CS7015 (Deep Learning): Lecture 12

Object Detection: R-CNN, Fast R-CNN, Faster R-CNN, You Only Look Once (YOLO)

Mitesh M. Khapra

Department of Computer Science and Engineering Indian Institute of Technology Madras

Acknowledgements

- Some images borrowed from Ross Girshick's original slides on RCNN, Fast RCNN, etc.
- Some ideas borrowed from the presentation of Kaustav Kundu*
 - * Deep Object Detection

Module 12.1: Introduction to object detection

- So far we have looked at Image Classification
- We will now move on to another Image Processing Task Object Detection

Task Image classification

Task Image classification

Output Car

Task Image classification

Output Car

Object Detection

 \mathbf{Task}

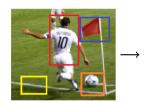
Image classification

Output

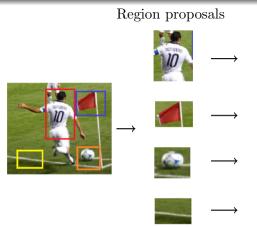
Car

Object Detection

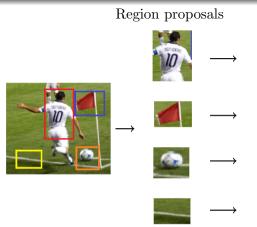
Car, exact bounding box containing car



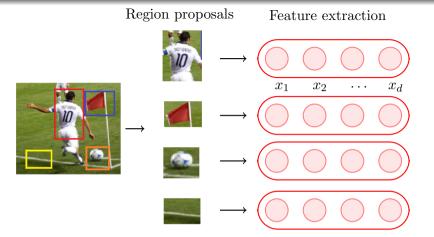
• Let us see a typical pipeline for *object detection*



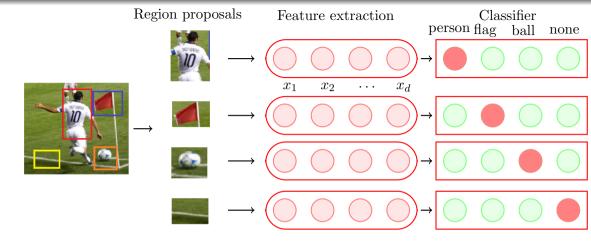
- Let us see a typical pipeline for *object detection*
- It starts with a region proposal stage where we identify potential regions which may contain objects



• We could think of these regions as mini-images

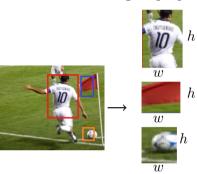


- We could think of these regions as mini-images
- We extract features(SIFT, HOG, CNNs) from these mini-images

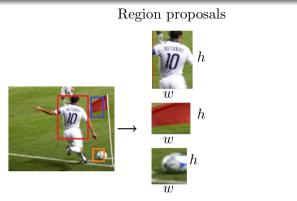


• Pass these through a standard image classifer to determine the class

Region proposals

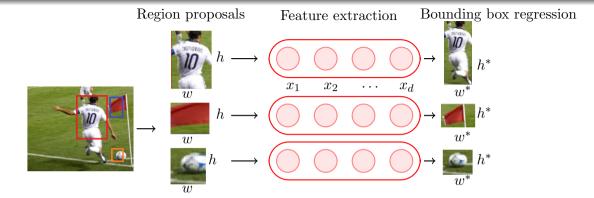


• In addition we would also like to correct the proposed bounding boxes



Bounding box regression h^* w^* h^* w^*

- In addition we would also like to correct the proposed bounding boxes
- This is posed as a regression problem (for example, we would like to predict w^* , h^* from the proposed w and h)

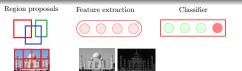


- In addition we would also like to correct the proposed bounding boxes
- This is posed as a regression problem (for example, we would like to predict w^* , h^* from the proposed w and h)

• Let us see how these three components have evolved over time

Pre 2012

- Let us see how these three components have evolved over time
- Propose all possible regions in the image of varying sizes (almost brute force)



Pre 2012

- Let us see how these three components have evolved over time
- Propose all possible regions in the image of varying sizes (almost brute force)
- Use handcrafted features (SIFT, HOG)

Pre 2012

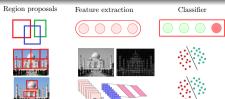
- Let us see how these three components have evolved over time
- Propose all possible regions in the image of varying sizes (almost brute force)
- Use handcrafted features (SIFT. HOG)
- Train a linear classifier using these features

Feature extraction

Pre 2012

• Let us see how these three components have evolved over time

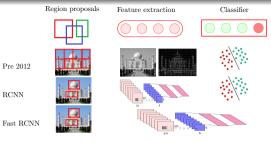
- Propose all possible regions in the image of varying sizes (almost brute force)
- Use handcrafted features (SIFT, HOG)
- Train a linear classifier using these features
- We will now see three algorithms that progressively improve these components



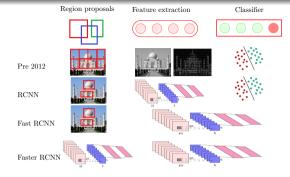
Pre 2012

RCNN

- Let us see how these three components have evolved over time
- Propose all possible regions in the image of varying sizes (almost brute force)
- Use handcrafted features (SIFT, HOG)
- Train a linear classifier using these features
- We will now see three algorithms that progressively improve these components

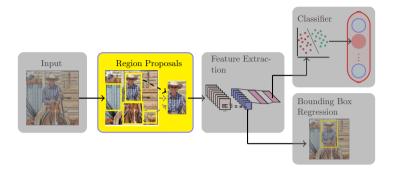


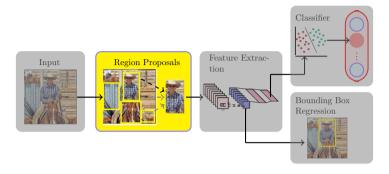
- Let us see how these three components have evolved over time
- Propose all possible regions in the image of varying sizes (almost brute force)
- Use handcrafted features (SIFT, HOG)
- Train a linear classifier using these features
- We will now see three algorithms that progressively improve these components



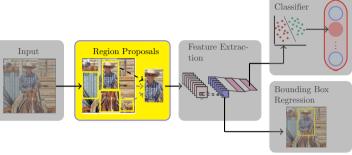
- Let us see how these three components have evolved over time
- Propose all possible regions in the image of varying sizes (almost brute force)
- Use handcrafted features (SIFT, HOG)
- Train a linear classifier using these features
- We will now see three algorithms that progressively improve these components

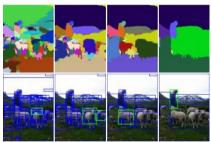
Module 12.2: RCNN model for object detection



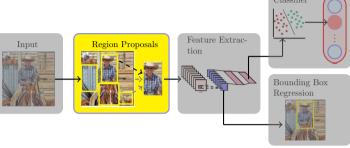


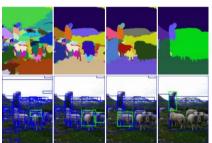
• Selective Search for region proposals



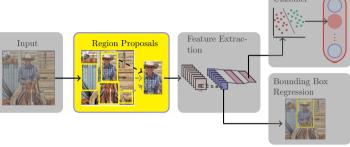


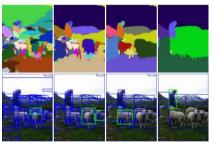
- Selective Search for region proposals
- Does hierarchical clustering at different scales



