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Module 8.1 : Bias and Variance
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We will begin with a quick overview of bias, variance and the trade-off between
them.
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Simple

Complex

The points were drawn from a si-
nusoidal function (the true f(x))

Let us consider the problem of fitting a curve
through a given set of points

We consider two models :

Simple
(degree:1) y = f̂(x) = w1x+ w0

Complex
(degree:25) y = f̂(x) =

25∑
i=1

wix
i + w0

Note that in both cases we are making an as-
sumption about how y is related to x. We
have no idea about the true relation f(x)

The training data consists of 100 points
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Simple

Complex

The points were drawn from
a sinusoidal function (the true
f(x))

We sample 25 points from the training data
and train a simple and a complex model

We repeat the process ‘k’ times to train
multiple models (each model sees a different
sample of the training data)

We make a few observations from these plots
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Simple models trained on different samples of
the data do not differ much from each other

However they are very far from the true sinus-
oidal curve (under fitting)

On the other hand, complex models trained on
different samples of the data are very different
from each other (high variance)
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Green Line: Average value of f̂(x)
for the simple model
Blue Curve: Average value of f̂(x)
for the complex model
Red Curve: True model (f(x))

Let f(x) be the true model (sinusoidal in this
case) and f̂(x) be our estimate of the model
(simple or complex, in this case) then,

Bias (f̂(x)) = E[f̂(x)]− f(x)

E[f̂(x)] is the average (or expected) value of
the model

We can see that for the simple model the av-
erage value (green line) is very far from the
true value f(x) (sinusoidal function)

Mathematically, this means that the simple
model has a high bias

On the other hand, the complex model has a
low bias
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We now define,

Variance (f̂(x)) = E[(f̂(x)− E[f̂(x)])2]

(Standard definition from statistics)

Roughly speaking it tells us how much the dif-
ferent f̂(x)’s (trained on different samples of
the data) differ from each other

It is clear that the simple model has a low vari-
ance whereas the complex model has a high
variance
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In summary (informally)

Simple model: high bias, low variance

Complex model: low bias, high variance

There is always a trade-off between the bias
and variance

Both bias and variance contribute to the mean
square error. Let us see how
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Module 8.2 : Train error vs Test error
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We can show that

E[(y − f̂(x))2] = Bias2

+ V ariance

+ σ2 (irreducible error)

See proof here

Consider a new point (x, y) which was not
seen during training

If we use the model f̂(x) to predict the
value of y then the mean square error is
given by

E[(y − f̂(x))2]

(average square error in predicting y for
many such unseen points)
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model complexity

er
ro

r High bias High variance

Sweet spot-
-perfect tradeoff
-ideal model
complexity

E[(y − f̂(x))2] = Bias2

+ V ariance

+ σ2 (irreducible error)

The parameters of f̂(x) (all wi’s) are trained
using a training set {(xi, yi)}ni=1

However, at test time we are interested in eval-
uating the model on a validation (unseen) set
which was not used for training

This gives rise to the following two entities of
interest:
trainerr (say, mean square error)
testerr (say, mean square error)

Typically these errors exhibit the trend shown
in the adjacent figure
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Intuitions developed so far

Let there be n training points and m test (validation) points

trainerr =
1

n

n∑
i=1

(yi − f̂(xi))
2

testerr =
1

m

n+m∑
i=n+1

(yi − f̂(xi))
2

As the model complexity increases trainerr becomes overly optimistic and gives
us a wrong picture of how close f̂ is to f

The validation error gives the real picture of how close f̂ is to f

We will concretize this intuition mathematically now and eventually show how
to account for the optimism in the training error
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Let D={xi, yi}m+n
i=1 , then for any

point (x, y) we have,

yi = f(xi) + εi

which means that yi is related to xi
by some true function f but there is
also some noise ε in the relation

For simplicity, we assume

ε ∼ N (0, σ2)

and of course we do not know f

Further we use f̂ to approximate f
and estimate the parameters using T
⊂ D such that

yi = f̂(xi)

We are interested in knowing

E[(f̂(xi)− f(xi))
2]

but we cannot estimate this directly
because we do not know f

We will see how to estimate this em-
pirically using the observation yi &
prediction ŷi
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E[(ŷi − yi)2] = E[(f̂(xi)− f(xi)− εi)2] (yi = f(xi) + εi)

