## CS7015 (Deep Learning): Lecture 17

Recap of Probability Theory, Bayesian Networks, Conditional Independence in Bayesian Networks

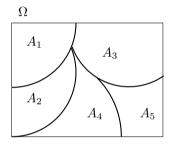
### Mitesh M. Khapra

Department of Computer Science and Engineering Indian Institute of Technology Madras Module 17.0: Recap of Probability Theory

We will start with a quick recap of some basic concepts from probability

• For any event A,

$$P(A) \ge 0$$

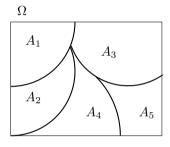


• For any event A,

$$P(A) \ge 0$$

• If  $A_1, A_2, A_3, ..., A_n$  are disjoint events (i.e.,  $A_i \cap A_j = \phi \quad \forall i \neq j$ ) then

$$P(\cup A_i) = \sum_i P(A_i)$$



• For any event A,

$$P(A) \ge 0$$

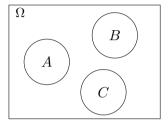
• If  $A_1, A_2, A_3, ..., A_n$  are disjoint events (i.e.,  $A_i \cap A_j = \phi \quad \forall i \neq j$ ) then

$$P(\cup A_i) = \sum_i P(A_i)$$

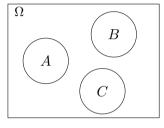
• If  $\Omega$  is the universal set containing all events then

$$P(\Omega) = 1$$

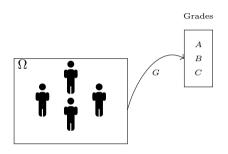




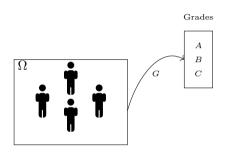
• Suppose a student can get one of 3 possible grades in a course: A, B, C



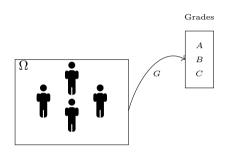
- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here



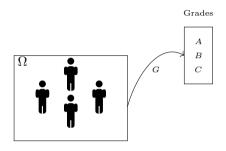
- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values



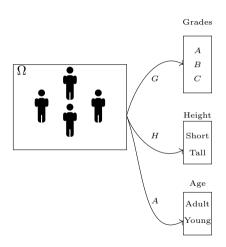
- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values
- And we are interested in P(G = g) where  $g \in \{A, B, C\}$



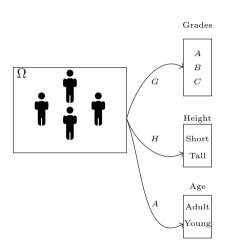
- Suppose a student can get one of 3 possible grades in a course: A, B, C
- One way of interpreting this is that there are 3 possible events here
- Another way of looking at this is there is a random variable G which each student to one of the 3 possible values
- And we are interested in P(G = g) where  $g \in \{A, B, C\}$
- Of course, both interpretations are conceptually equivalent



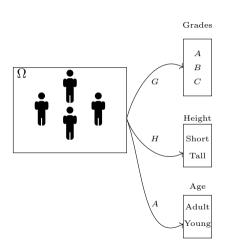
• But the second one (using random variables) is more compact



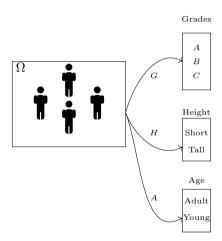
- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) grade, height, age, etc.

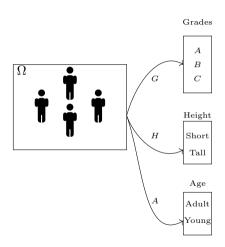


- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) grade, height, age, etc.
- We could have one random variable corresponding to each attribute

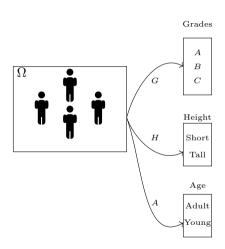


- But the second one (using random variables) is more compact
- Specially, when there are multiple attributes associated with a student (outcome) grade, height, age, etc.
- We could have one random variable corresponding to each attribute
- And then ask for outcomes (or students) where Grade = g, Height = h, Age = a and so on

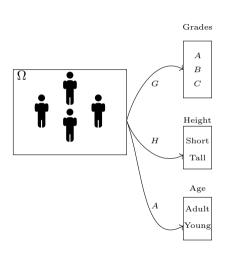




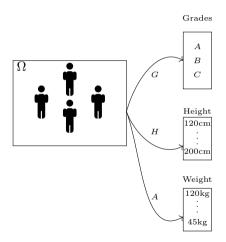
• A random variable is a *function* which maps each outcome in  $\Omega$  to a value



- A random variable is a *function* which maps each outcome in  $\Omega$  to a value
- In the previous example, G (or  $f_{grade}$ ) maps each student in  $\Omega$  to a value: A, B or C

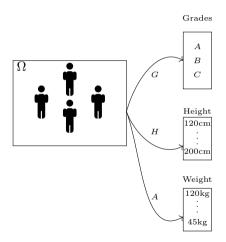


- A random variable is a *function* which maps each outcome in  $\Omega$  to a value
- In the previous example, G (or  $f_{grade}$ ) maps each student in  $\Omega$  to a value: A, B or C
- The event Grade = A is a shorthand for the event  $\{\omega \in \Omega : f_{Grade} = A\}$



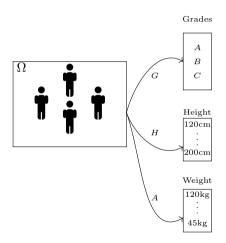
# Random Variable (continuous v/s discrete)

• A random variable can either take continuous values (for example, weight, height)



# Random Variable (continuous v/s discrete)

- A random variable can either take continuous values (for example, weight, height)
- Or discrete values (for example, grade, nationality)



## Random Variable (continuous v/s discrete)

- A random variable can either take continuous values (for example, weight, height)
- Or discrete values (for example, grade, nationality)
- For this discussion we will mainly focus on discrete random variables

• What do we mean by *marginal distribution* over a random variable?

- What do we mean by *marginal distribution* over a random variable?
- ullet Consider our random variable G for grades

| G | P(G = |
|---|-------|
|   | g)    |
| A | 0.1   |
| В | 0.2   |
| C | 0.7   |

- What do we mean by *marginal distribution* over a random variable?
- Consider our random variable G for grades
- Specifying the marginal distribution over G means specifying

$$P(G=g) \quad \forall g \in A, B, C$$

| G | P(G = |
|---|-------|
|   | g)    |
| A | 0.1   |
| В | 0.2   |
| C | 0.7   |

- What do we mean by *marginal distribution* over a random variable?
- Consider our random variable G for grades
- Specifying the marginal distribution over G means specifying

$$P(G=g) \quad \forall g \in A, B, C$$

• We denote this marginal distribution compactly by P(G)

• Consider two random variable G (grade) and I (intellegence  $\in \{High, Low\}$ )

- Consider two random variable G (grade) and I (intellegence  $\in \{High, Low\}$ )
- The joint distribution over these two random variables assigns probabilities to all events involving these two random variables

$$P(G=g,I=i) \quad \forall (g,i) \in \{A,B,C\} \times \{H,L\}$$

| G | I                     | P(G=g, I=i) |
|---|-----------------------|-------------|
| A | High                  | 0.3         |
| A | Low                   | 0.1         |
| В | $\operatorname{High}$ | 0.15        |
| В | Low                   | 0.15        |
| C | $\operatorname{High}$ | 0.1         |
| С | Low                   | 0.2         |

