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Module 9.1 : A quick recap of training deep neural
networks
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We already saw how to train this network

w = w − η∇w where,

∇w =
∂L (w)

∂w
= (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

What about a wider network with more inputs:

w1 = w1 − η∇w1

w2 = w2 − η∇w2

w3 = w3 − η∇w3

where,∇wi = (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ xi
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ai = wihi−1;hi = σ(ai)

a1 = w1 ∗ x = w1 ∗ h0

What if we have a deeper network ?

We can now calculate ∇w1 using chain rule:

∂L (w)

∂w1
=
∂L (w)

∂y
.
∂y

∂a3
.
∂a3
∂h2

.
∂h2
∂a2

.
∂a2
∂h1

.
∂h1
∂a1

.
∂a1
∂w1

=
∂L (w)

∂y
∗ ............... ∗ h0

In general,

∇wi =
∂L (w)

∂y
∗ ............... ∗ hi−1

Notice that∇wi is proportional to the correspond-
ing input hi−1 (we will use this fact later)
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What happens if we have a network which is deep
and wide?

How do you calculate ∇w2 =?

It will be given by chain rule applied across mul-
tiple paths (We saw this in detail when we studied
back propagation)
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Things to remember

Training Neural Networks is a Game of Gradients (played using any of the
existing gradient based approaches that we discussed)

The gradient tells us the responsibility of a parameter towards the loss

The gradient w.r.t. a parameter is proportional to the input to the parameters
(recall the “..... ∗ x” term or the “.... ∗ hi” term in the formula for ∇wi)
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Backpropagation was made popular
by Rumelhart et.al in 1986

However when used for really deep
networks it was not very successful

In fact, till 2006 it was very hard to
train very deep networks

Typically, even after a large number
of epochs the training did not con-
verge

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



8/1

Module 9.2 : Unsupervised pre-training
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What has changed now? How did Deep Learning become so popular despite
this problem with training large networks?

Well, until 2006 it wasn’t so popular

The field got revived after the seminal work of Hinton and Salakhutdinov in
2006

1G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, July 2006.
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Let’s look at the idea of unsupervised pre-training introduced in this paper ...
(note that in this paper they introduced the idea in the context of RBMs but we

will discuss it in the context of Autoencoders)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



11/1

x̂

h1

x

reconstruct x

min
1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

Consider the deep neural network
shown in this figure

Let us focus on the first two layers of
the network (x and h1)

We will first train the weights
between these two layers using an un-
supervised objective

Note that we are trying to reconstruct
the input (x) from the hidden repres-
entation (h1)

We refer to this as an unsupervised
objective because it does not involve
the output label (y) and only uses the
input data (x)
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(ĥ1ij − h1ij )2

At the end of this step, the weights
in layer 1 are trained such that h1
captures an abstract representation
of the input x

We now fix the weights in layer 1 and
repeat the same process with layer 2

At the end of this step, the weights in
layer 2 are trained such that h2 cap-
tures an abstract representation of h1

We continue this process till the last
hidden layer (i.e., the layer before the
output layer) so that each successive
layer captures an abstract represent-
ation of the previous layer
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x1 x2 x3

min
θ

1

m

m∑
i=1

(yi − f(xi))
2

After this layerwise pre-training, we
add the output layer and train the
whole network using the task specific
objective

Note that, in effect we have initial-
ized the weights of the network us-
ing the greedy unsupervised objective
and are now fine tuning these weights
using the supervised objective
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Why does this work better?

Is it because of better optimization?

Is it because of better regularization?

Let’s see what these two questions mean and try to answer them based on some
(among many) existing studies1,2

1The difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et
al,2009

2Exploring Strategies for Training Deep Neural Networks, Larocelle et al,2009
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Why does this work better?

Is it because of better optimization?

Is it because of better regularization?
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What is the optimization problem that we are trying to solve?

minimize L (θ) =
1

m

m∑
i=1

(yi − f(xi))
2

Is it the case that in the absence of unsupervised pre-training we are not able
to drive L (θ) to 0 even for the training data (hence poor optimization) ?

Let us see this in more detail ...
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The error surface of the supervised
objective of a Deep Neural Network
is highly non-convex

With many hills and plateaus and val-
leys

Given that large capacity of DNNs it
is still easy to land in one of these 0
error regions

Indeed Larochelle et.al.1 show that if
the last layer has large capacity then
L (θ) goes to 0 even without pre-
training

However, if the capacity of the net-
work is small, unsupervised pre-
training helps

1Exploring Strategies for Training Deep Neural Networks, Larocelle et al,2009
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Why does this work better?

Is it because of better optimization?