= E[(f̂(xi)− f(xi))
2 − 2εi(f̂(xi)− f(xi)) + ε2i ]

= E[(f̂(xi)− f(xi))
2]− 2E[εi(f̂(xi)− f(xi))] + E[ε2i ]

∴ E[(f̂(xi)− f(xi))
2] = E[(ŷi − yi)2] − E[ε2i ] + 2E[ εi(f̂(xi)− f(xi)) ]
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We will take a small detour to understand how to empirically estimate an
Expectation and then return to our derivation
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Suppose we have observed the goals scored(z) in k matches as
z1 = 2, z2 = 1, z3 = 0, ... zk = 2

Now we can empirically estimate E[z] i.e. the expected number of goals scored
as

E[z] =
1

k

k∑
i=1

zi

Analogy with our derivation: We have a certain number of observations yi &
predictions ŷi using which we can estimate

E[(ŷi − yi)2] =
1

m

m∑
i=1

(ŷi − yi)2
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... returning back to our derivation
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E[(f̂(xi)− f(xi))
2] = E[(ŷi − yi)2] − E[ε2i ] + 2E[ εi(f̂(xi)− f(xi)) ]

We can empirically evaluate R.H.S using training observations or test observa-
tions

Case 1: Using test observations

E[(f̂(xi)− f(xi))
2]︸ ︷︷ ︸

true error

=
1

m

n+m∑
i=n+1

(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error

− 1

m

n+m∑
i=n+1

ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

∵ covariance(X,Y ) = E[(X − µX)(Y − µY )]

= E[(X)(Y − µY )](if µX = E[X] = 0)

= E[XY ]− E[XµY ] = E[XY ]− µYE[X] = E[XY ]
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E[(f̂(xi)− f(xi))
2]︸ ︷︷ ︸

true error

=
1

m

n+m∑
i=n+1

(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error

− 1

m

n+m∑
i=n+1

ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

None of the test observations participated in the estimation of f̂(x)[the para-
meters of f̂(x) were estimated only using training data]

∴ ε ⊥ (f̂(xi)− f(xi))

∴ E[εi · (f̂(xi)− f(xi))] = E[εi] · E[f̂(xi)− f(xi))] = 0 · E[f̂(xi)− f(xi))] = 0

∴ true error = empirical test error + small constant

Hence, we should always use a validation set(independent of the training set)
to estimate the error
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Case 2: Using training observations

E[(f̂(xi)− f(xi))
2]︸ ︷︷ ︸

true error

=
1

n

n∑
i=1

(ŷi − yi)2︸ ︷︷ ︸
empirical estimation of error

− 1

n

n∑
i=1

ε2i︸ ︷︷ ︸
small constant

+ 2 E[ εi(f̂(xi)− f(xi)) ]︸ ︷︷ ︸
= covariance (εi,f̂(xi)−f(xi))

Now, ε 6⊥ f̂(x) because ε was used for estimating the parameters of f̂(x)

∴ E[εi · (f̂(xi)− f(xi))] 6= E[εi] · E[f̂(xi)− f(xi))] 6= 0

Hence, the empirical train error is smaller than the true error and does not give
a true picture of the error

But how is this related to model complexity? Let us see
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Module 8.3 : True error and Model complexity
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Using Stein’s Lemma (and some trickery) we can show that

1

n

n∑
i=1

εi(f̂(xi)− f(xi)) =
σ2

n

n∑
i=1

∂f̂(xi)

∂yi

When will ∂f̂(xi)
∂yi

be high? When a small change in the observation causes a

large change in the estimation(f̂)

Can you link this to model complexity?

Yes, indeed a complex model will be more sensitive to changes in observations
whereas a simple model will be less sensitive to changes in observations

Hence, we can say that
true error = empirical train error + small constant + Ω(model complexity)
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Let us verify that indeed a
complex model is more sens-
itive to minor changes in the
data

We have fitted a simple
and complex model for some
given data

We now change one of these
data points

The simple model does not
change much as compared to
the complex model

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



28/1

Hence while training, instead of minimizing the training error Ltrain(θ) we
should minimize

min
w.r.t θ

Ltrain(θ) + Ω(θ) = L (θ)

Where Ω(θ) would be high for complex models and small for simple models

Ω(θ) acts as an approximate for σ2

n

∑n
i=1

∂f̂(xi)
∂yi

This is the basis for all regularization methods

We can show that l1 regularization, l2 regularization, early stopping and inject-
ing noise in input are all instances of this form of regularization.
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model complexity

er
ro

r

High bias High variance

Sweet spot

Ω(θ) should ensure
that model has reas-
onable complexity

σ2

n

∑n
i=1

∂f̂(xi)
∂yi
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Why do we care about this
bias variance tradeoff and
model complexity?