- Consider two random variable G (grade) and I (intellegence  $\in \{ \mathbf{High}, \mathbf{Low} \} )$
- The joint distribution over these two random variables assigns probabilities to all events involving these two random variables

$$P(G=g,I=i) \quad \forall (g,i) \in \{A,B,C\} \times \{H,L\}$$

| G | I                     | P(G=g, I=i) |
|---|-----------------------|-------------|
| A | High                  | 0.3         |
| A | Low                   | 0.1         |
| В | $\operatorname{High}$ | 0.15        |
| В | Low                   | 0.15        |
| C | $\operatorname{High}$ | 0.1         |
| С | Low                   | 0.2         |

- Consider two random variable G (grade) and I (intellegence  $\in \{High, Low\}$ )
- The joint distribution over these two random variables assigns probabilities to all events involving these two random variables

$$P(G=g,I=i) \quad \forall (g,i) \in \{A,B,C\} \times \{H,L\}$$

• We denote this joint distribution compactly by P(G, I)

### **Conditional Distribution**

| G | P(G I=H) |
|---|----------|
| A | 0.6      |
| В | 0.3      |
| C | 0.1      |

| G | P(G I=L) |
|---|----------|
| A | 0.3      |
| В | 0.4      |
| C | 0.3      |

 $\bullet$  Consider two random variable G (grade) and I (intellegence)

### Conditional Distribution

| G | P(G I=H) |
|---|----------|
| A | 0.6      |
| В | 0.3      |
| C | 0.1      |

$$\begin{array}{c|c} G & P(G|I=L) \\ \hline A & 0.3 \\ B & 0.4 \\ C & 0.3 \\ \end{array}$$

- Consider two random variable G (grade) and I (intellegence)
- Suppose we are given the value of I (say, I = H) then the conditional distribution P(G|I) is defined as

$$P(G = g|I = H) = \frac{P(G = g, I = H)}{P(I = H)} \forall g \in \{A, B, C\}$$

| G            | P(G I=H) |
|--------------|----------|
| A            | 0.6      |
| В            | 0.3      |
| $^{\circ}$ C | 0.1      |

| G | P(G I=L) |
|---|----------|
| A | 0.3      |
| В | 0.4      |
| C | 0.3      |

#### Conditional Distribution

- Consider two random variable G (grade) and I (intellegence)
- Suppose we are given the value of I (say, I = H) then the conditional distribution P(G|I) is defined as

$$P(G = g|I = H) = \frac{P(G = g, I = H)}{P(I = H)} \forall g \in \{A, B, C\}$$

• More compactly defined as

$$P(G|I) = \frac{P(G,I)}{P(I)}$$
or 
$$\underbrace{P(G,I)}_{joint} = \underbrace{P(G|I)}_{conditional} * \underbrace{P(I)}_{marginal}$$

## Joint Distribution (n random variables)

• The joint distribution of n random variables assigns probabilities to all events involving the n random variables,

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      |                           |
|       | <br>      |                           |
|       | <br>      |                           |

$$\sum = 1$$

## Joint Distribution (n random variables)

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      |                           |
|       | <br>      |                           |

$$\sum = 1$$

- The joint distribution of n random variables assigns probabilities to all events involving the n random variables,
- In other words it assigns

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

for all possible values that variable  $X_i$  can take

|         | • | The joint distribution of $n$ random variables    |
|---------|---|---------------------------------------------------|
|         |   | assigns probabilities to all events involving the |
| $,X_n)$ |   | n random variables,                               |
|         |   | T (1 1 1)                                         |

• In other words it assigns

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

for all possible values that variable  $X_i$  can take

• If each random variable  $X_i$  can take two values then the joint distribution will assign probabilities to the  $2^n$  possible events

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      |                           |
|       | <br>      |                           |
|       | <br>      |                           |

$$\sum = 1$$

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      | • • •                     |
|       | <br>      | •••                       |
|       | <br>      |                           |

• The joint distribution over two random variables  $X_1$  and  $X_2$  can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      |                           |
|       | <br>      |                           |
|       | <br>      |                           |

• The joint distribution over two random variables  $X_1$  and  $X_2$  can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

 $\bullet$  Similarly for n random variables

$$P(X_1, X_2, ..., X_n)$$

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      | • • •                     |
|       | <br>      |                           |
|       | <br>      |                           |

• The joint distribution over two random variables  $X_1$  and  $X_2$  can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

• Similarly for n random variables

$$P(X_1, X_2, ..., X_n)$$
  
=  $P(X_2, ..., X_n | X_1) P(X_1)$ 

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       | <br>      |                           |
|       | <br>      |                           |
|       | <br>      |                           |

• The joint distribution over two random variables  $X_1$  and  $X_2$  can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

 $\bullet$  Similarly for n random variables

$$P(X_1, X_2, ..., X_n)$$
=  $P(X_2, ..., X_n | X_1) P(X_1)$   
=  $P(X_3, ..., X_n | X_1, X_2) P(X_2 | X_1) P(X_1)$ 

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       |           |                           |
|       |           |                           |
|       |           |                           |

• The joint distribution over two random variables  $X_1$  and  $X_2$  can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

• Similarly for *n* random variables

$$P(X_1, X_2, ..., X_n)$$
=  $P(X_2, ..., X_n | X_1) P(X_1)$   
=  $P(X_3, ..., X_n | X_1, X_2) P(X_2 | X_1) P(X_1)$   
=  $P(X_4, ..., X_n | X_1, X_2, X_3) P(X_3 | X_2, X_1)$   
 $P(X_2 | X_1) P(X_1)$ 

| $X_1$ | <br>$X_n$ | $P(X_1, X_2, \dots, X_n)$ |
|-------|-----------|---------------------------|
|       |           |                           |
|       |           |                           |
|       |           |                           |

• The joint distribution over two random variables  $X_1$  and  $X_2$  can be written as,

$$P(X_1, X_2) = P(X_2|X_1)P(X_1) = P(X_1|X_2)P(X_2)$$

 $\bullet$  Similarly for n random variables

$$P(X_{1}, X_{2}, ..., X_{n})$$

$$= P(X_{2}, ..., X_{n}|X_{1})P(X_{1})$$

$$= P(X_{3}, ..., X_{n}|X_{1}, X_{2})P(X_{2}|X_{1})P(X_{1})$$

$$= P(X_{4}, ..., X_{n}|X_{1}, X_{2}, X_{3})P(X_{3}|X_{2}, X_{1})$$

$$P(X_{2}|X_{1})P(X_{1})$$

$$= P(X_{1}) \prod_{i=1}^{n} P(X_{i}|X_{1}^{i-1}) \quad (chain rule)$$

# From Joint Distributions to Marginal Distributions

| • | Suppose we | are given | a joint | distribtion | over |
|---|------------|-----------|---------|-------------|------|
|   | two random | variables | A, B    |             |      |

| A    | B    | P(A=a,B=b) |
|------|------|------------|
| High | High | 0.3        |
| High | Low  | 0.25       |
| Low  | High | 0.35       |
| Low  | Low  | 0.1        |

| A    | P(A=a) |
|------|--------|
| High | 0.55   |
| Low  | 0.45   |

| B    | P(B=a) |
|------|--------|
| High | 0.65   |
| Low  | 0.35   |

#### 

| A    | P(A=a) |
|------|--------|
| High | 0.55   |
| Low  | 0.45   |
| B    | P(B=a) |

