to implement and
! just adds a term AW to the gradient

9.2(0) (
W

meters)

and similarly for other para-
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@ Another trick is to tie the weights of

X the encoder and decoder i.e., W* =
WT
W T o This effectively reduces the capacity
@ Q Q Q O @ h of Autoencoder and acts as a regular-
izer
w1

@coo-
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Module 7.4: Denoising Autoencoders
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@ A denoising encoder simply corrupts

2. the input data using a probabilistic
' process (P(z;j]|z;;)) before feeding it
T to the network

@O 0O OO *humhrin wmtmmae

< > ) P(zij = Olzij) = q
X; ~
P(Tij = wijlei) =1—q

< o In other words, with probability ¢ the

input is flipped to 0 and with probab-
ility (1 — q) it is retained as it is
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CC oD
©O0O0000

Cee0-

1 P@ijlzi)

©000-

For example, it will have to learn to
reconstruct a corrupted z;; correctly by
relying on its interactions with other
elements of x;

=

Mitesh M. Khapra

How does this help 7

This helps because the objective is
still to reconstruct the original (un-
corrupted) x;

arg mln— Z Z — l’w

'Ll]l

It no longer makes sense for the model
to copy the corrupted x; into h(x;)
and then into x; (the objective func-
tion will not be minimized by doing
s0)

Instead the model will now have to

capture the characteristics of the data
correctly.
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We will now see a practical application in which AEs are used and then compare
Denoising Autoencoders with regular autoencoders J
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Task: Hand-written digit (f T T I I

recognition < >

21 88511 g8 ;| = 784 = 28 x 28
gULbgs e
b7 329850710 3
SO\ | ¢44aAn0°S Py
Ha 79 Y04 /708
Figure: Basic approach(we use raw data as input
Figure: MNIST Data features)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7



X; € R784
Task: Hand-written digit < >

recognition
|
@ QT @ h ¢ R?

2188514155
gU Ll bgs éax ] /
673‘:1%;07:0( >
SO\ | ¢44aAn0°S

Ha 79 Y0+ /700 |x;| = 784 = 28 x 28

3

Figure: MNIST Data

Figure: AE approach (first learn important
characteristics of data)

CS7015 (Deep Learning) : Lecture 7

Mitesh M. Khapra



Task: Hand-written digit 0 1 9 3 9
recognition W

@ OT @ h € R4

218854 g8
gU Ll bgs é]

b2 32935070 < )
o\ | ¢44anh

479704700 Ixi| = 784 = 28 x 28

3

Figure: MNIST Data

Figure: AE approach (and then train a classifier on
top of this hidden representation)
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We will now see a way of visualizing AEs and use this visualization to compare
different AEs J
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max {W{ x;} °
s.t. ||le2 = x{xi =1
Solution: x; = Wa
WIWw,

Mitesh M. Khapra

We can think of each neuron as a filter which
will fire (or get maximally) activated for a cer-
tain input configuration x;

For example,

h, = o(W{'x;) [ignoring bias b]
Where W1 is the trained vector of weights con-
necting the input to the first hidden neuron

What values of x; will cause h; to be max-
imum (or maximally activated)

Suppose we assume that our inputs are nor-
malized so that ||x;]| =1
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¢ )

max {W{ x;}
x;
s.t. ||le2 = x{xi =1

Solution: x; =

Mitesh M. Khapra

Thus the inputs

Wy Wy Wy
Xi = , e =
JWIWL W, WIW,

will respectively cause hidden neurons 1 to n
to maximally fire

Let us plot these images (x;’s) which maxim-
ally activate the first k£ neurons of the hidden
representations learned by a vanilla autoen-
coder and different denoising autoencoders

These x;’s are computed by the above formula
using the weights (W71, Wy ... Wy) learned by
the respective autoencoders
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Figure: Vanilla AE Figure: 25% Denoising Figure: 50% Denoising
(No noise) AE (¢q=0.25) AE (q=0.5)

o The vanilla AE does not learn many meaningful patterns

@ The hidden neurons of the denoising AEs seem to act like pen-stroke detectors
(for example, in the highlighted neuron the black region is a stroke that you
would expect in a’0’ or a '2’ or a '3’ or a '8’ or a ’9’)

@ As the noise increases the filters become more wide because the neuron has to
rely on more adjacent pixels to feel confident about a stroke
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A e We saw one form of P(z;j|x;;) which flips a
Xj fraction g of the inputs to zero

T @ Another way of corrupting the inputs is to add
@ Q Q Q Q @ b a Gaussian noise to the input
T 51']' = + JV(O, 1)
% o We will now use such a denoising AE on a
1

different dataset and see their performance

€000~
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Figure: Weight decay

filters

Figure: AE filters

Figure: Data

@ The hidden neurons essentially behave like edge detectors

@ PCA does not give such edge detectors
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Module 7.5: Sparse Autoencoders
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y @ A hidden neuron with sigmoid activation will
‘ have values between 0 and 1