Deep Neural networks are highly complex
models.

Many parameters, many non-linearities.

It is easy for them to overfit and drive training
error to 0.

Hence we need some form of regularization.
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Different forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Module 8.4 : l2 regularization
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Different forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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For l2 regularization we have,

L̃ (w) = L (w) +
α

2
‖w‖2

For SGD (or its variants), we are interested in

∇L̃ (w) = ∇L (w) + αw

Update rule:

wt+1 = wt − η∇L (wt)− ηαwt

Requires a very small modification to the code

Let us see the geometric interpretation of this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



35/1

Assume w∗ is the optimal solution for L (w) [not L̃ (w)] i.e. the solution in
the absence of regularization (w∗ optimal → ∇L (w∗) = 0)

Consider u = w − w∗. Using Taylor series approximation (upto 2nd order)

L (w∗ + u) = L (w∗) + uT∇L (w∗) +
1

2
uTHu

L (w) = L (w∗) + (w − w∗)T∇L (w∗) +
1

2
(w − w∗)TH(w − w∗)

= L (w∗) +
1

2
(w − w∗)TH(w − w∗) (∵ ∇L(w∗) = 0 )

∇L (w) = ∇L (w∗) +H(w − w∗)
= H(w − w∗)

Now,

∇L̃ (w) = ∇L (w) + αw

= H(w − w∗) + αw
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Let w̃ be the optimal solution for L̃(w) [i.e regularized loss]

∵ ∇L̃(w̃) = 0

H(w̃ − w∗) + αw̃ = 0

∴(H + αI)w̃ = Hw∗

∴w̃ = (H + αI)−1Hw∗

Notice that if α→ 0 then w̃ → w∗ [no regularization]

But we are interested in the case when α 6= 0

Let us analyse the case when α 6= 0
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If H is symmetric Positive Semi Definite
H = QΛQT [Q is orthogonal, QQT = QTQ = I]

w̃ = (H + αI)−1Hw∗

= (QΛQT + αI)−1QΛQTw∗

= (QΛQT + αQIQT )−1QΛQTw∗

= [Q(Λ + αI)QT ]−1QΛQTw∗

= QT
−1

(Λ + αI)−1Q−1QΛQTw∗

= Q(Λ + αI)−1ΛQTw∗ (∵ QT
−1

= Q)

w̃ = QDQTw∗

where D = (Λ + αI)−1Λ, is a diagonal matrix which we will see in more detail
soon
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w̃ = Q(Λ + αI)−1ΛQTw∗

= QDQTw∗

(Λ + αI)−1 =


1

λ1+α
1

λ2+α
. . .

1
λn+α


D = (Λ + αI)−1Λ

(Λ + αI)−1Λ =


λ1

λ1+α
λ2

λ2+α
. . .

λn
λn+α



So what is happening here?

w∗ first gets rotated by QT to give
QTw∗

However if α = 0 then Q rotates
QTw∗ back to give w∗

If α 6= 0 then let us see what D
looks like

So what is happening now?
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w̃ = Q(Λ + αI)−1ΛQTw∗

= QDQTw∗

(Λ + αI)−1 =


1

λ1+α
1

λ2+α
. . .

1
λn+α


D = (Λ + αI)−1Λ

(Λ + αI)−1Λ =


λ1

λ1+α
λ2

λ2+α
. . .

λn
λn+α



Each element i of QTw∗ gets scaled
by λi

λi+α
before it is rotated back by

Q

if λi >> α then λi
λi+α

= 1

if λi << α then λi
λi+α

= 0

Thus only significant directions
(larger eigen values) will be retained.