Is it because of better regularization?
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What does regularization do? It con-
strains the weights to certain regions
of the parameter space

L-1 regularization: constrains most
weights to be 0

L-2 regularization: prevents most
weights from taking large values

1Image Source:The Elements of Statistical Learning-T. Hastie, R. Tibshirani, and J. Friedman,
Pg 71
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Unsupervised objective:

Ω(θ) =
1

m

m∑
i=1

n∑
j=1

(xij − x̂ij)2

We can think of this unsupervised ob-
jective as an additional constraint on
the optimization problem

Supervised objective:

L (θ) =
1

m

m∑
i=1

(yi − f(xi))
2

Indeed, pre-training constrains the
weights to lie in only certain regions
of the parameter space

Specifically, it constrains the weights
to lie in regions where the character-
istics of the data are captured well (as
governed by the unsupervised object-
ive)

This unsupervised objective ensures
that that the learning is not greedy
w.r.t. the supervised objective (and
also satisfies the unsupervised object-
ive)
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Some other experiments have also
shown that pre-training is more ro-
bust to random initializations

One accepted hypothesis is that pre-
training leads to better weight ini-
tializations (so that the layers cap-
ture the internal characteristics of the
data)

1The difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et
al,2009
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So what has happened since 2006-2009?
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Deep Learning has evolved

Better optimization algorithms

Better regularization methods

Better activation functions

Better weight initialization strategies
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Module 9.3 : Better activation functions
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Deep Learning has evolved

Better optimization algorithms

Better regularization methods

Better activation functions

Better weight initialization strategies
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Before we look at activation functions, let’s try to answer the following question:
“What makes Deep Neural Networks powerful ?”
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Consider this deep neural network

Imagine if we replace the sigmoid in
each layer by a simple linear trans-
formation

y = (w4 ∗ (w3 ∗ (w2 ∗ (w1x))))

Then we will just learn y as a linear
transformation of x

In other words we will be constrained
to learning linear decision boundaries

We cannot learn arbitrary decision
boundaries
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In particular, a deep linear neural
network cannot learn such boundar-
ies

But a deep non linear neural net-
work can indeed learn such bound-
aries (recall Universal Approximation
Theorem)
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Now let’s look at some non-linear activation functions that are typically used in
deep neural networks (Much of this material is taken from Andrej Karpathy’s
lecture notes 1)

1http://cs231n.github.io
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Sigmoid

σ(x) = 1
1+e−x

As is obvious, the sigmoid function
compresses all its inputs to the range
[0,1]

Since we are always interested in
gradients, let us find the gradient of
this function

∂σ(x)

∂x
= σ(x)(1− σ(x))

(you can easily derive it)

Let us see what happens if we use sig-
moid in a deep network
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h0 = x

σ

σ

σ

σ

a1
h1

a2
h2

a3
h3

a4
h4

a3 = w2h2
h3 = σ(a3)

While calculating ∇w2 at some point
in the chain rule we will encounter

∂h3
∂a3

=
∂σ(a3)

∂a3
= σ(a3)(1− σ(a3))

What is the consequence of this ?

To answer this question let us first
understand the concept of saturated
neuron ?
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Saturated neurons thus cause the
gradient to vanish.

A sigmoid neuron is said to have sat-
urated when σ(x) = 1 or σ(x) = 0

What would the gradient be at satur-
ation?

Well it would be 0 (you can see it from
the plot or from the formula that we
derived)
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Saturated neurons thus cause the
gradient to vanish.

w1 w2 w3 w4
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But why would the neurons saturate
?

Consider what would happen if we
use sigmoid neurons and initialize the
weights to very high values ?

The neurons will saturate very
quickly

The gradients will vanish and the
training will stall (more on this later)
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Saturated neurons cause the gradient
to vanish

Sigmoids are not zero centered

Consider the gradient w.r.t. w1 and
w2

∇w1 =
∂L (w)

∂y

∂y

h3

∂h3
∂a3

∂a3
∂w1

h21

∇w2 =
∂L (w)

∂y

∂y

h3

∂h3
∂a3

∂a3
∂w2

h22

Note that h21 and h22 are between
[0, 1] (i.e., they are both positive)

So if the first common term (in red)
is positive (negative) then both ∇w1

and ∇w2 are positive (negative)

Why is this a problem??

w1 w2

a3 = w1 ∗ h21 + w2 ∗ h22

y

h0 = x

h1

h2

Essentially, either all the gradients at
a layer are positive or all the gradients
at a layer are negative
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Saturated neurons cause the gradient
to vanish

Sigmoids are not zero centered

This restricts the possible update dir-
ections

∇w2

∇w1

(Not possible) Quadrant in which
all gradients are

+ve
(Allowed)

Quadrant in which
all gradients are

-ve
(Allowed)

(Not possible)

Now imagine:
this is the
optimal w
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Saturated neurons cause the gradient
to vanish

Sigmoids are not zero centered

And lastly, sigmoids are compu-
tationally expensive (because of
exp (x))

∇w2

∇w1

starting from this
initial position
only way to reach it

is by taking a zigzag path
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tanh(x)
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f(x) = tanh(x)

Compresses all its inputs to the range
[-1,1]

Zero centered

What is the derivative of this func-
tion?