0.65

0.35

High

Low

# From Joint Distributions to Marginal Distributions

- Suppose we are given a joint distribtion over two random variables A, B
- The marginal distributions of A and B can be computed as

$$P(A=a) = \sum_{\forall b} P(A=a, B=b)$$

$$P(B=b) = \sum_{\forall a} P(A=a, B=b)$$

| A    | B                     | P(A=a,B=b) |
|------|-----------------------|------------|
| High | High                  | 0.3        |
| High | Low                   | 0.25       |
| Low  | $\operatorname{High}$ | 0.35       |
| Low  | Low                   | 0.1        |

| A    | P(A=a) |
|------|--------|
| High | 0.55   |
| Low  | 0.45   |
|      |        |

| B                     | P(B=a) |
|-----------------------|--------|
| $\operatorname{High}$ | 0.65   |
| Low                   | 0.35   |

# From Joint Distributions to Marginal Distributions

- Suppose we are given a joint distribution over two random variables A. B.
- The marginal distributions of A and B can be computed as

$$P(A=a) = \sum_{\forall b} P(A=a, B=b)$$

$$P(B=b) = \sum_{\forall a} P(A=a, B=b)$$

• More compactly written as

$$P(A) = \sum_{B} P(A, B)$$

$$P(B) = \sum_{A \in A} P(A, B)$$

## What if there are n random variables?

• Suppose we are given a joint distribution over n random variables  $X_1, X_2, ..., X_n$ 

| A    | B    | P(A=a,B=b) |
|------|------|------------|
| High | High | 0.3        |
| High | Low  | 0.25       |
| Low  | High | 0.35       |
| Low  | Low  | 0.1        |

| A    | P(A=a) |
|------|--------|
| High | 0.55   |
| Low  | 0.45   |

| B    | P(B=a) |
|------|--------|
| High | 0.65   |
| Low  | 0.35   |

# What if there are n random variables?

| A    | B                     | P(A=a,B=b) |
|------|-----------------------|------------|
| High | High                  | 0.3        |
| High | Low                   | 0.25       |
| Low  | $\operatorname{High}$ | 0.35       |
| Low  | Low                   | 0.1        |

| A    | P(A=a) |
|------|--------|
| High | 0.55   |
| Low  | 0.45   |

- Suppose we are given a joint distribution over n random variables  $X_1, X_2, ..., X_n$
- The marginal distributions over  $X_1$  can be computed as

$$P(X_1 = x_1)$$
=  $\sum_{\forall x_2, x_3, ..., x_n} P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$ 

# $\begin{array}{c|cccc} A & B & P(A=a,B=b) \\ \hline \text{High} & \text{High} & 0.3 \\ \hline \text{High} & \text{Low} & 0.25 \\ \hline \text{Low} & \text{High} & 0.35 \\ \hline \end{array}$

0.1

| A    | P(A=a) |
|------|--------|
| High | 0.55   |
| Low  | 0.45   |

Low

Low

| B    | P(B=a) |
|------|--------|
| High | 0.65   |
| Low  | 0.35   |

### What if there are n random variables?

- Suppose we are given a joint distribtion over n random variables  $X_1, X_2, ..., X_n$
- The marginal distributions over  $X_1$  can be computed as

$$P(X_1 = x_1)$$
=  $\sum_{\forall x_2, x_3, \dots, x_n} P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$ 

• More compactly written as

$$P(X_1) = \sum_{X_2, X_3, \dots, X_n} P(X_1, X_2, \dots, X_n)$$

ullet Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

• We denote this as  $X \perp \!\!\! \perp Y$ 

ullet Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as  $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as  $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X
- We would expect Grade to be dependent on Intelligence but independent of Weight

• Recall that by Chain Rule of Probability

$$P(X,Y) = P(X)P(Y|X)$$

# Conditional Independence

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

- We denote this as  $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X
- We would expect *Grade* to be dependent on *Intelligence* but independent of *Weight*

• Recall that by Chain Rule of Probability

$$P(X,Y) = P(X)P(Y|X)$$

• However, if X and Y are independent, then

$$P(X,Y) = P(X)P(Y)$$

# Conditional Independence

• Two random variables X and Y are said to be independent if

$$P(X|Y) = P(X)$$

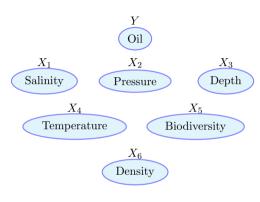
- We denote this as  $X \perp \!\!\! \perp Y$
- In other words, knowing the value of Y does not change our belief about X
- We would expect *Grade* to be dependent on *Intelligence* but independent of *Weight*

Okay, we are now ready to move on to Bayesian Networks or Directed Graphical Models

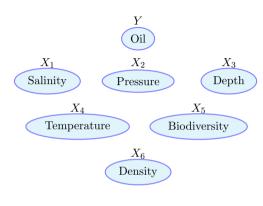
Module 17.1: Why are we interested in Joint Distributions

• In many real world applications, we have to deal with a large number of random variables

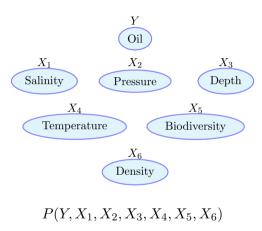
- In many real world applications, we have to deal with a large number of random variables
- For example, an oil company may be interested in computing the probability of finding oil at a particular location



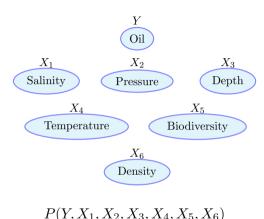
- In many real world applications, we have to deal with a large number of random variables
- For example, an oil company may be interested in computing the probability of finding oil at a particular location
- This may depend on various (random) variables



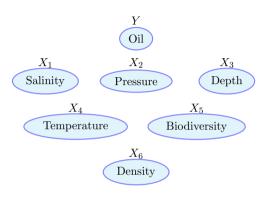
- In many real world applications, we have to deal with a large number of random variables
- For example, an oil company may be interested in computing the probability of finding oil at a particular location
- This may depend on various (random) variables
- The company is interested in knowing the joint distribution



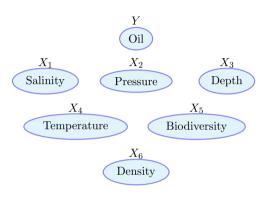
• But why joint distribution?



- But why joint distribution?
- Aren't we just interested in  $P(Y|X_1, X_2, ..., X_n)$ ?



