
1/55

CS7015 (Deep Learning) : Lecture 7
Autoencoders and relation to PCA, Regularization in autoencoders, Denoising

autoencoders, Sparse autoencoders, Contractive autoencoders

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

2/55

Module 7.1: Introduction to Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

3/55

xi

W

h

W ∗

x̂i

h = g(Wxi + b)

x̂i = f(W ∗h + c)

An autoencoder is a special type of
feed forward neural network which
does the following

Encodes its input xi into a hidden
representation h

Decodes the input again from this
hidden representation

The model is trained to minimize a
certain loss function which will ensure
that x̂i is close to xi (we will see some
such loss functions soon)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

4/55

xi

W

h

W ∗

x̂i

h = g(Wxi + b)

x̂i = f(W ∗h + c)

An autoencoder where dim(h) < dim(xi) is
called an under complete autoencoder

Let us consider the case where
dim(h) < dim(xi)

If we are still able to reconstruct x̂i

perfectly from h, then what does it
say about h?

h is a loss-free encoding of xi. It cap-
tures all the important characteristics
of xi

Do you see an analogy with PCA?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

5/55

xi

W

h

W ∗

x̂i

h = g(Wxi + b)

x̂i = f(W ∗h + c)

An autoencoder where dim(h) ≥ dim(xi) is
called an over complete autoencoder

Let us consider the case when
dim(h) ≥ dim(xi)

In such a case the autoencoder could
learn a trivial encoding by simply
copying xi into h and then copying
h into x̂i

Such an identity encoding is useless
in practice as it does not really tell us
anything about the important char-
acteristics of the data

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

6/55

The Road Ahead

Choice of f(xi) and g(xi)

Choice of loss function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

7/55

The Road Ahead

Choice of f(xi) and g(xi)

Choice of loss function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

8/55

0 1 1 0 1

xi

h = g(Wxi + b)

W

W ∗

x̂i = f(W ∗h + c)

(binary inputs)

g is typically chosen as the sigmoid
function

Suppose all our inputs are binary
(each xij ∈ {0, 1})
Which of the following functions
would be most apt for the decoder?

x̂i = tanh(W ∗h + c)

x̂i = W ∗h + c

x̂i = logistic(W ∗h + c)

Logistic as it naturally restricts all
outputs to be between 0 and 1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

9/55

0.25 0.5 1.25 3.5 4.5

xi

h = g(Wxi + b)

W

W ∗

x̂i = f(W ∗h + c)

(real valued inputs)

Again, g is typically chosen as the
sigmoid function

Suppose all our inputs are real (each
xij ∈ R)

Which of the following functions
would be most apt for the decoder?

x̂i = tanh(W ∗h + c)

x̂i = W ∗h + c

x̂i = logistic(W ∗h + c)

What will logistic and tanh do?

They will restrict the reconstruc-
ted x̂i to lie between [0,1] or [-1,1]
whereas we want x̂i ∈ Rn

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

10/55

The Road Ahead

Choice of f(xi) and g(xi)

Choice of loss function

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

11/55

xi

W

h

W ∗

x̂i

h = g(Wxi + b)

x̂i = f(W ∗h + c)

Consider the case when the inputs are real
valued

The objective of the autoencoder is to recon-
struct x̂i to be as close to xi as possible

This can be formalized using the following
objective function:

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

i.e., min
W,W∗,c,b

1

m

m∑
i=1

(x̂i − xi)
T (x̂i − xi)

We can then train the autoencoder just like
a regular feedforward network using back-
propagation

All we need is a formula for ∂L (θ)
∂W∗ and ∂L (θ)

∂W

which we will see now

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

12/55

L (θ) = (x̂i − xi)
T (x̂i − xi)

h0 = xi

h1
a1

h2 = x̂i
a2

W

W ∗

Note that the loss function is
shown for only one training
example.

∂L (θ)

∂W ∗
=
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂W ∗

∂L (θ)

∂W
=
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂h1

∂h1

∂a1

∂a1
∂W

We have already seen how to calculate the expres-
sion in the boxes when we learnt backpropagation

∂L (θ)

∂h2
=
∂L (θ)

∂x̂i

= ∇x̂i
{(x̂i − xi)

T (x̂i − xi)}
= 2(x̂i − xi)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

13/55

0 1 1 0 1

xi

h = g(Wxi + b)

W

W ∗

x̂i = f(W ∗h + c)

(binary inputs)

What value of x̂ij will minimize this
function?