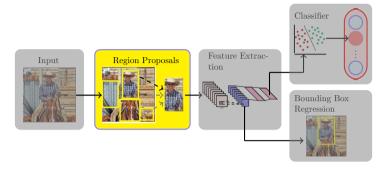


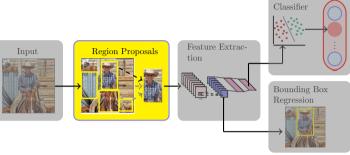
- Selective Search for region proposals
- Does hierarchical clustering at different scales
- For example the figures from left to right show clusters of increasing sizes



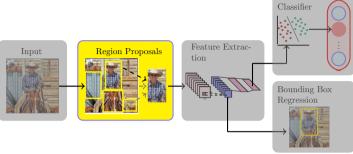


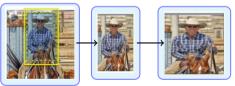
- Selective Search for region proposals
- Does hierarchical clustering at different scales
- For example the figures from left to right show clusters of increasing sizes
- Such a hierarchical clustering is important as we may find different objects at different scales



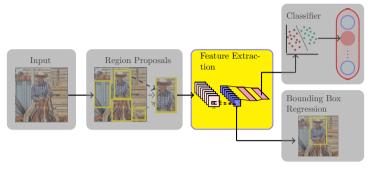


• Proposed regions are cropped to form mini images

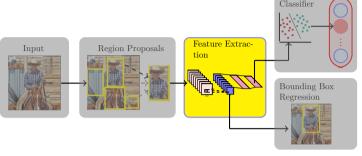




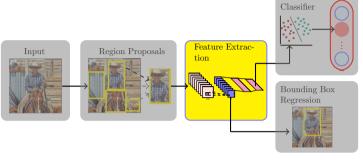
- Proposed regions are cropped to form mini images
- Each mini image is scaled to match the CNN's (feature extractor) input size

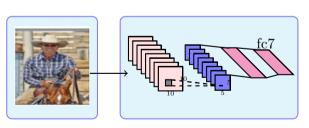


• For feature extraction any CNN trained for Image Classification can be used (AlexNet/ VGGNet etc.)

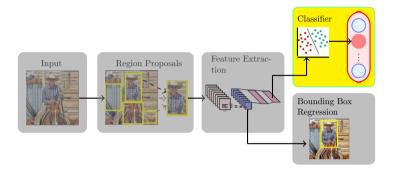


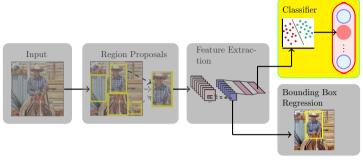
- For feature extraction any CNN trained for Image Classification can be used (AlexNet/ VGGNet etc.)
- Outputs from fc7 layer are taken as features

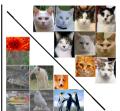




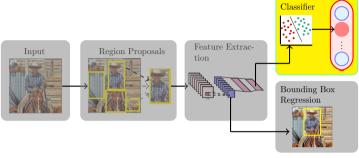
- For feature extraction any CNN trained for Image Classification can be used (AlexNet/ VGGNet etc.)
- Outputs from fc7 layer are taken as features
- CNN is fine tuned using ground truth (cropped) object images



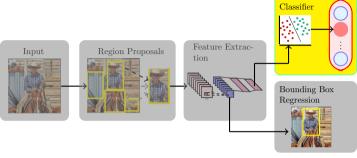




• Linear models (SVMs) are used for classification

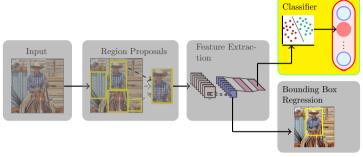


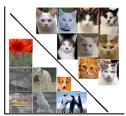
• Linear models (SVMs) are used for classification (1 model per class)



• Linear models (SVMs) are used for classification (1 model per class)

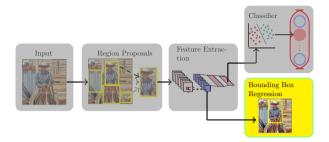
. . .





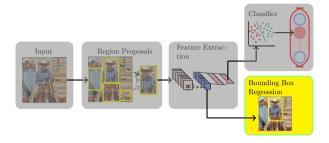
 $\bullet \ \, \text{Linear models (SVMs) are used for classification (1 model per class)}$

. . .



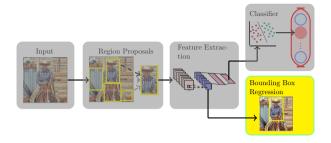


Proposed Box



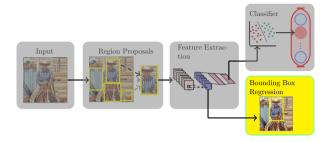
• The proposed regions may not be perfect

True Box



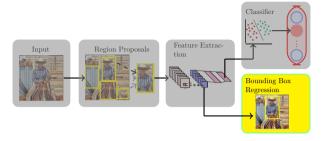
True Box

- The proposed regions may not be perfect
- We want to learn four regression models which will learn to predict x^* , y^* , w^* , h^*



True Box

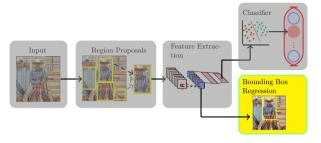
- The proposed regions may not be perfect
- We want to learn four regression models which will learn to predict x^* , y^* , w^* , h^*
- We will see their respective objective functions



 $\min \sum_{i=1}^N \left(\frac{x^*-x}{w} - w_1^T z\right)^2$

Proposed Box True Box

z: features from pool5 layer of the network



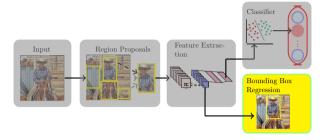
 $\min \sum_{i=1}^{N} \left(\frac{x^* - x}{w} - w_1^T z \right)^2$

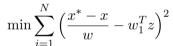
• $\frac{x^*-x}{w}$ is the normalized difference between proposed x and true x^*

Proposed Box

True Box

 \mathbf{z} : features from pool 5 layer of the network

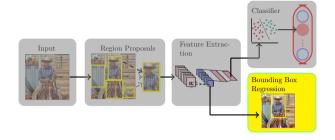




- $\frac{x^*-x}{w}$ is the normalized difference between proposed x and true x^*
- If we can predict this difference we can compute x^*

Proposed Box True Box

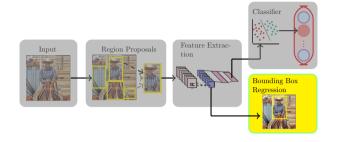
z: features from pool5 layer of the network



Proposed Box

True Box

- $\min \sum_{i=1}^{N} \left(\frac{x^* x}{w} w_1^T z \right)^2$
- $\frac{x^*-x}{w}$ is the normalized difference between proposed x and true x^*
- If we can predict this difference we can compute x^*
- The model predicts $w_1^T z$ as this difference
- z: features from pool5 layer of the network



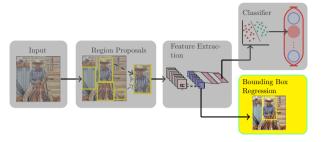
 $\min \sum_{i=1}^{N} \left(\frac{x^* - x}{w} - w_1^T z \right)^2$

- $\frac{x^*-x}{w}$ is the normalized difference between proposed x and true x^*
- If we can predict this difference we can compute x^*

Proposed Box

True Box

- The model predicts $w_1^T z$ as this difference
- z: features from pool5 layer of the network The above objective function minimize the difference between the predicted and the actual value



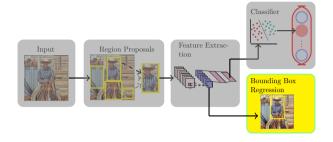
 $\min \sum_{i=1}^N \left(\frac{y^*-y}{h} - w_2^T z\right)^2$