- But why joint distribution?
- Aren't we just interested in  $P(Y|X_1, X_2, ..., X_n)$ ?
- Well, if we know the joint distribution, we can find answers to a bunch of interesting questions



- But why joint distribution?
- Aren't we just interested in  $P(Y|X_1, X_2, ..., X_n)$ ?
- Well, if we know the joint distribution, we can find answers to a bunch of interesting questions
- Let us see some such questions of interest

• We can find the conditional distribution

$$X_1$$
  $X_2$   $X_3$  Salinity Pressure Depth

 $X_4$   $X_5$  Temperature Biodiversity

 $X_6$  Density

$$P(Y|X_1,...,X_n) = \frac{P(Y,X_1,...,X_n)}{\sum_{X_1,...,X_n} P(Y,X_1,...,X_n)}$$

• We can find the conditional distribution

$$P(Y|X_1,...,X_n) = \frac{P(Y,X_1,...,X_n)}{\sum_{X_1,...,X_n} P(Y,X_1,...,X_n)}$$

• We can find the marginal distribution,

$$P(Y) = \sum_{X_1,...,X_n} P(Y, X_1, X_2, ..., X_n)$$

$$X_1$$
  $X_2$   $X_3$  Salinity Pressure Depth  $X_4$   $X_5$  Temperature Biodiversity  $X_6$ 

Density

$$P(Y, X_1, X_2, X_3, X_4, X_5, X_6)$$

• We can find the conditional distribution

$$P(Y|X_1,...,X_n) = \frac{P(Y,X_1,...,X_n)}{\sum_{X_1,...,X_n} P(Y,X_1,...,X_n)}$$

• We can find the marginal distribution.

$$P(Y) = \sum_{X_1,...,X_n} P(Y, X_1, X_2, ..., X_n)$$

We can find the conditional independencies,

$$P(Y, X_1) = P(Y)P(X_1)$$

$$Y$$
Oil
 $X_1$ 
 $X_2$ 
 $X_3$ 
Salinity
Pressure
Depth

$$X_1$$
  $X_2$   $X_3$  Alinity Pressure Depth

 $X_4$   $X_5$  Temperature Biodiversity

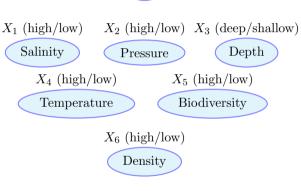
$$X_6$$
 Density

$$P(Y, X_1, X_2, X_3, X_4, X_5, X_6)$$

Module 17.2: How do we represent a joint distribution



• Let us return to the case of *n* random variables





 $X_1 \text{ (high/low)} \quad X_2 \text{ (high/low)} \quad X_3 \text{ (deep/shallow)}$ 

Salinity Pressure  $X_4$  (high/low)

 $X_5$  (high/low)

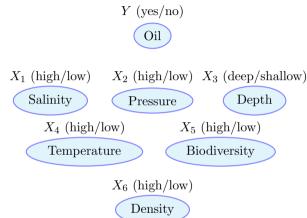
Depth

Temperature Biodiversity

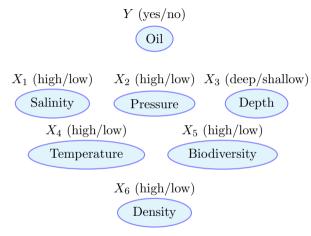
 $X_6 \text{ (high/low)}$ Density

$$P(Y, X_1, X_2, X_3, X_4, X_5, X_6)$$

- Let us return to the case of n random variables
- For simplicity assume each of these variables can take binary values



- Let us return to the case of n random variables
- For simplicity assume each of these variables can take binary values
- To specify the joint distribution, we need to specify  $2^n 1$  values. Why not  $(2^n)$ ?



 $P(Y, X_1, X_2, X_3, X_4, X_5, X_6)$ 

- Let us return to the case of n random variables
- For simplicity assume each of these variables can take binary values
- To specify the joint distribution, we need to specify  $2^n 1$  values. Why not  $(2^n)$ ?
- If we specify these  $2^n 1$  values, we have an explicit representation for the joint distribution

| $X_1$ | $X_2$ | $X_3$ | $X_4$ | <br>$X_n$ | P     |
|-------|-------|-------|-------|-----------|-------|
| 0     | 0     | 0     | 0     | <br>0     | 0.01  |
| 1     | 0     | 0     | 0     | <br>0     | 0.03  |
| 0     | 1     | 0     | 0     | <br>0     | 0.05  |
| 1     | 1     | 0     | 0     | <br>0     | 0.1   |
|       |       |       |       |           |       |
|       |       |       |       |           |       |
|       |       |       |       |           |       |
| 1     | 1     | 1     | 1     | <br>1     | 0.002 |

# Challenges with explicit representation

| $X_1$ | $X_2$ | $X_3$ | $X_4$ |     | $X_n$ | P     |
|-------|-------|-------|-------|-----|-------|-------|
| 0     | 0     | 0     | 0     |     | 0     | 0.01  |
| 1     | 0     | 0     | 0     |     | 0     | 0.03  |
| 0     | 1     | 0     | 0     |     | 0     | 0.05  |
| 1     | 1     | 0     | 0     |     | 0     | 0.1   |
|       |       |       |       |     |       |       |
|       |       |       |       | ••• |       |       |
|       |       |       |       |     |       |       |
| 1     | 1     | 1     | 1     |     | 1     | 0.002 |

# Challenges with explicit representation

• Computational: Expensive to manipulate and too large to to store

| $X_1$ | $X_2$ | $X_3$ | $X_4$ |     | $X_n$ | P     |
|-------|-------|-------|-------|-----|-------|-------|
| 0     | 0     | 0     | 0     |     | 0     | 0.01  |
| 1     | 0     | 0     | 0     |     | 0     | 0.03  |
| 0     | 1     | 0     | 0     |     | 0     | 0.05  |
| 1     | 1     | 0     | 0     |     | 0     | 0.1   |
|       |       |       |       |     |       |       |
|       |       |       |       | ••• |       |       |
|       |       |       |       |     |       |       |
| 1     | 1     | 1     | 1     |     | 1     | 0.002 |

## Challenges with explicit representation

- Computational: Expensive to manipulate and too large to to store
- Cognitive: Impossible to acquire so many numbers from a human

| $X_1$ | $X_2$ | $X_3$ | $X_4$ |     | $X_n$ | P     |
|-------|-------|-------|-------|-----|-------|-------|
| 0     | 0     | 0     | 0     |     | 0     | 0.01  |
| 1     | 0     | 0     | 0     |     | 0     | 0.03  |
| 0     | 1     | 0     | 0     |     | 0     | 0.05  |
| 1     | 1     | 0     | 0     |     | 0     | 0.1   |
|       |       |       |       |     |       |       |
|       |       |       |       | ••• |       |       |
|       |       |       |       |     |       |       |
| 1     | 1     | 1     | 1     |     | 1     | 0.002 |

## Challenges with explicit representation

- Computational: Expensive to manipulate and too large to to store
- Cognitive: Impossible to acquire so many numbers from a human
- Statistical: Need huge amounts of data to learn the parameters

Module 17.3: Can we represent the joint distribution more compactly?

• Consider the case of two random variables, Intelligence (I) and SAT Scores (S)

- Consider the case of two random variables, Intelligence (I) and SAT Scores (S)
- Assume that both are binary and take values from High(1), Low(0)

| I | S | P(I,S) |
|---|---|--------|
| 0 | 0 | 0.665  |
| 0 | 1 | 0.035  |
| 1 | 0 | 0.06   |
| 1 | 1 | 0.24   |

- Consider the case of two random variables, Intelligence (I) and SAT Scores (S)
- Assume that both are binary and take values from High(1), Low(0)
- Here is one way of specifying the joint distribution

| I | S | P(I,S) |
|---|---|--------|
| 0 | 0 | 0.665  |
| 0 | 1 | 0.035  |
| 1 | 0 | 0.06   |
| 1 | 1 | 0.24   |

- Consider the case of two random variables, Intelligence (I) and SAT Scores (S)
- Assume that both are binary and take values from High(1), Low(0)
- Here is one way of specifying the joint distribution
- Of course, there are many such joint distributions possible

| I | S | P(I,S) |
|---|---|--------|
| 0 | 0 | 0.665  |
| 0 | 1 | 0.035  |
| 1 | 0 | 0.06   |
| 1 | 1 | 0.24   |

• This distribution has  $(2^2 - 1 = 3)$  parameters.