Effective parameters =

n∑
i=1

λi
λi + α

< n
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The weight vector(w∗) is getting rotated to (w̃)

All of its elements are shrinking but some are shrinking more than the others

This ensures that only important features are given high weights
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Module 8.5 : Dataset augmentation
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Different forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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label = 2

[given training data]
We exploit the fact that
certain transformations
to the image do not
change the label of the
image.

label = 2

rotated by 20◦ rotated by 65◦ shifted vertically

shifted horizontally blurred changed some pixels

[augmented data = created using some knowledge of the
task]
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Typically, More data = better learning

Works well for image classification / object recognition tasks

Also shown to work well for speech

For some tasks it may not be clear how to generate such data
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Module 8.6 : Parameter Sharing and tying
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Parameter Sharing

Used in CNNs

Same filter applied at different
positions of the image

Or same weight matrix acts on
different input neurons

x

h(x)

x̂

Parameter Tying

Typically used in autoencoders

The encoder and decoder weights
are tied.
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Module 8.7 : Adding Noise to the inputs
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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x

x̃

h(x)

x̂

P (x̃|x)←noise process

We saw this in Autoencoder

We can show that for a simple input
output neural network, adding Gaus-
sian noise to the input is equivalent
to weight decay (L2 regularisation)

Can be viewed as data augmentation
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x1 + ε1 x2 + ε2

. . .
xk + εk

. . .
xn + εn

ε ∼ N (0, σ2)

x̃i = xi + εi

ŷ =

n∑
i=1

wixi

ỹ =

n∑
i=1

wix̃i

=

n∑
i=1

wixi +

n∑
i=1

wiεi

= ŷ +

n∑
i=1

wiεi

We are interested in E[(ỹ − y)2]

E
[
(ỹ − y)2

]
= E

[(
ŷ +

n∑
i=1

wiεi − y
)2]

= E

((ŷ − y)+
( n∑

i=1

wiεi

))2


= E
[
(ŷ − y)2

]
+ E

[
2(ŷ − y)

n∑
i=1

wiεi

]
+ E

[( n∑
i=1

wiεi

)2]

= E
[
(ŷ − y)2

]
+ 0 + E

[
n∑

i=1

w2
i ε

2
i

]
(∵ εi is independent of εj and εi is independent of (ŷ-y) )

= (E
[
(ŷ − y)2

]
+ σ2

n∑
i=1

w2
i (same as L2 norm penalty)
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Module 8.8 : Adding Noise to the outputs
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Hard targets0 0 1 0 0 0 0 0 0 0

minimize :

9∑
i=0

pi log qi

true distribution : p = {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}
estimated distribution : q

Intuition

Do not trust the true labels, they may be noisy

Instead, use soft targets
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Soft targetsε
9

ε
9 1− ε ε

9
ε
9

ε
9

ε
9

ε
9

ε
9

ε
9

ε = small positive constant

minimize :

9∑
i=0

pi log qi

true distribution + noise : p =
{ε

9
,
ε

9
, 1− ε, ε

9
, . . .

}
estimated distribution : q
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Module 8.9 : Early stopping
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Steps

Error

Training error

V alidation error

k − p k
stopreturn this model

Track the validation error

Have a patience parameter p

If you are at step k and there was
no improvement in validation error in
the previous p steps then stop train-
ing and return the model stored at
step k − p
Basically, stop the training early be-
fore it drives the training error to 0
and blows up the validation error
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Steps

Error

Training error

V alidation error

k − p k
stopreturn this model

Very effective and the mostly widely
used form of regularization

Can be used even with other regular-
izers (such as l2)

How does it act as a regularizer ?

We will first see an intuitive explan-
ation and then a mathematical ana-
lysis
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Steps

Error

Training error

V alidation error

k − p k
stopreturn this model

Recall that the update rule in SGD is

wt+1 = wt − η∇wt

= w0 − η
t∑
i=1

∇wi

Let τ be the maximum value of ∇wi
then

|wt+1 − w0| ≤ ηt|τ |

Thus, t controls how far wt can go
from the initial w0

In other words it controls the space
of exploration
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We will now see a mathematical analysis of this
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Recall that the Taylor series approximation for L (w) is

L (w) = L (w∗) + (w − w∗)T∇L (w∗) +
1

2
(w − w∗)TH(w − w∗)

= L (w∗) +
1

2
(w − w∗)TH(w − w∗) [ w∗ is optimal so ∇L (w∗) is 0 ]

∇(L (w)) = H(w − w∗)

Now the SGD update rule is:

wt = wt−1 − η∇L (wt−1)

= wt−1 − ηH(wt−1 − w∗)
= (I − ηH)wt−1 + ηHw∗
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wt = (I − ηH)wt−1 + ηHw∗

Using EVD of H as H = QΛQT , we get:

wt = (I − ηQΛQT )wt−1 + ηQΛQTw∗

If we start with w0 = 0 then we can show that (See Appendix)

wt = Q[I − (I − εΛ)t]QTw∗

Compare this with the expression we had for optimum W̃ with L2 regularization

w̃ = Q[I − (Λ + αI)−1α]QTw∗

We observe that wt = w̃, if we choose ε,t and α such that

(I − εΛ)t = (Λ + αI)−1α
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Things to be remember

Early stopping only allows t updates to the parameters.