 \bullet Similarly for y

Proposed Box

True Box

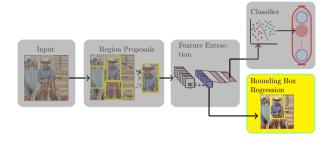
 \mathbf{z} : features from pool 5 layer of the network



 $\min \sum_{i=1}^N \left(\ln \left(\frac{w^*}{w} \right) - w_3^T z \right)^2$ • Similarly for w

Proposed Box True Box

z: features from pool5 layer of the network



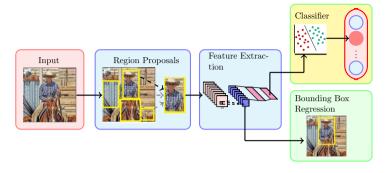
 $\min \sum_{i=1}^N \left(\ln \left(\frac{h^*}{h} \right) - w_4^T z \right)^2$ Similarly for h

• Similarly for h

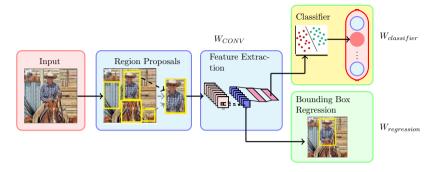
Proposed Box

True Box

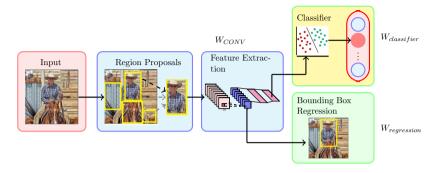
z : features from pool5 layer of the network



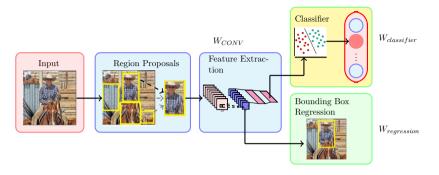
• What are the parameters of this model?



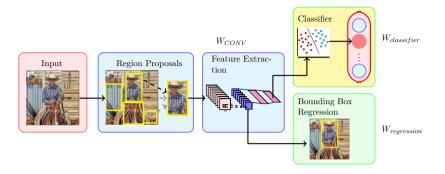
• What are the parameters of this model?



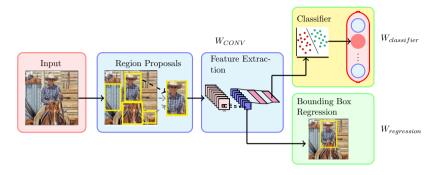
- What are the parameters of this model?
- W_{CONV} is taken as it is from a CNN trained for Image classification (say on ImageNet)



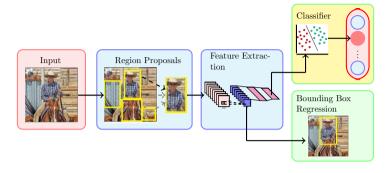
- What are the parameters of this model?
- W_{CONV} is taken as it is from a CNN trained for Image classification (say on ImageNet)
- W_{CONV} is then fine tuned using ground truth (cropped) object images



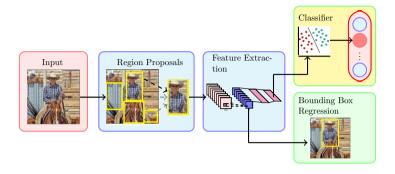
- What are the parameters of this model?
- W_{CONV} is taken as it is from a CNN trained for Image classification (say on ImageNet)
- W_{CONV} is then fine tuned using ground truth (cropped) object images
- $W_{classifier}$ is learned using ground truth (cropped) object images



- What are the parameters of this model?
- W_{CONV} is taken as it is from a CNN trained for Image classification (say on ImageNet)
- W_{CONV} is then fine tuned using ground truth (cropped) object images
- $W_{classifier}$ is learned using ground truth (cropped) object images
- $W_{regression}$ is learned using ground truth bounding boxes

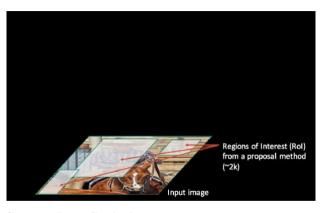


• What is the computational cost for processing one image at test time?

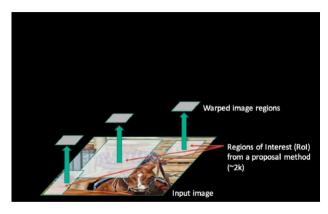


- What is the computational cost for processing one image at test time?
- Inference Time = Proposal Time + # Proposals × Convolution Time + # Proposals × classification + # Proposals × regression

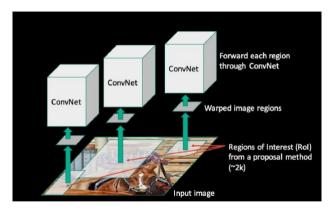
Source: Ross Girshick



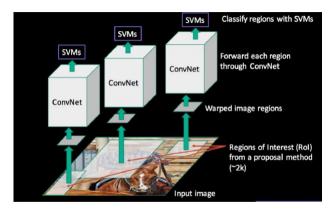
• On average selective search gives 2K region proposal



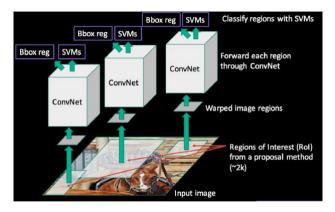
• On average selective search gives 2K region proposal



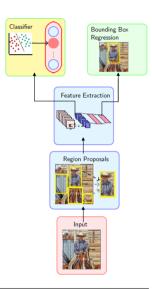
- On average selective search gives 2K region proposal
- Each of these pass through the CNN for feature extraction



- On average selective search gives 2K region proposal
- Each of these pass through the CNN for feature extraction
- Followed by classification and regression



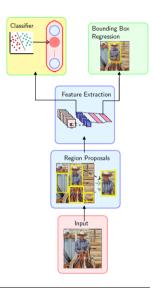
- On average selective search gives 2K region proposal
- Each of these pass through the CNN for feature extraction
- Followed by classification and regression



• No joint learning

¹Source: Ross Girshick

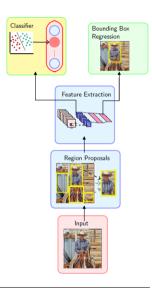
¹Using VGG-Net



¹Source: Ross Girshick

¹Using VGG-Net

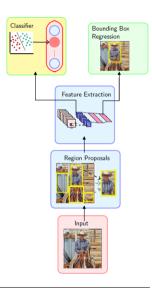
- No joint learning
- Use ad hoc training objectives



¹Source: Ross Girshick

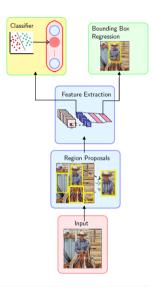
¹Using VGG-Net

- No joint learning
- Use ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)



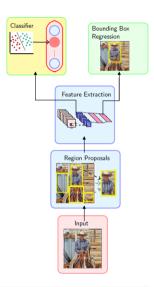
¹Source: Ross Girshick

- No joint learning
- Use ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)



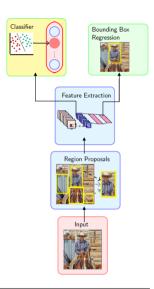
¹Source: Ross Girshick

- No joint learning
- Use ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)



¹Source: Ross Girshick

- No joint learning
- Use ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training (≈ 3 days) and testing (47s per image) is slow¹.