∂tanh(x)

∂x
= (1− tanh2(x))

The gradient still vanishes at satura-
tion

Also computationally expensive
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ReLU

f(x) = max(0, x)
f(x) = max(0, x+ 1)−max(0, x− 1)

Is this a non-linear function?

Indeed it is!

In fact we can combine two ReLU
units to recover a piecewise linear ap-
proximation of the sigmoid function
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ReLU

f(x) = max(0, x)

Advantages of ReLU

Does not saturate in the positive re-
gion

Computationally efficient

In practice converges much faster
than sigmoid/tanh1

1ImageNet Classification with Deep Convolutional Neural Networks- Alex Krizhevsky Ilya
Sutskever, Geoffrey E. Hinton, 2012
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In practice there is a caveat

Let’s see what is the derivative of ReLU(x)

∂ReLU(x)

∂x
= 0 if x < 0

= 1 if x > 0

Now consider the given network

What would happen if at some point a large
gradient causes the bias b to be updated to a
large negative value?
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w1x1 + w2x2 + b < 0 [if b << 0]

The neuron would output 0 [dead neuron]

Not only would the output be 0 but during
backpropagation even the gradient ∂h1

∂a1
would

be zero

The weights w1, w2 and b will not get updated
[∵ there will be a zero term in the chain rule]

∇w1 =
∂L (θ)

∂y
.
∂y

∂a2
.
∂a2
∂h1

.
∂h1
∂a1

.
∂a1
∂w1

The neuron will now stay dead forever!!
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In practice a large fraction of ReLU
units can die if the learning rate is set
too high

It is advised to initialize the bias to a
positive value (0.01)

Use other variants of ReLU (as we
will soon see)
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Leaky ReLU

x

y

f(x) = max(0.01x,x)

No saturation

Will not die (0.01x ensures that
at least a small gradient will flow
through)

Computationally efficient

Close to zero centered ouputs

Parametric ReLU

f(x) = max(αx, x)

α is a parameter of the model

α will get updated during backpropagation
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Exponential Linear Unit

x

y

f(x) = x if x > 0

= aex − 1 if x ≤ 0

All benefits of ReLU

aex − 1 ensures that at least a small
gradient will flow through

Close to zero centered outputs

Expensive (requires computation of
exp(x))
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Maxout Neuron

max(wT1 x+ b1, w
T
2 x+ b2)

Generalizes ReLU and Leaky ReLU

No saturation! No death!

Doubles the number of parameters
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Things to Remember

Sigmoids are bad

ReLU is more or less the standard unit for Convolutional Neural Networks

Can explore Leaky ReLU/Maxout/ELU

tanh sigmoids are still used in LSTMs/RNNs (we will see more on this later)
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Module 9.4 : Better initialization strategies
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Deep Learning has evolved

Better optimization algorithms

Better regularization methods

Better activation functions

Better weight initialization strategies

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



49/1

y

σ σ σ

σ

x1 x2

h21

a21

h11 h12 h13

a11 a12 a13

a11 = w11x1 + w12x2

a12 = w21x1 + w22x2

∴ a11 = a12 = 0

∴ h11 = h12

What happens if we initialize all
weights to 0?

All neurons in layer 1 will get the
same activation

Now what will happen during back
propagation?

∇w11 =
∂L (w)

∂y
.
∂y

∂h11
.
∂h11
∂a11

.x1

∇w21 =
∂L (w)

∂y
.
∂y

∂h12
.
∂h12
∂a12

.x1

but h11 = h12

and a12 = a12

∴ ∇w11 = ∇w21

Hence both the weights will get the
same update and remain equal

Infact this symmetry will never break
during training

The same is true for w12 and w22

And for all weights in layer 2 (infact,
work out the math and convince your-
self that all the weights in this layer
will remain equal )

This is known as the symmetry
breaking problem

This will happen if all the weights in
a network are initialized to the same
value
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We will now consider a feedforward
network with:

input: 1000 points, each ∈ R500

input data is drawn from unit Gaus-
sian

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

the network has 5 layers

each layer has 500 neurons

we will run forward propagation on
this network with different weight ini-
tializations
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tanh activation functions

sigmoid activation functions

Let’s try to initialize the weights to
small random numbers

We will see what happens to the ac-
tivation across different layers

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



52/1

What will happen during back
propagation?