If xij = 1 ?

If xij = 0 ?

Indeed the above function will be
minimized when x̂ij = xij !

Consider the case when the inputs are
binary

We use a sigmoid decoder which will
produce outputs between 0 and 1, and
can be interpreted as probabilities.

For a single n-dimensional ith input we
can use the following loss function

min{−
n∑
j=1

(xij log x̂ij + (1− xij) log(1− x̂ij))}

Again we need is a formula for ∂L (θ)
∂W∗ and

∂L (θ)
∂W to use backpropagation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

14/55

L (θ) = −
n∑
j=1

(xij log x̂ij + (1− xij) log(1− x̂ij))

h0 = xi

h1
a1

h2 = x̂i
a2

W

W ∗

∂L (θ)

∂h2
=

∂L (θ)
∂h2n

...

∂L (θ)
∂h22

∂L (θ)
∂h21

∂L (θ)

∂W ∗
=
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂W ∗

∂L (θ)

∂W
=
∂L (θ)

∂h2

∂h2

∂a2

∂a2
∂h1

∂h1

∂a1

∂a1
∂W

We have already seen how to
calculate the expressions in the
square boxes when we learnt BP

The first two terms on RHS can be
computed as:
∂L (θ)

∂h2j
= −xij

x̂ij
+

1− xij
1− x̂ij

∂h2j

∂a2j
= σ(a2j)(1− σ(a2j))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

15/55

Module 7.2: Link between PCA and Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

16/55

xi

h

x̂i

≡

PCA

P TXTXP = D

y

x

u1 u2

We will now see that the encoder part
of an autoencoder is equivalent to
PCA if we

use a linear encoder
use a linear decoder
use squared error loss function
normalize the inputs to

x̂ij =
1√
m

(
xij −

1

m

m∑
k=1

xkj

)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

17/55

xi

h

x̂i

≡

PCA

P TXTXP = D

y

x

u1 u2

First let us consider the implication
of normalizing the inputs to

x̂ij =
1√
m

(
xij −

1

m

m∑
k=1

xkj

)
The operation in the bracket ensures
that the data now has 0 mean along
each dimension j (we are subtracting
the mean)

Let X
′

be this zero mean data mat-
rix then what the above normaliza-
tion gives us is X = 1√

m
X
′

Now (X)TX = 1
m(X ′)TX ′ is the co-

variance matrix (recall that covari-
ance matrix plays an important role
in PCA)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

18/55

xi

h

x̂i

≡

PCA

P TXTXP = D

y

x

u1 u2

First we will show that if we use lin-
ear decoder and a squared error loss
function then

The optimal solution to the following
objective function

1

m

m∑
i=1

n∑
j=1

(xij − x̂ij)2

is obtained when we use a linear en-
coder.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

19/55

min
θ

m∑
i=1

n∑
j=1

(xij − x̂ij)2 (1)

This is equivalent to

min
W∗H

(‖X −HW ∗‖F)2 ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij

(just writing the expression (1) in matrix form and using the definition of ||A||F) (we
are ignoring the biases)

From SVD we know that optimal solution to the above problem is given by

HW ∗ = U. ,≤kΣk,kV
T
.,≤k

By matching variables one possible solution is

H = U. ,≤kΣk,k

W ∗ = V T.,≤k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

20/55

We will now show that H is a linear encoding and find an expression for the encoder
weights W

H = U. ,≤kΣk,k

= (XXT)(XXT)−1U. ,≤KΣk,k (pre-multiplying (XXT)(XXT)−1 = I)

= (XV ΣTUT)(UΣV TV ΣTUT)−1U. ,≤kΣk,k (using X = UΣV T)

= XV ΣTUT (UΣΣTUT)−1U. ,≤kΣk,k (V TV = I)

= XV ΣTUTU(ΣΣT)−1UTU. ,≤kΣk,k ((ABC)−1 = C−1B−1A−1)

= XV ΣT (ΣΣT)−1UTU. ,≤kΣk,k (UTU = I)