¹Source: Ross Girshick

- No joint learning
- Use ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training (≈ 3 days) and testing (47s per image) is slow¹.
- Takes a lot of disk space

RCNN

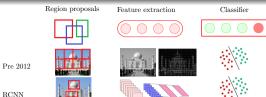
Search Pre 2012

Pre 2012

RCNN

• Region Proposals: Selective Search

• Feature Extraction: CNNs



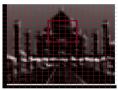
RCNN

- Region Proposals: Selective Search
- Feature Extraction: CNNs
- Classifier: Linear

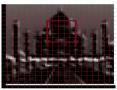
Module 12.3: Fast RCNN model for object detection

• Suppose we apply a 3×3 kernel on an image

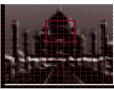
- Suppose we apply a 3×3 kernel on an image
- What is the region of influence of each pixel in the resulting output ?



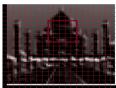
- Suppose we apply a 3×3 kernel on an image
- What is the region of influence of each pixel in the resulting output ?
- Each pixel contributes to a 5×5 region

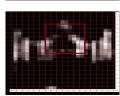


- Suppose we apply a 3×3 kernel on an image
- What is the region of influence of each pixel in the resulting output ?
- Each pixel contributes to a 5×5 region
- Suppose we again apply a 3×3 kernel on this output?

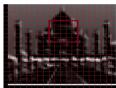


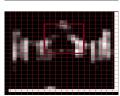
- Suppose we apply a 3×3 kernel on an image
- What is the region of influence of each pixel in the resulting output?
- Each pixel contributes to a 5×5 region
- Suppose we again apply a 3×3 kernel on this output?
- What is the region of influence of the original pixel from the input?



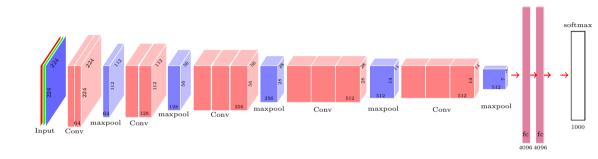


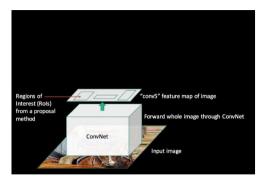
- Suppose we apply a 3×3 kernel on an image
- What is the region of influence of each pixel in the resulting output?
- Each pixel contributes to a 5×5 region
- Suppose we again apply a 3×3 kernel on this output?
- What is the region of influence of the original pixel from the input?





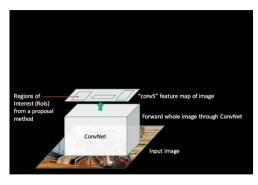
- Suppose we apply a 3×3 kernel on an image
- What is the region of influence of each pixel in the resulting output?
- Each pixel contributes to a 5×5 region
- Suppose we again apply a 3×3 kernel on this output?
- What is the region of influence of the original pixel from the input? (a 7×7 region)





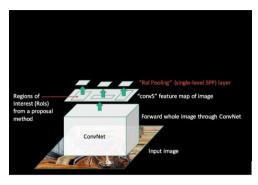
Source: Ross Girshick

• Using this idea we could get a bounding box's region of influence on any layer in the CNN



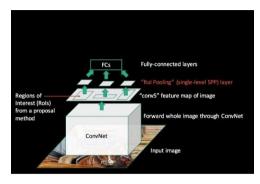
Source: Ross Girshick

- Using this idea we could get a bounding box's region of influence on any layer in the CNN
- The projected Region of Interest (RoI) may be of different sizes



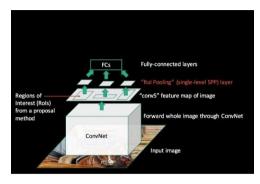
Source: Ross Girshick

- Using this idea we could get a bounding box's region of influence on any layer in the CNN
- The projected Region of Interest (RoI) may be of different sizes
- Divide them into k equally sized regions of dimension $H \times W$ and do max pooling in each of those regions to construct a k dimensional vector



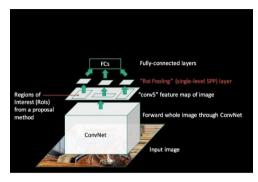
Source: Ross Girshick

- Using this idea we could get a bounding box's region of influence on any layer in the CNN
- The projected Region of Interest (RoI) may be of different sizes
- Divide them into k equally sized regions of dimension $H \times W$ and do max pooling in each of those regions to construct a k dimensional vector
- Connect the k dimensional vector to a fully connected layer



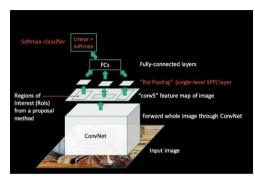
Source: Ross Girshick

- Using this idea we could get a bounding box's region of influence on any layer in the CNN
- The projected Region of Interest (RoI) may be of different sizes
- Divide them into k equally sized regions of dimension $H \times W$ and do max pooling in each of those regions to construct a k dimensional vector
- Connect the *k* dimensional vector to a fully connected layer
- This max pooling operation is call RoI pooling



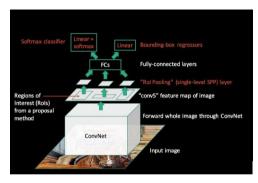
Source: Ross Girshick

 Once we have the FC layer it gives us the representation of this region proposal



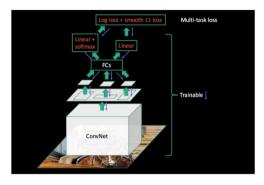
Source: Ross Girshick

- Once we have the FC layer it gives us the representation of this region proposal
- We can then add a softmax layer on top of it to compute a probability distribution over the possible object classes



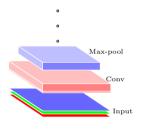
Source: Ross Girshick

- Once we have the FC layer it gives us the representation of this region proposal
- We can then add a softmax layer on top of it to compute a probability distribution over the possible object classes
- Similarly we can add a regression layer on top of it to predict the new bounding box (w^*, h^*, x^*, y^*)

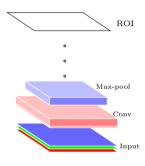


Source: Ross Girshick

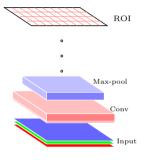
- Once we have the FC layer it gives us the representation of this region proposal
- We can then add a softmax layer on top of it to compute a probability distribution over the possible object classes
- Similarly we can add a regression layer on top of it to predict the new bounding box (w^*, h^*, x^*, y^*)



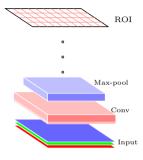
• Recall that the last pooling layer of VGGNet-16 results in an output of size $512 \times 7 \times 7$



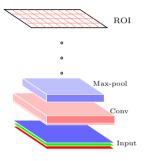
- Recall that the last pooling layer of VGGNet-16 results in an output of size $512 \times 7 \times 7$
- We replace the last max pooling layer by a RoI pooling layer



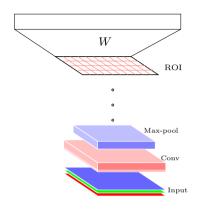
- Recall that the last pooling layer of VGGNet-16 results in an output of size $512 \times 7 \times 7$
- We replace the last max pooling layer by a RoI pooling layer
- We set H = W = 7 and divide each of these RoIs into (k = 49) regions



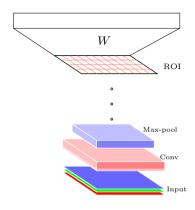
- Recall that the last pooling layer of VGGNet-16 results in an output of size $512 \times 7 \times 7$
- We replace the last max pooling layer by a RoI pooling layer
- We set H = W = 7 and divide each of these RoIs into (k = 49) regions
- We do this for every feature map resulting in an ouput of size 512×49