- Consider the case of two random variables, Intelligence (I) and SAT Scores (S)
- Assume that both are binary and take values from High(1), Low(0)
- Here is one way of specifying the joint distribution
- Of course, there are many such joint distributions possible

| I | S | P(I,S) |
|---|---|--------|
| 0 | 0 | 0.665  |
| 0 | 1 | 0.035  |
| 1 | 0 | 0.06   |
| 1 | 1 | 0.24   |

- This distribution has  $(2^2 1 = 3)$  parameters.
- Alternatively, the table has 4 rows but the last row is deterministic given the first 3 rows (or parameters)

- Consider the case of two random variables, Intelligence (I) and SAT Scores (S)
- Assume that both are binary and take values from High(1), Low(0)
- Here is one way of specifying the joint distribution
- Of course, there are many such joint distributions possible

• Note that there is a natural ordering in these two random variables

- Note that there is a natural ordering in these two random variables
- The SAT Score (S) presumably depends upon the Intelligence (I). An alternate and even more natural way to represent the same distribution is

$$P(I,S) = P(I) \times P(S|I)$$

|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |

|          | s = 0 | s=1  |
|----------|-------|------|
| P(S I=0) | 0.95  | 0.05 |
| P(S I=1) | 0.2   | 0.8  |

- Note that there is a natural ordering in these two random variables
- The SAT Score (S) presumably depends upon the Intelligence (I). An alternate and even more natural way to represent the same distribution is

$$P(I,S) = P(I) \times P(S|I)$$

|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |

|          | s = 0 | s=1  |
|----------|-------|------|
| P(S I=0) | 0.95  | 0.05 |
| P(S I=1) | 0.2   | 0.8  |

• What! So from 3 parameters we have gone to 6 parameters?

- Note that there is a natural ordering in these two random variables
- The SAT Score (S) presumably depends upon the Intelligence (I). An alternate and even more natural way to represent the same distribution is

$$P(I,S) = P(I) \times P(S|I)$$

|      | i = 0 | i=1 |
|------|-------|-----|
| P(I) | 0.7   | 0.3 |
| C    | -     |     |

|          | s = 0 | s = 1 |
|----------|-------|-------|
| P(S I=0) | 0.95  | 0.05  |
| P(S I=1) | 0.2   | 0.8   |

### no.of parameters=2

- What! So from 3 parameters we have gone to 6 parameters?
- Well, not really! (remember sum for each row in the above table has to be 1)

- Note that there is a natural ordering in these two random variables
- The SAT Score (S) presumably depends upon the Intelligence (I). An alternate and even more natural way to represent the same distribution is

$$P(I,S) = P(I) \times P(S|I)$$

|      | i = 0 | i=1 |
|------|-------|-----|
| P(I) | 0.7   | 0.3 |
| C    | -     |     |

|          | s = 0 | s = 1 |
|----------|-------|-------|
| P(S I=0) | 0.95  | 0.05  |
| P(S I=1) | 0.2   | 0.8   |

#### no.of parameters=2

- What! So from 3 parameters we have gone to 6 parameters?
- Well, not really! (remember sum for each row in the above table has to be 1)
- The number of parameters is still 3

- Note that there is a natural ordering in these two random variables
- The SAT Score (S) presumably depends upon the Intelligence (I). An alternate and even more natural way to represent the same distribution is

$$P(I,S) = P(I) \times P(S|I)$$

|      | i=0 | i=1 |
|------|-----|-----|
| P(I) | 0.7 | 0.3 |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

• What have we achieved so far?

|      | i=0 | i=1 |
|------|-----|-----|
| P(I) | 0.7 | 0.3 |
|      | -   |     |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

- What have we achieved so far?
- We were not able to reduce the number of parameters

|      | i=0 | i=1 |
|------|-----|-----|
| P(I) | 0.7 | 0.3 |
| C    | -   |     |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

- What have we achieved so far?
- We were not able to reduce the number of parameters
- But, we have a more natural way of representing the distribution

|      | i=0 | i=1 |
|------|-----|-----|
| P(I) | 0.7 | 0.3 |
| C    | -1  |     |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

- What have we achieved so far?
- We were not able to reduce the number of parameters
- But, we have a more natural way of representing the distribution
- This is known as conditional parameterization



SAT

Grade

• Now consider a third random variable Grade (G)



SAT

- Now consider a third random variable Grade (G)
- Notice that none of these 3 variables are independent of each other

SAT

- Now consider a third random variable Grade (G)
- Notice that none of these 3 variables are independent of each other
- Grade and SAT Score are clearly correlated with Intelligence

SAT

- Now consider a third random variable Grade (G)
- Notice that none of these 3 variables are independent of each other
- Grade and SAT Score are clearly correlated with Intelligence
- Grade and SAT Score are also correlated because we would expect

$$P(G = 1|S = 1) > P(G = 1|S = 0)$$



SAT

Grade

• However, it is possible that the distribution satisfies a conditional independence

SAT

- However, it is possible that the distribution satisfies a conditional independence
- If we know that I = H, then it is possible that S = H does not give any extra information for determining G

SAT

- However, it is possible that the distribution satisfies a conditional independence
- If we know that I = H, then it is possible that S = H does not give any extra information for determining G
- In other words, if we know that the student is intelligent we can make inferences about his grade without even knowing the SAT score

SAT

- However, it is possible that the distribution satisfies a conditional independence
- If we know that I = H, then it is possible that S = H does not give any extra information for determining G
- In other words, if we know that the student is intelligent we can make inferences about his grade without even knowing the SAT score
- Formally, we assume that  $(S \perp G|I)$

SAT

- However, it is possible that the distribution satisfies a conditional independence
- If we know that I = H, then it is possible that S = H does not give any extra information for determining G
- In other words, if we know that the student is intelligent we can make inferences about his grade without even knowing the SAT score
- Formally, we assume that  $(S \perp G|I)$
- Note that this is just an assumption



SAT

Grade

• We could argue that in many cases  $S \not\perp G|I$ 

SAT

- We could argue that in many cases  $S \not\perp G|I$
- For example, a student might be intelligent, but we also have to factor in his/her ability to write in time bound exams

SAT

- We could argue that in many cases  $S \not\perp G|I$
- For example, a student might be intelligent, but we also have to factor in his/her ability to write in time bound exams
- In which case S and G are not independent given I (because the SAT score tells us about the ability to write time bound exams)

SAT

- We could argue that in many cases  $S \not\perp G|I$
- For example, a student might be intelligent, but we also have to factor in his/her ability to write in time bound exams
- In which case S and G are not independent given I (because the SAT score tells us about the ability to write time bound exams)
- But, for this discussion, we will assume  $S \perp G|I$

### Question

• Now let's see the implication of this assumption

# Question

- Now let's see the implication of this assumption
- Does it simplify things in any way?

$$(2 \times 2 \times 3 - 1 = 11)$$

$$(2 \times 2 \times 3 - 1 = 11)$$

$$(2 \times 2 \times 3 - 1 = 11)$$

$$P(I,G,S) = P(S,G|I)P(I)$$

$$(2 \times 2 \times 3 - 1 = 11)$$

$$\begin{split} P(I,G,S) &= P(S,G|I)P(I) \\ &= P(S|G,I)P(G|I)P(I) \end{split}$$

$$(2 \times 2 \times 3 - 1 = 11)$$

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

$$(2 \times 2 \times 3 - 1 = 11)$$

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$

|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$

|                    | i = 0 | i = 1 |  |
|--------------------|-------|-------|--|
| P(I)               | 0.7   | 0.3   |  |
| no.of parameters=1 |       |       |  |

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$



|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |
| C    | -1    |       |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

• How many parameters do we need to specify P(I, G, S)?