= XV ΣTΣT
−1

Σ−1UTU. ,≤kΣk,k ((AB)−1 = B−1A−1)

= XV Σ−1I. ,≤kΣk,k (UTU. ,≤k = I. ,≤k)

= XV I. ,≤k (Σ−1I. ,≤k = Σ−1
k,k)

H = XV. ,≤k

Thus H is a linear transformation of X and W = V. ,≤k

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

21/55

We have encoder W = V. ,≤k

From SVD, we know that V is the matrix of eigen vectors of XTX

From PCA, we know that P is the matrix of the eigen vectors of the covariance
matrix

We saw earlier that, if entries of X are normalized by

x̂ij =
1√
m

(
xij −

1

m

m∑
k=1

xkj

)

then XTX is indeed the covariance matrix

Thus, the encoder matrix for linear autoencoder(W) and the projection
matrix(P) for PCA could indeed be the same. Hence proved

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

22/55

Remember

The encoder of a linear autoencoder is equivalent to PCA if we

use a linear encoder

use a linear decoder

use a squared error loss function

and normalize the inputs to

x̂ij =
1√
m

(
xij −

1

m

m∑
k=1

xkj

)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

23/55

Module 7.3: Regularization in autoencoders
(Motivation)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

24/55

xi

W

h

W ∗

x̂i

While poor generalization could hap-
pen even in undercomplete autoen-
coders it is an even more serious prob-
lem for overcomplete auto encoders

Here, (as stated earlier) the model
can simply learn to copy xi to h and
then h to x̂i

To avoid poor generalization, we need
to introduce regularization

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

25/55

xi

W

h

W ∗

x̂i

The simplest solution is to add a L2-
regularization term to the objective
function

min
θ,w,w∗,b,c

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2 + λ‖θ‖2

This is very easy to implement and
just adds a term λW to the gradient
∂L (θ)
∂W (and similarly for other para-

meters)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

26/55

xi

W

h

W ∗

x̂i

Another trick is to tie the weights of
the encoder and decoder i.e., W ∗ =
W T

This effectively reduces the capacity
of Autoencoder and acts as a regular-
izer

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

27/55

Module 7.4: Denoising Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

28/55

xi

x̃i

h

x̂i

P (x̃ij |xij)

A denoising encoder simply corrupts
the input data using a probabilistic
process (P (x̃ij |xij)) before feeding it
to the network

A simple P (x̃ij |xij) used in practice
is the following

P (x̃ij = 0|xij) = q

P (x̃ij = xij |xij) = 1− q

In other words, with probability q the
input is flipped to 0 and with probab-
ility (1− q) it is retained as it is

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

29/55

xi

x̃i

h

x̂i

P (x̃ij |xij)

For example, it will have to learn to
reconstruct a corrupted xij correctly by
relying on its interactions with other
elements of xi

How does this help ?

This helps because the objective is
still to reconstruct the original (un-
corrupted) xi

arg min
θ

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

It no longer makes sense for the model
to copy the corrupted x̃i into h(x̃i)
and then into x̂i (the objective func-
tion will not be minimized by doing
so)

Instead the model will now have to
capture the characteristics of the data
correctly.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

30/55

We will now see a practical application in which AEs are used and then compare
Denoising Autoencoders with regular autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

31/55

Task: Hand-written digit
recognition

Figure: MNIST Data

0 1 2 3 9

|xi| = 784 = 28× 28

28*28

Figure: Basic approach(we use raw data as input
features)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

32/55

Task: Hand-written digit
recognition

Figure: MNIST Data

|xi| = 784 = 28× 28

x̂i ∈ R784

h ∈ Rd

Figure: AE approach (first learn important
characteristics of data)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

33/55

Task: Hand-written digit
recognition

Figure: MNIST Data

0 1 2 3 9

|xi| = 784 = 28× 28

h ∈ Rd

Figure: AE approach (and then train a classifier on
top of this hidden representation)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

34/55

We will now see a way of visualizing AEs and use this visualization to compare
different AEs

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

35/55

xi

h

x̂i

max
xi

{WT
1 xi}

s.t. ||xi||2 = xTi xi = 1

Solution: xi =
W1√
WT

1 W1

We can think of each neuron as a filter which
will fire (or get maximally) activated for a cer-
tain input configuration xi