If a parameter w corresponds to a dimension which is important for the loss
L (θ) then ∂L (θ)

∂w will be large

However if a parameter is not important (∂L (θ)
∂w is small) then its updates will

be small and the parameter will not be able to grow large in ‘t′ steps

Early stopping will thus effectively shrink the parameters corresponding to less
important directions (same as weight decay).
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Module 8.10 : Ensemble methods
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



67/1

y

ylr

Logistic Regression

ysvm

SVM

ynb

x1 x2 x3 x4

y

Naive Bayes

yfinal
Combine the output of different models to re-
duce generalization error

The models can correspond to different clas-
sifiers

It could be different instances of the same clas-
sifier trained with:

different hyperparameters
different features
different samples of the training data
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y

ylr1

y

ylr2

y

ylr3

Logistic LogisticLogistic
Regression RegressionRegression

yfinal

Each model trained with a different
sample of the data (sampling with
replacement)

Bagging: form an ensemble using dif-
ferent instances of the same classifier

From a given dataset, construct mul-
tiple training sets by sampling with
replacement (T1, T2, ..., Tk)

Train ith instance of the classifier us-
ing training set Ti
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The error made by the average
prediction of all the models is
1
k

∑
i εi

The expected squared error is :

mse =E[(
1

k

∑
i

εi)
2]

=
1

k2
E[
∑
i

∑
i=j

εiεj +
∑
i

∑
i 6=j

εiεj ]

=
1

k2
E[
∑
i

ε2i +
∑
i

∑
i 6=j

εiεj ]

=
1

k2
(
∑
i

E[ε2i ] +
∑
i

∑
i 6=j

E[εiεj ])

=
1

k2
(kV + k(k − 1)C)

=
1

k
V +

k − 1

k
C

When would bagging work?

Consider a set of k LR mod-
els

Suppose that each model
makes an error εi on a test
example

Let εi be drawn from a
zero mean multivariate nor-
mal distribution

V ariance = E[ε2i ] = V

Covariance = E[εiεj ] = C
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mse =
1

k
V +

k − 1

k
C

When would bagging work ?

If the errors of the model are perfectly
correlated then V = C and mse = V
[bagging does not help: the mse of the
ensemble is as bad as the individual
models]

If the errors of the model are inde-
pendent or uncorrelated then C = 0
and the mse of the ensemble reduces
to 1

kV

On average, the ensemble will per-
form at least as well as its individual
members
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Module 8.11 : Dropout
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Other forms of regularization

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Typically model averaging(bagging
ensemble) always helps

Training several large neural net-
works for making an ensemble is pro-
hibitively expensive

Option 1: Train several neural
networks having different architec-
tures(obviously expensive)

Option 2: Train multiple instances
of the same network using different
training samples (again expensive)

Even if we manage to train with op-
tion 1 or option 2, combining several
models at test time is infeasible in
real time applications
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Dropout is a technique which ad-
dresses both these issues.

Effectively it allows training several
neural networks without any signific-
ant computational overhead.

Also gives an efficient approximate
way of combining exponentially many
different neural networks.
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Dropout refers to dropping out units

Temporarily remove a node and all its incoming/outgoing connections
resulting in a thinned network

Each node is retained with a fixed probability (typically p = 0.5) for hidden
nodes and p = 0.8 for visible nodes
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Suppose a neural network has n nodes

Using the dropout idea, each node can be retained or dropped

For example, in the above case we drop 5 nodes to get a thinned network

Given a total of n nodes, what are the total number of thinned networks that
can be formed? 2n

Of course, this is prohibitively large and we cannot possibly train so many
networks

Trick: (1) Share the weights across all the networks
(2) Sample a different network for each training instance

Let us see how?
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We initialize all the parameters (weights) of the network and start training

For the first training instance (or mini-batch), we apply dropout resulting in
the thinned network

We compute the loss and backpropagate

Which parameters will we update? Only those which are active

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



78/1

For the second training instance (or mini-batch), we again apply dropout res-
ulting in a different thinned network

We again compute the loss and backpropagate to the active weights

If the weight was active for both the training instances then it would have
received two updates by now

If the weight was active for only one of the training instances then it would
have received only one updates by now

Each thinned network gets trained rarely (or even never) but the parameter
sharing ensures that no model has untrained or poorly trained parameters
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Present with
probability p

w1 w2 w3 w4

At training time

Always
present

pw1 pw2 pw3 pw4

At test time

What happens at test time?