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$



|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |
| C    |       |       |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

• How many parameters do we need to specify P(I, G, S)?

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$

|      | i = 0 | i=1 |
|------|-------|-----|
| P(I) | 0.7   | 0.3 |
| C    |       | •   |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

### no.of parameters=2

|          | g=A  | g=B  | g=C  |
|----------|------|------|------|
| P(G—I=0) | 0.2  | 0.34 | 0.46 |
| P(G—I=1) | 0.74 | 0.17 | 0.09 |

• How many parameters do we need to specify P(I, G, S)?

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$

|      | i = 0 | i=1 |
|------|-------|-----|
| P(I) | 0.7   | 0.3 |
| C    | -     |     |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

### no.of parameters=2

|          | g=A  | g=B  | g=C  |
|----------|------|------|------|
| P(G-I=0) | 0.2  | 0.34 | 0.46 |
| P(G—I=1) | 0.74 | 0.17 | 0.09 |

no.of parameters=4

• How many parameters do we need to specify P(I, G, S)?

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since 
$$(S \perp G|I)$$

|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |
| 0    |       |       |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

|          | g=A  | g=B  | g=C  |
|----------|------|------|------|
| P(G—I=0) | 0.2  | 0.34 | 0.46 |
| P(G—I=1) | 0.74 | 0.17 | 0.09 |

no.of parameters=4

total no.of parameters=7

• How many parameters do we need to specify P(I, G, S)?

$$(2 \times 2 \times 3 - 1 = 11)$$

• What if we use conditional parameterization by following the chain rule?

$$P(I,G,S) = P(S,G|I)P(I)$$

$$= P(S|G,I)P(G|I)P(I)$$

$$= P(S|I)P(G|I)P(I)$$

since  $(S \perp G|I)$ 

|      | i = 0 | i=1 |
|------|-------|-----|
| P(I) | 0.7   | 0.3 |
| C    | -1    |     |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

no.of parameters=2

|          | g=A  | g=B  | g=C  |
|----------|------|------|------|
| P(G-I=0) | 0.2  | 0.34 | 0.46 |
| P(G—I=1) | 0.74 | 0.17 | 0.09 |

no.of parameters=4

# total no.of parameters=7

• The alternate parameterization is more **natural** than that of the joint distribution

|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |
| C    | -1    |       |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

### no.of parameters=2

|          | g=A  | g=B  | g=C  |
|----------|------|------|------|
| P(G-I=0) | 0.2  | 0.34 | 0.46 |
| P(G—I=1) | 0.74 | 0.17 | 0.09 |

no.of parameters=4

### total no.of parameters=7

- The alternate parameterization is more **natural** than that of the joint distribution
- The alternate parameterization is more **compact** than that of the joint distribution

|      | i = 0 | i = 1 |
|------|-------|-------|
| P(I) | 0.7   | 0.3   |
| 0    | -     |       |

|          | s=0  | s=1  |
|----------|------|------|
| P(S I=0) | 0.95 | 0.05 |
| P(S I=1) | 0.2  | 0.8  |

## no.of parameters=2

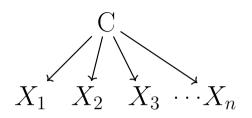
|          | g=A  | g=B  | g=C  |
|----------|------|------|------|
| P(G-I=0) | 0.2  | 0.34 | 0.46 |
| P(G—I=1) | 0.74 | 0.17 | 0.09 |

no.of parameters=4

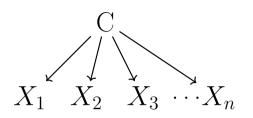
# total no.of parameters=7

- The alternate parameterization is more **natural** than that of the joint distribution
- The alternate parameterization is more **compact** than that of the joint distribution
- The alternate parameterization is more **modular**. (When we added G, we could just reuse the tables for P(I) and P(S|I))

Module 17.4: Can we use a graph to represent a joint distribution?

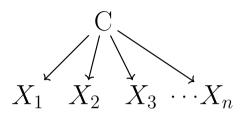


• Suppose we have *n* random variables, all of which are independent given another random variable *C* 



- Suppose we have n random variables, all of which are independent given another random variable C
- The joint distribution factorizes as,

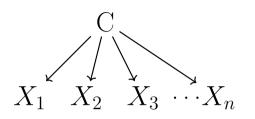
since 
$$X_i \perp X_j | C$$



- Suppose we have n random variables, all of which are independent given another random variable C
- The joint distribution factorizes as,

$$P(C, X_1, ..., X_n) = P(C)P(X_1|C)$$
  
 $P(X_2|X_1, C)$   
 $P(X_3|X_2, X_1, C)...$ 

since 
$$X_i \perp X_j | C$$



- Suppose we have n random variables, all of which are independent given another random variable C
- The joint distribution factorizes as,

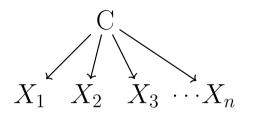
$$P(C, X_1, ..., X_n) = P(C)P(X_1|C)$$

$$P(X_2|X_1, C)$$

$$P(X_3|X_2, X_1, C)...$$

$$= P(C) \prod_{i=1}^{n} P(X_i|C)$$

since 
$$X_i \perp X_i | C$$



• This is called the Naive Bayes model

- Suppose we have n random variables, all of which are independent given another random variable C
- The joint distribution factorizes as,

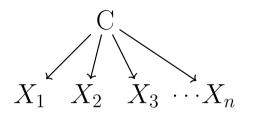
$$P(C, X_1, ..., X_n) = P(C)P(X_1|C)$$

$$P(X_2|X_1, C)$$

$$P(X_3|X_2, X_1, C)...$$

$$= P(C) \prod_{i=1}^{n} P(X_i|C)$$

since 
$$X_i \perp X_i | C$$



- This is called the Naive Bayes model
- It makes the Naive assumption that  ${}^{n}C_{2}$  pairs are independent given C

- Suppose we have n random variables, all of which are independent given another random variable C
- The joint distribution factorizes as,

$$P(C, X_1, ..., X_n) = P(C)P(X_1|C)$$

$$P(X_2|X_1, C)$$

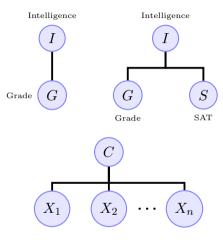
$$P(X_3|X_2, X_1, C)...$$

$$= P(C) \prod_{i=1}^{n} P(X_i|C)$$

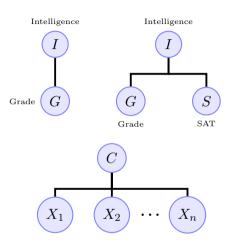
since  $X_i \perp X_i | C$ 

 Bayesian networks build on the intuitions that we developed for the Naive Bayes model