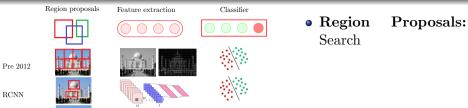
- Recall that the last pooling layer of VGGNet-16 results in an output of size $512 \times 7 \times 7$
- We replace the last max pooling layer by a RoI pooling layer
- We set H = W = 7 and divide each of these RoIs into (k = 49) regions
- We do this for every feature map resulting in an ouput of size 512×49
- This output is of the same size as the output of the original max pooling layer



• It is thus compatible with the dimensions of the weight matrix connecting the original pooling layer to the first FC layer



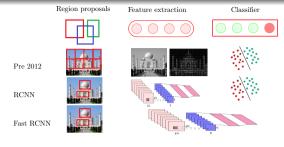
- It is thus compatible with the dimensions of the weight matrix connecting the original pooling layer to the first FC layer
- We can just retain that weight matrix and fine tune it



Fast RCNN

◆ロト ◆御ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

Selective

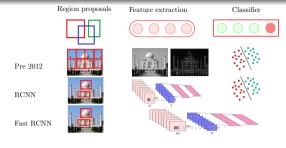


Proposals: Selective

• Feature Extraction: CNN

• Region

Search



• Region Proposals: Selective

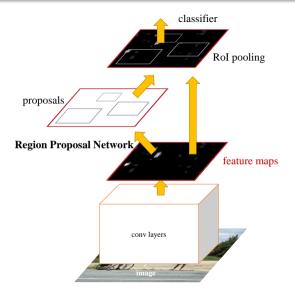
• Feature Extraction: CNN

• Classifier: CNN

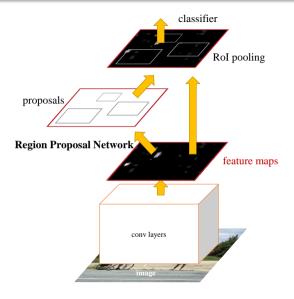
Search

Module 12.4: Faster RCNN model for object detection

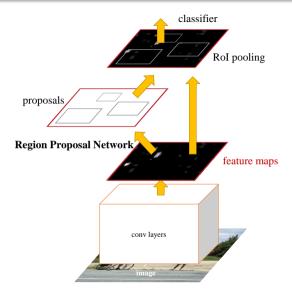
• So far the region proposals were being made using Selective Search algorithm



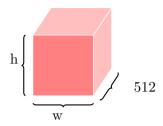
- So far the region proposals were being made using Selective Search algorithm
- Idea: Can we use a CNN for making region proposals also?



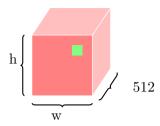
- So far the region proposals were being made using Selective Search algorithm
- Idea: Can we use a CNN for making region proposals also?
- How? Well it's slightly tricky



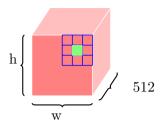
- So far the region proposals were being made using Selective Search algorithm
- Idea: Can we use a CNN for making region proposals also?
- How? Well it's slightly tricky
- We will illustrate this using VG-GNet



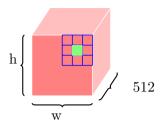
• Consider the output of the last convolutional layer of VGGNet



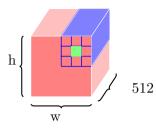
- Consider the output of the last convolutional layer of VGGNet
- Now consider one cell in one of the 512 feature maps

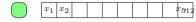


- Consider the output of the last convolutional layer of VGGNet
- Now consider one cell in one of the 512 feature maps
- If we apply a 3×3 kernel around this cell then we will get a 1D representation for this cell

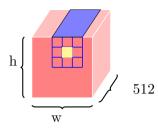


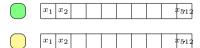
- Consider the output of the last convolutional layer of VGGNet
- Now consider one cell in one of the 512 feature maps
- If we apply a 3×3 kernel around this cell then we will get a 1D representation for this cell



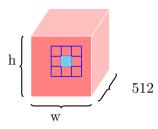


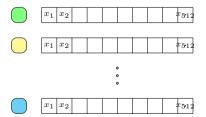
- Consider the output of the last convolutional layer of VGGNet
- Now consider one cell in one of the 512 feature maps
- If we apply a 3×3 kernel around this cell then we will get a 1D representation for this cell
- If we repeat this for all the 512 feature maps then we will get a 512 dimensional representation for this position



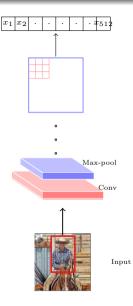


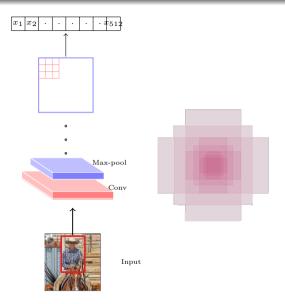
- Consider the output of the last convolutional layer of VGGNet
- Now consider one cell in one of the 512 feature maps
- If we apply a 3×3 kernel around this cell then we will get a 1D representation for this cell
- If we repeat this for all the 512 feature maps then we will get a 512 dimensional representation for this position
- We use this process to get a 512 dimensional representation for each of the $w \times h$ positions



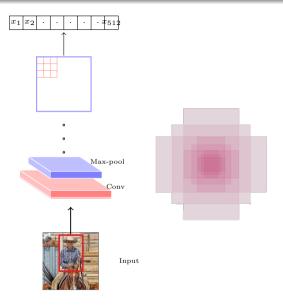


- Consider the output of the last convolutional layer of VGGNet
- Now consider one cell in one of the 512 feature maps
- If we apply a 3×3 kernel around this cell then we will get a 1D representation for this cell
- If we repeat this for all the 512 feature maps then we will get a 512 dimensional representation for this position
- We use this process to get a 512 dimensional representation for each of the $w \times h$ positions

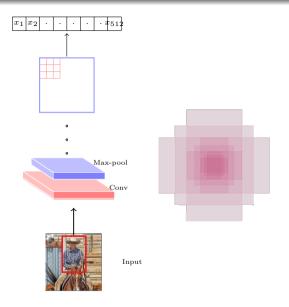




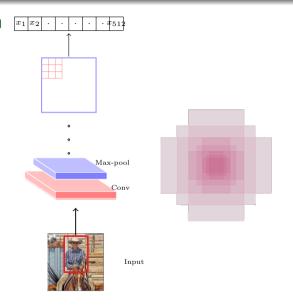
• We now consider k bounding boxes (called anchor boxes) of different sizes & aspect ratio



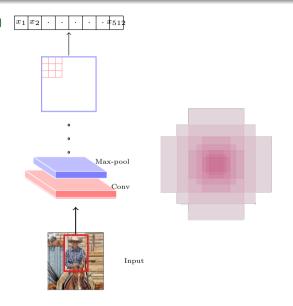
- We now consider k bounding boxes (called anchor boxes) of different sizes & aspect ratio
- We are interested in the following two questions:



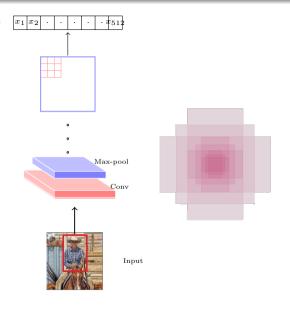
- We now consider k bounding boxes (called anchor boxes) of different sizes & aspect ratio
- We are interested in the following two questions:
- Given the 512d representation of a position, what is the probability that a given anchor box centered at this position contains an object?