For example,

h1 = σ(W T
1 xi) [ignoring bias b]

Where W1 is the trained vector of weights con-
necting the input to the first hidden neuron

What values of xi will cause h1 to be max-
imum (or maximally activated)

Suppose we assume that our inputs are nor-
malized so that ‖xi‖ = 1

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

36/55

xi

h

x̂i

max
xi

{WT
1 xi}

s.t. ||xi||2 = xTi xi = 1

Solution: xi =
W1√
WT

1 W1

Thus the inputs

xi =
W1√
W T

1 W1

,
W2√
W T

2 W2

, . . .
Wn√
W T
nWn

will respectively cause hidden neurons 1 to n
to maximally fire

Let us plot these images (xi’s) which maxim-
ally activate the first k neurons of the hidden
representations learned by a vanilla autoen-
coder and different denoising autoencoders

These xi’s are computed by the above formula
using the weights (W1,W2 . . .Wk) learned by
the respective autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

37/55

Figure: Vanilla AE
(No noise)

Figure: 25% Denoising
AE (q=0.25)

Figure: 50% Denoising
AE (q=0.5)

The vanilla AE does not learn many meaningful patterns

The hidden neurons of the denoising AEs seem to act like pen-stroke detectors
(for example, in the highlighted neuron the black region is a stroke that you
would expect in a ’0’ or a ’2’ or a ’3’ or a ’8’ or a ’9’)

As the noise increases the filters become more wide because the neuron has to
rely on more adjacent pixels to feel confident about a stroke

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

38/55

xi

x̃i

h

x̂i

P (x̃ij |xij)

We saw one form of P (x̃ij |xij) which flips a
fraction q of the inputs to zero

Another way of corrupting the inputs is to add
a Gaussian noise to the input

x̃ij = xij + N (0, 1)

We will now use such a denoising AE on a
different dataset and see their performance

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

39/55

Figure: Data Figure: AE filters
Figure: Weight decay
filters

The hidden neurons essentially behave like edge detectors

PCA does not give such edge detectors

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

40/55

Module 7.5: Sparse Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

41/55

xi

h

x̂i
A hidden neuron with sigmoid activation will
have values between 0 and 1

We say that the neuron is activated when its
output is close to 1 and not activated when
its output is close to 0.

A sparse autoencoder tries to ensure the
neuron is inactive most of the times.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

42/55

xi

h

x̂i

The average value of the
activation of a neuron l is given
by

ρ̂l =
1

m

m∑
i=1

h(xi)l

If the neuron l is sparse (i.e. mostly inactive)
then ρ̂l → 0

A sparse autoencoder uses a sparsity para-
meter ρ (typically very close to 0, say, 0.005)
and tries to enforce the constraint ρ̂l = ρ

One way of ensuring this is to add the follow-
ing term to the objective function

Ω(θ) =

k∑
l=1

ρ log
ρ

ρ̂l
+ (1− ρ) log

1− ρ
1− ρ̂l

When will this term reach its minimum value
and what is the minimum value? Let us plot
it and check.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

43/55

Ω(θ)

0.2 ρ̂l

ρ = 0.2

The function will reach its minimum value(s) when ρ̂l = ρ.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

44/55

Ω(θ) =
k∑
l=1

ρlog
ρ

ρ̂l
+ (1− ρ)log

1− ρ
1− ρ̂l

Can be re-written as

Ω(θ) =

k∑
l=1

ρlogρ−ρlogρ̂l+(1−ρ)log(1−ρ)−(1−ρ)log(1−ρ̂l)

By Chain rule:

∂Ω(θ)

∂W
=
∂Ω(θ)

∂ρ̂
.
∂ρ̂

∂W

∂Ω(θ)

∂ρ̂
=
[
∂Ω(θ)
∂ρ̂1

, ∂Ω(θ)
∂ρ̂2

, . . . ∂Ω(θ)
∂ρ̂k

]T
For each neuron l ∈ 1 . . . k in hidden layer, we have

∂Ω(θ)

∂ρ̂l
= − ρ

ρ̂l
+

(1− ρ)

1− ρ̂l

and
∂ρ̂l
∂W

= xi(g
′(WTxi + b))T (see next slide)

Now,

L̂ (θ) = L (θ) + Ω(θ)

L (θ) is the squared error loss or
cross entropy loss and Ω(θ) is the
sparsity constraint.