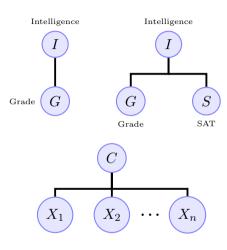
- Bayesian networks build on the intuitions that we developed for the Naive Bayes model
- But they are not restricted to strong (naive) independence assumptions



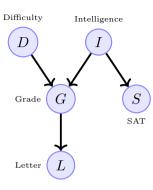
- Bayesian networks build on the intuitions that we developed for the Naive Bayes model
- But they are not restricted to strong (naive) independence assumptions
- We use graphs to represent the joint distribution



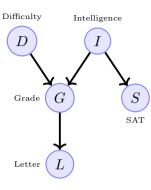
- Bayesian networks build on the intuitions that we developed for the Naive Bayes model
- But they are not restricted to strong (naive) independence assumptions
- We use graphs to represent the joint distribution
- Nodes: Random Variables



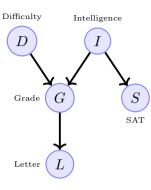
- Bayesian networks build on the intuitions that we developed for the Naive Bayes model
- But they are not restricted to strong (naive) independence assumptions
- We use graphs to represent the joint distribution
- Nodes: Random Variables
- Edges: Indicate dependence



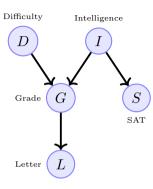
• Let's revisit the student example



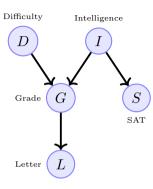
- Let's revisit the student example
- We will introduce a few more random variables and independence assumptions



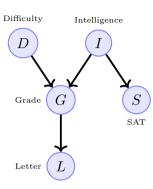
- Let's revisit the student example
- We will introduce a few more random variables and independence assumptions
- The grade now depends on student's Intelligence & exam's Difficulty level



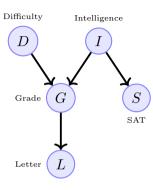
- Let's revisit the student example
- We will introduce a few more random variables and independence assumptions
- The grade now depends on student's Intelligence & exam's Difficulty level
- The SAT score depends on Intelligence



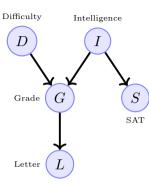
- Let's revisit the student example
- We will introduce a few more random variables and independence assumptions
- The grade now depends on student's Intelligence & exam's Difficulty level
- The SAT score depends on Intelligence
- The recommendation Letter from the course instructor depends on the Grade



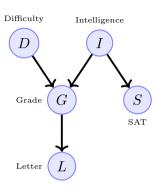
• The Bayesian network contains a node for each random variable



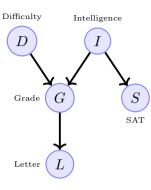
- The Bayesian network contains a node for each random variable
- The edges denote the dependencies between the random variables



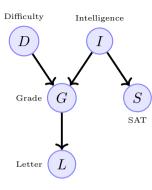
- The Bayesian network contains a node for each random variable
- The edges denote the dependencies between the random variables
- Each variable depends directly on its parents in the network



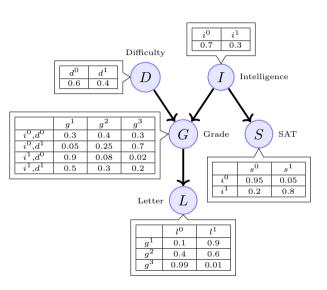
• The Bayesian network can be viewed as a data structure



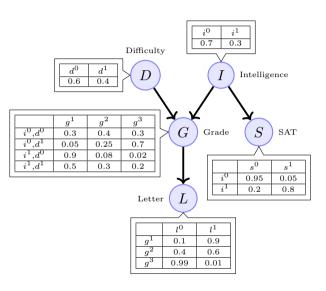
- The Bayesian network can be viewed as a data structure
- It provides a skeleton for representing a joint distribution compactly by factorization



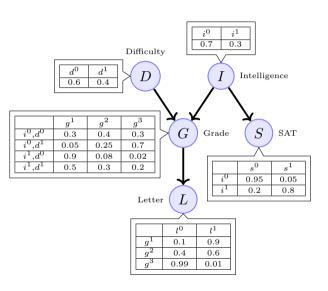
- The Bayesian network can be viewed as a data structure
- It provides a skeleton for representing a joint distribution compactly by factorization
- Let us see what this means



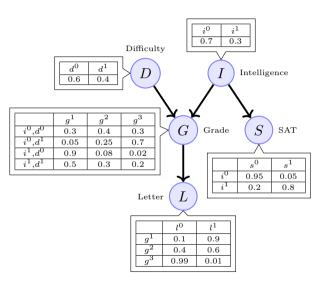
• Each node is associated with a local probability model



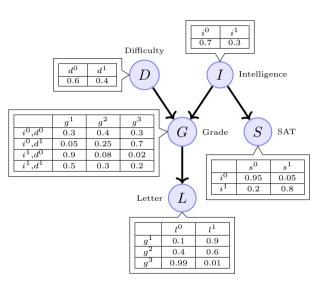
- Each node is associated with a local probability model
- Local, because it represents the dependencies of each variable on its parents



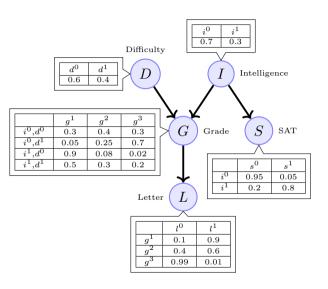
- Each node is associated with a local probability model
- Local, because it represents the dependencies of each variable on its parents
- There are 5 such local probability models associated with the graph



- Each node is associated with a local probability model
- Local, because it represents the dependencies of each variable on its parents
- There are 5 such local probability models associated with the graph
- Each variable (in general) is associated with a conditional probability distribution (conditional on its parents)

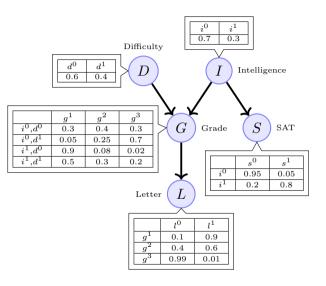


• The graph gives us a natural factorization for the joint distribution



- The graph gives us a natural factorization for the joint distribution
- In this case,

$$P(I, D, G, S, L) = P(I)P(D)$$
  
$$P(G|I, D)P(S|I)P(L|G)$$

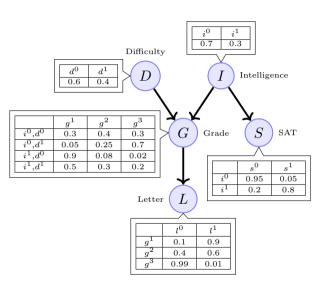


- The graph gives us a natural factorization for the joint distribution
- In this case,

$$P(I, D, G, S, L) = P(I)P(D)$$
  
$$P(G|I, D)P(S|I)P(L|G)$$

• For example,

$$P(I = 1, D = 0, G = B, S = 1, L = 0)$$
$$= 0.3 \times 0.6 \times 0.08 \times 0.8 \times 0.4$$



- The graph gives us a natural factorization for the joint distribution
- In this case,

$$P(I, D, G, S, L) = P(I)P(D)$$
  
$$P(G|I, D)P(S|I)P(L|G)$$

• For example,

$$P(I = 1, D = 0, G = B, S = 1, L = 0)$$
$$= 0.3 \times 0.6 \times 0.08 \times 0.8 \times 0.4$$