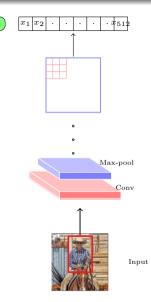
- We now consider k bounding boxes (called anchor boxes) of different sizes & aspect ratio
- We are interested in the following two questions:
- Given the 512d representation of a position, what is the probability that a given anchor box centered at this position contains an object? (Classification)

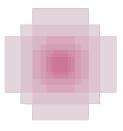


- We now consider k bounding boxes (called anchor boxes) of different sizes & aspect ratio
- We are interested in the following two questions:
- Given the 512d representation of a position, what is the probability that a given anchor box centered at this position contains an object? (Classification)
- How do you predict the true bounding box from this anchor box?

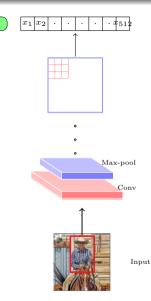


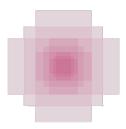
- We now consider k bounding boxes (called anchor boxes) of different sizes & aspect ratio
- We are interested in the following two questions:
- Given the 512d representation of a position, what is the probability that a given anchor box centered at this position contains an object? (Classification)
- How do you predict the true bounding box from this anchor box? (Regression)



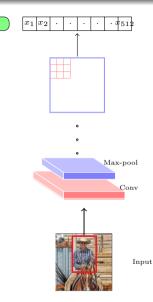


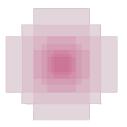
• We train a classification model and a regression model to address these two questions



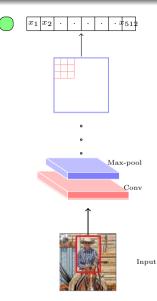


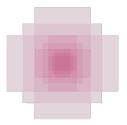
- We train a classification model and a regression model to address these two questions
- How do we get the ground truth data?





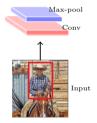
- We train a classification model and a regression model to address these two questions
- How do we get the ground truth data?
- What is the objective function used for training?



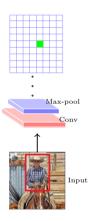


- We train a classification model and a regression model to address these two questions
- How do we get the ground truth data?
- What is the objective function used for training?

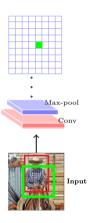
• Consider a ground truth object and its corresponding bounding box



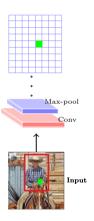
- Consider a ground truth object and its corresponding bounding box
- Consider the projection of this image onto the conv5 layer



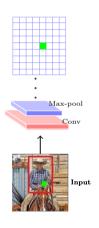
- Consider a ground truth object and its corresponding bounding box
- Consider the projection of this image onto the conv5 layer
- Consider one such cell in the output

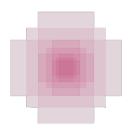


- Consider a ground truth object and its corresponding bounding box
- Consider the projection of this image onto the conv5 layer
- Consider one such cell in the output
- This cell corresponds to a patch in the original image

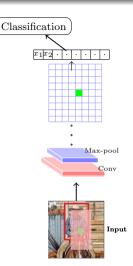


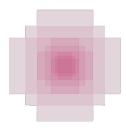
- Consider a ground truth object and its corresponding bounding box
- Consider the projection of this image onto the conv5 layer
- Consider one such cell in the output
- This cell corresponds to a patch in the original image
- Consider the center of this patch



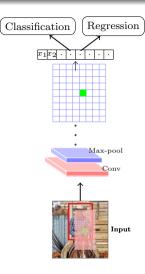


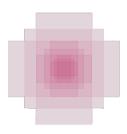
- Consider a ground truth object and its corresponding bounding box
- Consider the projection of this image onto the conv5 layer
- Consider one such cell in the output
- This cell corresponds to a patch in the original image
- Consider the center of this patch
- We consider anchor boxes of different sizes



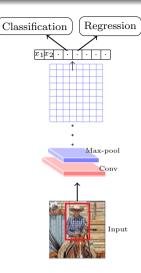


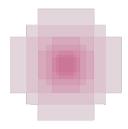
• For each of these anchor boxes, we would want the classifier to predict 1 if this anchor box has a reasonable overlap (IoU > 0.7) with the true grounding box





- For each of these anchor boxes, we would want the classifier to predict 1 if this anchor box has a reasonable overlap (IoU > 0.7) with the true grounding box
- Similarly we would want the regression model to predict the true box (red) from the anchor box (pink)





- We train a classification model and a regression model to address these two questions
- How do we get the ground truth data?
- What is the objective function used for training?

$$\mathscr{L}(p_i, t_i) = \frac{1}{N_{cls}} \sum_{i} \mathscr{L}_{cls}(p_i, p_i^*)$$

$$\mathcal{L}(p_i, t_i) = \frac{1}{N_{cls}} \sum_{i} \mathcal{L}_{cls}(p_i, p_i^*)$$

- $p_i^* = 1$ if anchor box contains ground truth object
 - =0 otherwise
- p_i = predicted probability of anchor box containing an object
- $N_{cls} = \text{batch-size}$

$$\mathscr{L}(p_i, t_i) = \frac{1}{N_{cls}} \sum_{i} \mathscr{L}_{cls}(p_i, p_i^*) + \frac{\lambda}{N_{reg}} \sum_{i} p_i^* \mathscr{L}_{reg}(t_i, t_i^*)$$

- $p_i^* = 1$ if anchor box contains ground truth object
 - =0 otherwise
- p_i = predicted probability of anchor box containing an object
- $N_{cls} = \text{batch-size}$

$$\mathscr{L}(p_i, t_i) = \frac{1}{N_{cls}} \sum_{i} \mathscr{L}_{cls}(p_i, p_i^*) + \frac{\lambda}{N_{reg}} \sum_{i} p_i^* \mathscr{L}_{reg}(t_i, t_i^*)$$

 $p_i^* = 1$ if anchor box contains ground truth object

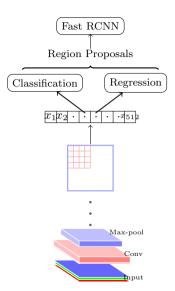
=0 otherwise

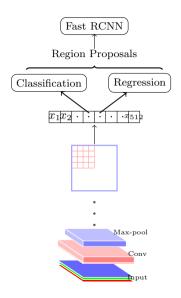
 p_i = predicted probability of anchor box containing an object

 $N_{cls} = \text{batch-size}$

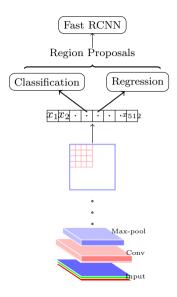
 $N_{reg} = \text{batch-size} \times k$

k = anchor boxes

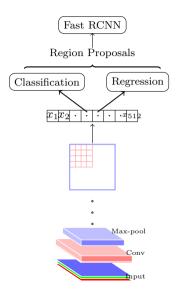




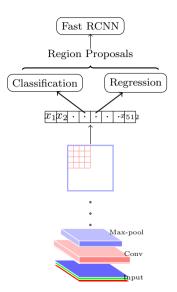
• So far we have seen a CNN based approach for region proposals instead of using selective search

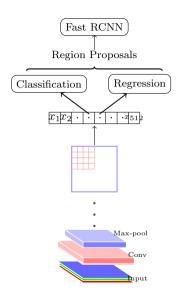


- So far we have seen a CNN based approach for region proposals instead of using selective search
- We can now take these region proposals and then add fast RCNN on top of it to predict the class of the object

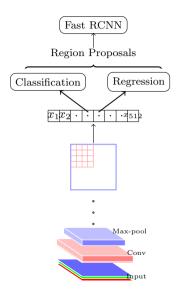


- So far we have seen a CNN based approach for region proposals instead of using selective search
- We can now take these region proposals and then add fast RCNN on top of it to predict the class of the object
- And regress the proposed bounding box