We already know how to calculate
∂L (θ)
∂W

Let us see how to calculate ∂Ω(θ)
∂W .

Finally,

∂L̂ (θ)

∂W
=
∂L (θ)

∂W
+
∂Ω(θ)

∂W

(and we know how to calculate both
terms on R.H.S)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

45/55

Derivation
∂ρ̂

∂W
=
[
∂ρ̂1
∂W

∂ρ̂2
∂W . . . ∂ρ̂k∂W

]
For each element in the above equation we can calculate ∂ρ̂l

∂W (which is the partial
derivative of a scalar w.r.t. a matrix = matrix). For a single element of a matrix Wjl:-

∂ρ̂l
∂Wjl

=
∂
[

1
m

∑m
i=1 g

(
WT

:,lxi + bl
)]

∂Wjl

=
1

m

m∑
i=1

∂
[
g
(
WT

:,lxi + bl
)]

∂Wjl

=
1

m

m∑
i=1

g′
(
WT

:,lxi + bl
)
xij

So in matrix notation we can write it as :

∂ρ̂l
∂W

= xi(g
′(WTxi + b))T

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

46/55

Module 7.6: Contractive Autoencoders

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

47/55

A contractive autoencoder also tries
to prevent an overcomplete autoen-
coder from learning the identity func-
tion.

It does so by adding the following reg-
ularization term to the loss function

Ω(θ) = ‖Jx(h)‖2F
where Jx(h) is the Jacobian of the en-
coder.

Let us see what it looks like.

x

h

x̂

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

48/55

If the input has n dimensions and the
hidden layer has k dimensions then

In other words, the (l, j) entry of the
Jacobian captures the variation in the
output of the lth neuron with a small
variation in the jth input.

Jx(h) =

∂h1
∂x1

. ∂h1
∂xn

∂h2
∂x1

. ∂h2
∂xn

...
. . .

...
∂hk
∂x1

. ∂hk
∂xn

‖Jx(h)‖2F =

n∑
j=1

k∑
l=1

(
∂hl
∂xj

)2

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

49/55

What is the intuition behind this ?

Consider ∂h1
∂x1

, what does it mean if
∂h1
∂x1

= 0

It means that this neuron is not very
sensitive to variations in the input x1.

But doesn’t this contradict our other
goal of minimizing L(θ) which re-
quires h to capture variations in the
input.

‖Jx(h)‖2F =

n∑
j=1

k∑
l=1

(∂hl
∂xj

)2

x

h

x̂

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

50/55

Indeed it does and that’s the idea

By putting these two contradicting
objectives against each other we en-
sure that h is sensitive to only very
important variations as observed in
the training data.

L(θ) - capture important variations
in data

Ω(θ) - do not capture variations in
data

Tradeoff - capture only very import-
ant variations in the data

‖Jx(h)‖2F =

n∑
j=1

k∑
l=1

(∂hl
∂xj

)2

x

h

x̂

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

51/55

Let us try to understand this with the help of an illustration.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

52/55

x

y

u1

u2

Consider the variations in the data
along directions u1 and u2

It makes sense to maximize a neuron
to be sensitive to variations along u1

At the same time it makes sense to
inhibit a neuron from being sensitive
to variations along u2 (as there seems
to be small noise and unimportant for
reconstruction)

By doing so we can balance between
the contradicting goals of good recon-
struction and low sensitivity.

What does this remind you of ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

53/55

Module 7.7 : Summary

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

54/55

x

h

x̂

≡

PCA

P TXTXP = D

y

x

u1 u2

min
θ
‖X −HW ∗︸ ︷︷ ︸

UΣV T
(SVD)

‖2F

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

55/55

xi

x̃i

h

x̂i

P (x̃ij |xij)

Regularization

Ω(θ) = λ‖θ‖2 Weight decaying

Ω(θ) =
k∑
l=1

ρ log
ρ

ρ̂l
+ (1− ρ) log

1− ρ
1− ρ̂l

Sparse

Ω(θ) =

n∑
j=1

k∑
l=1

(∂hl
∂xj

)2

Contractive

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 7