@ We say that the neuron is activated when its

|
@ Q Q Q Q @ ph  output is close to 1 and not activated when
|

its output is close to 0.

o A sparse autoencoder tries to ensure the
< > X; neuron is inactive most of the times.
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C

S o

|
@QQQQQh

(

)

The average value of the
activation of a neuron [ is given

Mitesh M. Khapra

If the neuron [ is sparse (i.e. mostly inactive)
then j — 0

o A sparse autoencoder uses a sparsity para-

meter p (typically very close to 0, say, 0.005)
and tries to enforce the constraint p; = p

One way of ensuring this is to add the follow-
ing term to the objective function

p L—p
Q) = log—+4+(1—p)lo ~
O =>r g5 + (1= p)log T—

When will this term reach its minimum value
and what is the minimum value? Let us plot
it and check.
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@ The function will reach its minimum value(s) when p; = p.
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k

P 1-p

Q) = Zplogﬁ +(1- p)log1 s
=1

Can be re-written as

Q(0) = plogp—plogin-+(1—p)log(1—p)—(1—p)log(1—fr)

1=1
By Chain rule:
o)  o0(0) 9p

ow op oW
o9(0) [an(e) 29(6) an(e)]T
8p Lo ok ok
For each neuron [ € 1...k in hidden layer, we have
o90) _ _p  (A-p)
Opy o 1—p
and g{:‘; =x;(g'(W"x; + b)) (see next slide)

Mitesh M. Khapra

Now,

2(0) = 2(0) + Q(0)

Z(0) is the squared error loss or
cross entropy loss and Q(6) is the
sparsity constraint.

We already know how to calculate

89.2(0)
oW
99Q(8)
Let us see how to calculate S -

Finally,

0L0)  9216)  09(0)
ow ~ ow | ow

(and we know how to calculate both
terms on R.H.S)
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Derivation

9p _ (28, 982 90:]

oW oW W " 9w
For each element in the above equation we can calculate a—{f{, (which is the partial
derivative of a scalar w.r.t. a matrix = matrix). For a single element of a matrix Wj;:-

o O[Ty g (Whxi+ )]
Wi oW,

1 & 3[9(W;€xi+bl)]
m oW,

=1
1 m
= ;g/(W:ﬁXi + by)wi;

So in matrix notation we can write it as :

O (W s + b))
oW Xz(g (W Xi +b))
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Module 7.6: Contractive Autoencoders
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o A contractive autoencoder also tries

to prevent an overcomplete autoen- .
coder from learning the identity func- X
tion. T
o It does so by adding the following reg-
ularization term to the loss function O O O O O Q h
Q(0) = || Jx(b)[[ < > N
where Jx(h) is the Jacobian of the en-
coder.

@ Let us see what it looks like.
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o If the input has n dimensions and the

hidden layer has k dimensions then g% L gzﬁ
1 n
e In other words, the (I, j) entry of the T (0 = ‘3% cee e g;li
Jacobian captures the variation in the x(h) = . :
output of the {*" neuron with a small % 6,'%
variation in the j** input. Jwy ottt
n k 2
oh
2 !
()2 = Z(a )
1= Lj
j=11=1
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@ What is the intuition behind this ? n ohy

2
o Consider %’ what does it mean if HJx(h)H%J = ZZ (87)
% —0 j=11=1 J
T1

o It means that this neuron is not very
sensitive to variations in the input x;. < > 2
o But doesn’t this contradict our other
goal of minimizing £(f) which re-

quires h to capture variations in the N Q @ h
N

input.
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@ Indeed it does and that’s the idea n

2
o By putting these two contradicting HJx(h)H%J = ZZ (gﬂljl)
objectives against each other we en- j=11=1 !
sure that h is sensitive to only very
important variations as observed in
the training data. < > X

e L(f) - capture important variations

|

in data

e Q(f) - do not capture variations in N Q @ h
data AN

o Tradeoff - capture only very import- § / x
ant variations in the data
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Let us try to understand this with the help of an illustration. J
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@ Consider the variations in the data
along directions u; and uy

o It makes sense to maximize a neuron
to be sensitive to variations along u;
u2 o At the same time it makes sense to
inhibit a neuron from being sensitive
to variations along uy (as there seems
to be small noise and unimportant for

x reconstruction)

e By doing so we can balance between
the contradicting goals of good recon-
struction and low sensitivity.

What does this remind you of ?
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Module 7.7 : Summary
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UsvT
(SVD)
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C DE
Regularization

@ Q Q Q O @h Q(0) = Alo|? ‘Weightdecaying‘

% . )
< > ) =33 (5

TP(5”|.I”) j=11=1
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