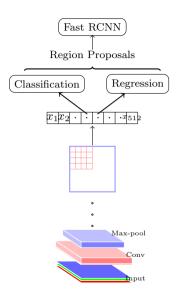




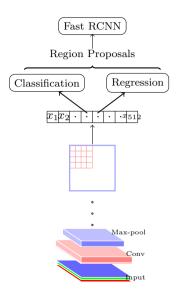
• But the fast RCNN would again use a VGG Net



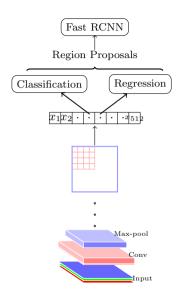
- But the fast RCNN would again use a VGG Net
- Can't we use a single VGG Net and share the parameters of RPN and RCNN

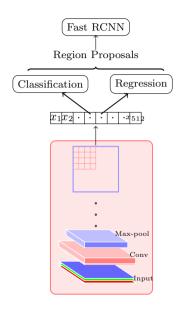


- But the fast RCNN would again use a VGG Net
- Can't we use a single VGG Net and share the parameters of RPN and RCNN
- Yes, we can

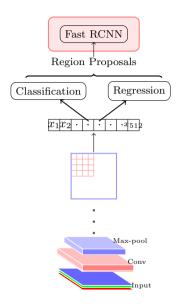


- But the fast RCNN would again use a VGG Net
- Can't we use a single VGG Net and share the parameters of RPN and RCNN
- Yes, we can
- In practice, we use a 4 step alternating training process

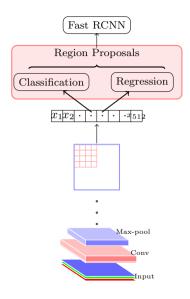




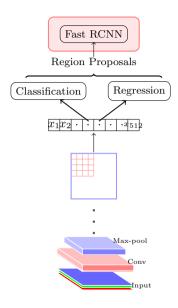
• Fine-tune RPN using a pre-trained ImageNet network



- Fine-tune RPN using a pre-trained ImageNet network
- Fine-tune fast RCNN from a pretrained ImageNet network using bounding boxes from step 1



- Fine-tune RPN using a pre-trained ImageNet network
- Fine-tune fast RCNN from a pretrained ImageNet network using bounding boxes from step 1
- Keeping common convolutional layer parameters fixed from step 2, finetune RPN (post conv5 layers)



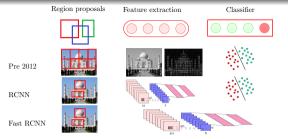
- Fine-tune RPN using a pre-trained ImageNet network
- Fine-tune fast RCNN from a pretrained ImageNet network using bounding boxes from step 1
- Keeping common convolutional layer parameters fixed from step 2, finetune RPN (post conv5 layers)
- Keeping common convolution layer parameters fixed from step 3, finetune fc layers of fast RCNN

• Imagenet detection

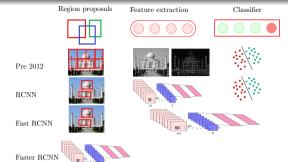
- Imagenet detection
- COCO Segmentation

- Imagenet detection
- COCO Segmentation
- Imagenet localization

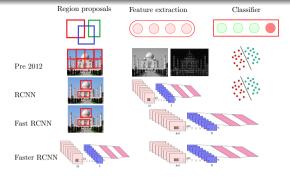
- Imagenet detection
- COCO Segmentation
- Imagenet localization
- COCO detection



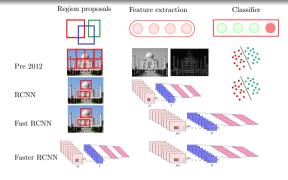
Faster RCNN



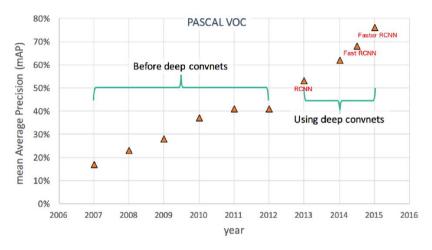
• Region Proposals: CNN



- Region Proposals: CNN
- Feature Extraction: CNN



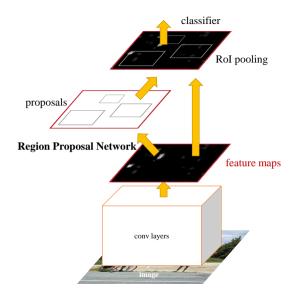
- Region Proposals: CNN
- Feature Extraction: CNN
- Classifier: CNN



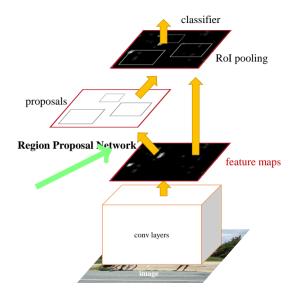
Object Detection Performance

Source: Ross Girshick

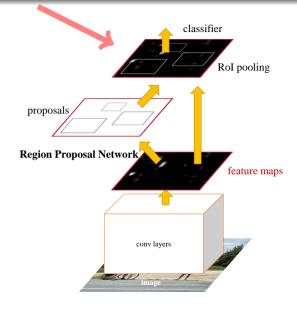
Module 12.5: YOLO model for object detection



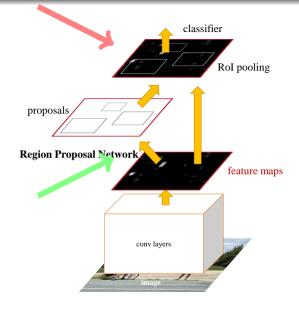
• The approaches that we have seen so far are two stage approaches



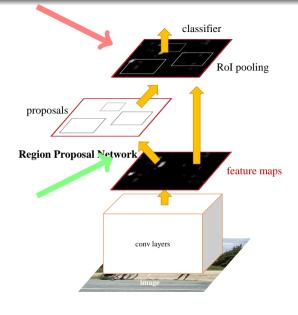
- The approaches that we have seen so far are two stage approaches
- They involve a region proposal stage and then a classification stage



- The approaches that we have seen so far are two stage approaches
- They involve a region proposal stage and then a classification stage



- The approaches that we have seen so far are two stage approaches
- They involve a region proposal stage and then a classification stage
- Can we have an end-to-end architecture which does both proposal and classification simultaneously?



- The approaches that we have seen so far are two stage approaches
- They involve a region proposal stage and then a classification stage
- Can we have an end-to-end architecture which does both proposal and classification simultaneously?
- This is the idea behind **YOLO-**You Only Look Once.