Impossible to aggregate the outputs of 2n thinned networks

Instead we use the full Neural Network and scale the output of each node by
the fraction of times it was on during training
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Dropout essentially applies a masking
noise to the hidden units

Prevents hidden units from co-
adapting

Essentially a hidden unit cannot rely
too much on other units as they may
get dropped out any time

Each hidden unit has to learn to be
more robust to these random dro-
pouts

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8



81/1

hi

Here is an example of how dropout
helps in ensuring redundancy and ro-
bustness

Suppose hi learns to detect a face by
firing on detecting a nose

Dropping hi then corresponds to eras-
ing the information that a nose exists

The model should then learn another
hi which redundantly encodes the
presence of a nose

Or the model should learn to detect
the face using other features
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Recap

l2 regularization

Dataset augmentation

Parameter Sharing and tying

Adding Noise to the inputs

Adding Noise to the outputs

Early stopping

Ensemble methods

Dropout
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Appendix
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To prove: The below two equations are equivalent

wt = (I − ηQΛQT )wt−1 + ηQΛQTw∗

wt = Q[I − (I − εΛ)t]QTw∗

Proof by induction:

Base case: t = 1 and w0=0:

w1 according to the first equation:

w1 = (I − ηQΛQT )w0 + ηQΛQTw∗

= ηQΛQTw∗

w1 according to the second equation:

w1 = Q(I − (I − ηΛ)1)QTw∗

= ηQΛQTw∗
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Induction step: Let the two equations be equivalent for tth step

∴ wt = (I − ηQΛQT )wt−1 + ηQΛQTw∗

= Q[I − (I − εΛ)t]QTw∗

Proof that this will hold for (t+ 1)th step

wt+1 = (I − ηQΛQT )wt + ηQΛQTw∗

(using wt = Q[I − (I − εΛ)t]QTw∗)

(using wt = Q[I − (I − εΛ)t]QTw∗)

= (I − ηQΛQT )Q(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

= (I − ηQΛQT )Q(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

= (I − ηQΛQT )Q(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

(Opening this bracket)

= IQ(I − (I − ηΛ)t)QTw∗ − ηQΛQTQ(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

= Q(I − (I − ηΛ)t)QTw∗ − ηQΛQTQ(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 8
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Continuing

wt+1 = Q(I − (I − ηΛ)t)QTw∗ − ηQΛQTQ(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

= Q(I − (I − ηΛ)t)QTw∗ − ηQΛ(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗(∵ QTQ = I)

= Q(I − (I − ηΛ)t)QTw∗ − ηQΛ(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

= Q
[
(I − (I − ηΛ)t)− ηΛ(I − (I − ηΛ)t) + ηΛ

]
QTw∗

= Q(I − (I − ηΛ)t)QTw∗ − ηQΛ(I − (I − ηΛ)t)QTw∗ + ηQΛQTw∗

= Q
[
(I − (I − ηΛ)t)− ηΛ(I − (I − ηΛ)t) + ηΛ

]
QTw∗

= Q
[
(I − (I − ηΛ)t)− ηΛ(I − (I − ηΛ)t) + ηΛ

]
QTw∗

= Q
[
I − (I − ηΛ)t + ηΛ(I − ηΛ)t

]
QTw∗

= Q
[
I − (I − ηΛ)t + ηΛ(I − ηΛ)t

]
QTw∗

= Q
[
I − (I − ηΛ)t + ηΛ(I − ηΛ)t

]
QTw∗

= Q
[
I − (I − ηΛ)t(I − ηΛ)

]
QTw∗

= Q
[
I − (I − ηΛ)t(I − ηΛ)

]
QTw∗

= Q(I − (I − ηΛ)t+1)QTw∗

Hence, proved!
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