Recall that ∇w1 is proportional to
the activation passing through it

If all the activations in a layer are
very close to 0, what will happen to
the gradient of the weights connect-
ing this layer to the next layer?

They will all be close to 0 (vanishing
gradient problem)
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sigmoid activations with large weights

tanh activation with large weights

Let us try to initialize the weights to
large random numbers

Most activations have saturated

What happens to the gradients at sat-
uration?

They will all be close to 0 (vanishing
gradient problem)
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x1 x2 x3

s1ns11

xn

[Assuming 0 Mean inputs and
weights]

[Assuming V ar(xi) = V ar(x)∀i ]

[Assuming
V ar(w1i) = V ar(w)∀i]

Let us try to arrive at a more principled
way of initializing weights

s11 =

n∑
i=1

w1ixi

V ar(s11) = V ar(

n∑
i=1

w1ixi) =

n∑
i=1

V ar(w1ixi)

=

n∑
i=1

[
(E[w1i])

2V ar(xi)

+ (E[xi])
2V ar(w1i) + V ar(xi)V ar(w1i)

]
=

n∑
i=1

V ar(xi)V ar(w1i)

= (nV ar(w))(V ar(x))
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x1 x2 x3

s1ns11

xn

In general,

V ar(S1i) = (nV ar(w))(V ar(x))

What would happen if nV ar(w)� 1
?

The variance of S1i will be large

What would happen if nV ar(w)→ 0?

The variance of S1i will be small
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x1 x2 x3

s1ns11

s21

xn

V ar(Si1) = nV ar(w1)V ar(x)

Let us see what happens if we add one
more layer

Using the same procedure as above
we will arrive at

V ar(s21) =

n∑
i=1

V ar(s1i)V ar(w2i)

= nV ar(s1i)V ar(w2)

V ar(s21) ∝ [nV ar(w2)][nV ar(w1)]V ar(x)

∝ [nV ar(w)]2V ar(x)

Assuming weights across all layers

have the same variance
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V ar(az) = a2(V ar(z))

In general,

V ar(ski) = [nV ar(w)]kV ar(x)

To ensure that variance in the output of any
layer does not blow up or shrink we want:

nV ar(w) = 1

If we draw the weights from a unit Gaussian
and scale them by 1√

n
then, we have :

nV ar(w) = nV ar(
z√
n

)

= n ∗ 1

n
V ar(z) = 1← (UnitGaussian)
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sigmoid activations

tanh activation

Let’s see what happens if we use this
initialization
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However this does not work for ReLU
neurons

Why ?

Intuition: He et.al. argue that a
factor of 2 is needed when dealing
with ReLU Neurons

Intuitively this happens because the
range of ReLU neurons is restricted
only to the positive half of the space
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Indeed when we account for this
factor of 2 we see better performance
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Module 9.5 : Batch Normalization
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We will now see a method called batch normalization which allows us to be less
careful about initialization
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x1 x2 x3

h0

h1

h2

h3

h4

To understand the intuition behind Batch Nor-
malization let us consider a deep network

Let us focus on the learning process for the weights
between these two layers

Typically we use mini-batch algorithms

What would happen if there is a constant change
in the distribution of h3

In other words what would happen if across mini-
batches the distribution of h3 keeps changing

Would the learning process be easy or hard?
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It would help if the pre-activations at each layer
were unit gaussians

Why not explicitly ensure this by standardizing
the pre-activation ?

ŝik = sik−E[sik]√
var(sik)

But how do we compute E[sik] and Var[sik]?

We compute it from a mini-batch

Thus we are explicitly ensuring that the distri-
bution of the inputs at different layers does not
change across batches
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This is what the deep network will look like with
Batch Normalization

Is this legal ?

Yes, it is because just as the tanh layer is dif-
ferentiable, the Batch Normalization layer is also
differentiable

Hence we can backpropagate through this layer
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γk and βk are additional
parameters of the network.

Catch: Do we necessarily want to force a unit
gaussian input to the tanh layer?

Why not let the network learn what is best for it?

After the Batch Normalization step add the fol-
lowing step:

y(k) = γkŝik + β(k)

What happens if the network learns:

γk =
√
var(xk)

βk = E[xk]

We will recover sik

In other words by adjusting these additional para-
meters the network can learn to recover sik if that
is more favourable
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We will now compare the performance with and without batch normalization on
MNIST data using 2 layers....
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2016-17: Still exciting times

Even better optimization methods

Data driven initialization methods

Beyond batch normalization
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