					P	(con	v)	P(truck			
ſ	c	w	h	x	y						
Ī						P	(dog	g)			•

 $S \times S$ grid on input

• Divide an image into $S \times S$ grids (S=7)

					P(cow)				P(truck)			
c	w	h	x	y								
	•			P(dog)								

 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities

					P(cow)				P(truck)		
	c	w	h	x	y				•		
P(dc)							(do	g)			

 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities
- Probability (confidence) that this cell is indeed contained in a true bounding box

				P(cow)					P(truck)		
c	w	h	x	y				•			
P(dog)											

 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities
- Probability (confidence) that this cell is indeed contained in a true bounding box
- Width of the bounding box

					P	(cov	P(truck)				
	c	w	h	x	y				•		
P(dog								g)			

 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities
- Probability (confidence) that this cell is indeed contained in a true bounding box
- Width of the bounding box
- Height of the bounding box

				P(cow)				P(truck)		
c	w	h	x	y			•			
					\overline{P}					

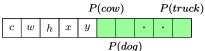
 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities
- Probability (confidence) that this cell is indeed contained in a true bounding box
- Width of the bounding box
- Height of the bounding box
- Center (x,y) of the bounding box

				P	(con	v)		P(truc	(k)
c	w	h	x	y			•	•		
					\overline{P}	(dog	g)			

 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities
- Probability (confidence) that this cell is indeed contained in a true bounding box
- Width of the bounding box
- Height of the bounding box
- Center (x,y) of the bounding box
- Probability of the object in the bounding box belonging to the k^{th} class (k values)



P(aog)

 $S \times S$ grid on input

- Divide an image into $S \times S$ grids (S=7)
- For each such cell we are interested in predicting 5 + k quantities
- Probability (confidence) that this cell is indeed contained in a true bounding box
- Width of the bounding box
- Height of the bounding box
- Center (x,y) of the bounding box
- Probability of the object in the bounding box belonging to the k^{th} class (k values)
- The output layer thus contains $S \times S \times (5+k)$ elements $S \times S \times (5+k)$

Input Image

• How do we interpret this $S \times S \times (5+k)$ dimensional output?

 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it

 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it

 $S \times S$ grid on input

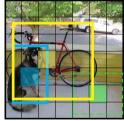
- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it

 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it

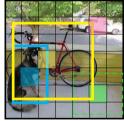
 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it



 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it



 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it

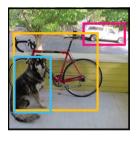
 $S \times S$ grid on input

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it

 $S \times S$ grid on input

Bounding Boxes & Confidence

- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it



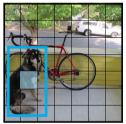
- How do we interpret this $S \times S \times (5+k)$ dimensional output?
- For each cell, we are computing a bounding box, its confidence and the object in it
- We then retain the most confident bounding boxes and the corresponding object label

• How do we train this network?

i										
	\hat{c}	\hat{w}	\hat{h}	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$	٠	•	$\hat{\ell_k}$

 $S \times S$ grid on input

\hat{c}	\hat{w}	\hat{h}	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$	•		$\hat{\ell_k}$
-----------	-----------	-----------	-----------	-----------	----------------	----------------	---	--	----------------



S × S grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it

\hat{c}	\hat{w}	\hat{h}	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$	•		$\hat{\ell_k}$
-----------	-----------	-----------	-----------	-----------	----------------	----------------	---	--	----------------



 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \ \& \ \ell$

\hat{c}	\hat{w}	\hat{h}	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$	•		$\hat{\ell_k}$
-----------	-----------	-----------	-----------	-----------	----------------	----------------	---	--	----------------

 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \ \& \ \ell$
- We can then compute the following losses

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\hat{\ell_2}$ · $\hat{\ell_k}$
--	---------------------------------

 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \ \& \ \ell$
- We can then compute the following losses

•
$$(1 - \hat{c})^2$$

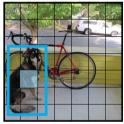
\hat{c}	w	\hat{h}	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$			$\hat{\ell_k}$	
-----------	---	-----------	-----------	-----------	----------------	----------------	--	--	----------------	--

 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \& \ell$
- We can then compute the following losses

•
$$(\sqrt{w} - \sqrt{\hat{w}})^2$$

\hat{c}	\hat{w}	h	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$	•		$\hat{\ell_k}$
-----------	-----------	---	-----------	-----------	----------------	----------------	---	--	----------------

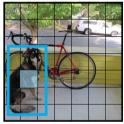


 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \& \ell$
- We can then compute the following losses

•
$$(\sqrt{h} - \sqrt{\hat{h}})^2$$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$
--

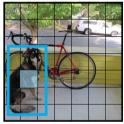


 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \& \ell$
- We can then compute the following losses

$$\bullet (x - \hat{x})^2$$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$
--



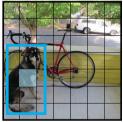
 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \& \ell$
- We can then compute the following losses

•
$$(y - \hat{y})^2$$

							,	
\hat{c}	\hat{w}	\hat{h}	\hat{x}	\hat{y}		٠	•	
					 	_		

P(dog)



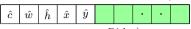
 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \& \ell$
- We can then compute the following losses

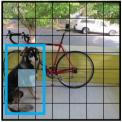
•
$$\sum_{i=1}^{k} (\ell_i - \hat{\ell_i})^2$$

P(cow)

P(truck)



P(dog)



 $S \times S$ grid on input

- How do we train this network?
- Consider a cell such that the center of the true bonding box lies in it
- The network is initialized randomly and it will predict some values for $c, w, h, x, y \& \ell$
- We can then compute the following losses

$$\bullet \sum_{i=1}^k (\ell_i - \hat{\ell_i})^2$$

• And train the network to minimize the sum of these losses

\hat{c}	\hat{w}	\hat{h}	\hat{x}	\hat{y}	$\hat{\ell_1}$	$\hat{\ell_2}$	•		$\hat{\ell_k}$	
-----------	-----------	-----------	-----------	-----------	----------------	----------------	---	--	----------------	--

 $S \times S$ grid on input

• Now consider a grid which does not contain any object

 $S \times S$ grid on input

- Now consider a grid which does not contain any object
- For this grid we do not care about the predictions $w, h, x, y \ \& \ \ell$

 $S \times S$ grid on input

- Now consider a grid which does not contain any object
- For this grid we do not care about the predictions $w,h,x,y\ \&\ \ell$
- But we want the confidence to be low

 $S \times S$ grid on input

- Now consider a grid which does not contain any object
- For this grid we do not care about the predictions $w,h,x,y\ \&\ \ell$
- But we want the confidence to be low
- $\bullet\,$ So we minimize only the following loss

$$(0-\hat{c})^2$$

Method	Pascal 2007 mAP	Speed
DPM v5	33.7	$0.07 \; \mathrm{FPS} - 14 \; \mathrm{sec/ \; image}$

Method	Pascal 2007 mAP	Speed
DPM v5	33.7	0.07 FPS - 14 sec/ image
RCNN	66.0	$0.05 \; \mathrm{FPS} - 20 \; \mathrm{sec/ \; image}$

Method	Pascal 2007 mAP	Speed
DPM v5	33.7	$0.07 \; \mathrm{FPS} - 14 \; \mathrm{sec/ \; image}$
RCNN	66.0	$0.05 \; \mathrm{FPS} - 20 \; \mathrm{sec/ \; image}$
Fast RCNN	70.0	$0.5~\mathrm{FPS} - 2~\mathrm{sec}/~\mathrm{image}$

Method	Pascal 2007 mAP	${f Speed}$
DPM v5	33.7	$0.07 \; \mathrm{FPS} - 14 \; \mathrm{sec/ \; image}$
RCNN	66.0	$0.05~\mathrm{FPS} - 20~\mathrm{sec}/~\mathrm{image}$
Fast RCNN	70.0	$0.5 \; \mathrm{FPS} - 2 \; \mathrm{sec/ \; image}$
Faster RCNN	73.2	7 FPS - 140 msec/image

Method	Pascal 2007 mAP	\mathbf{Speed}
DPM v5	33.7	$0.07 \; \mathrm{FPS} - 14 \; \mathrm{sec/ \; image}$
RCNN	66.0	$0.05 \; \mathrm{FPS} - 20 \; \mathrm{sec/ \; image}$
Fast RCNN	70.0	$0.5 \; \mathrm{FPS} - 2 \; \mathrm{sec/ \; image}$
Faster RCNN	73.2	7 FPS - 140 msec/image
YOLO	69.0	45 FPS - 22 msec/image