• The graph structure (nodes, edges) along with the conditional probability distribution is called a Bayesian Network

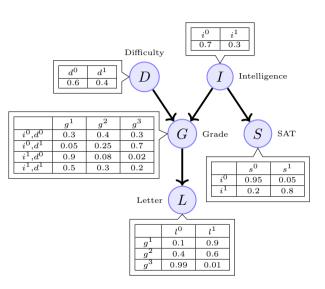
Module 17.5: Different types of reasoning in a Bayesian network

## **New Notations**

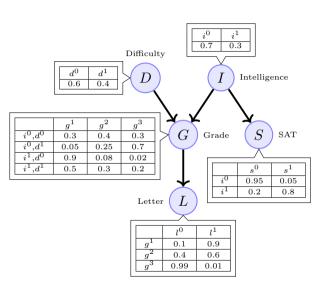
• We will denote P(I=0) by  $P(i^0)$ 

#### **New Notations**

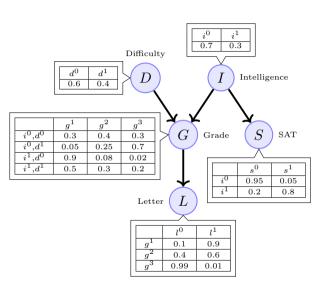
- We will denote P(I=0) by  $P(i^0)$
- In general, we will denote P(I=0,D=1,G=B,S=1,L=0) by  $P(i^0,d^1,q^b,s^1,l^0)$



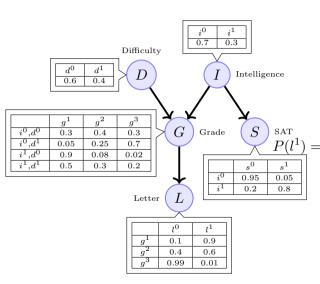
• Here, we try to predict downstream effects of various factors



- Here, we try to predict downstream effects of various factors
- Let us consider an example



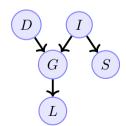
- Here, we try to predict downstream effects of various factors
- Let us consider an example
- What is the probability that a student will get a good recommendation letter,  $P(l^1)$ ?



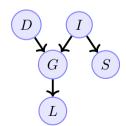
- Here, we try to predict downstream effects of various factors
- Let us consider an example
- What is the probability that a student will get a good recommendation letter,  $P(l^1)$ ?

$$P(l^{1}) = \sum_{I \in (0,1)} \sum_{D \in (0,1)} \sum_{S \in (0,1)} \sum_{G \in (A,B,C)} P(I,D,G,S,l^{1})$$

$$P(l^{1}) = \sum_{I \in (0,1)} \sum_{D \in (0,1)} \sum_{S \in (0,1)} \sum_{G \in (A,B,C)} P(I,D,G,S,l^{1})$$



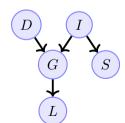
$$\begin{split} P(l^1) &= \sum_{I \in (0,1)} \sum_{D \in (0,1)} \sum_{S \in (0,1)} \sum_{G \in (A,B,C)} P(I,D,G,S,l^1) \\ &= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D|I) \sum_{S \in (0,1)} P(S|I,D) \sum_{G \in (A,B,C)} P(G|I,D,S).P(l^1|G,I,D,S) \end{split}$$



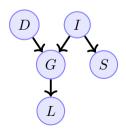
$$P(l^{1}) = \sum_{I \in (0,1)} \sum_{D \in (0,1)} \sum_{S \in (0,1)} \sum_{G \in (A,B,C)} P(I,D,G,S,l^{1})$$

$$= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D|I) \sum_{S \in (0,1)} P(S|I,D) \sum_{G \in (A,B,C)} P(G|I,D,S).P(l^{1}|G,I,D,S)$$

$$= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) \sum_{G \in (A,B,C)} P(G|I,D).P(l^{1}|G)$$



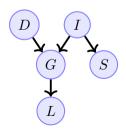
$$P(l^{1}) = \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) \sum_{G \in (A,B,C)} P(G|I,D) P(l^{1}|G)$$



|       | $l^0$ | $l^1$ |
|-------|-------|-------|
| $g^1$ | 0.1   | 0.9   |
| $g^2$ | 0.4   | 0.6   |
| $g^3$ | 0.99  | 0.01  |

$$P(l^{1}) = \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) \sum_{G \in (A,B,C)} P(G|I,D)P(l^{1}|G)$$

$$= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I)0.9(P(g^{1}|I,D)) + 0.6(P(g^{2}|I,D)) + 0.01(P(g^{3}|I,D))$$

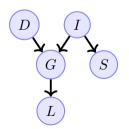


|       | $l^0$ | $l^1$ |
|-------|-------|-------|
| $g^1$ | 0.1   | 0.9   |
| $g^2$ | 0.4   | 0.6   |
| $g^3$ | 0.99  | 0.01  |

$$P(l^{1}) = \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) \sum_{G \in (A,B,C)} P(G|I,D) P(l^{1}|G)$$

$$= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) 0.9 (P(g^{1}|I,D)) + 0.6 (P(g^{2}|I,D)) + 0.01 (P(g^{3}|I,D))$$

• Similarly using the other tables, we can evaluate this equation



|       | $l^0$ | $l^1$ |
|-------|-------|-------|
| $g^1$ | 0.1   | 0.9   |
| $g^2$ | 0.4   | 0.6   |
| $g^3$ | 0.99  | 0.01  |

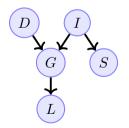
|               | $g^1$ | $g^2$ | $g^3$ |
|---------------|-------|-------|-------|
| $i^{0},d^{0}$ | 0.3   | 0.4   | 0.3   |
| $i^{0},d^{1}$ | 0.05  | 0.25  | 0.7   |
| $i^1, d^0$    | 0.9   | 0.08  | 0.02  |
| $i^1,d^1$     | 0.5   | 0.3   | 0.2   |

$$P(l^{1}) = \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I) \sum_{G \in (A,B,C)} P(G|I,D)P(l^{1}|G)$$

$$= \sum_{I \in (0,1)} P(I) \sum_{D \in (0,1)} P(D) \sum_{S \in (0,1)} P(S|I)0.9(P(g^{1}|I,D)) + 0.6(P(g^{2}|I,D)) + 0.01(P(g^{3}|I,D))$$

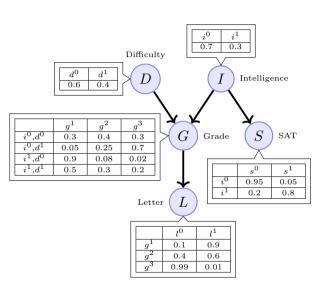
• Similarly using the other tables, we can evaluate this equation

$$P(l^1) = 0.502$$

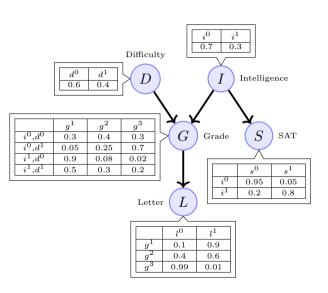


|       | $l^0$ | $l^1$ |
|-------|-------|-------|
| $g^1$ | 0.1   | 0.9   |
| $g^2$ | 0.4   | 0.6   |
| $g^3$ | 0.99  | 0.01  |

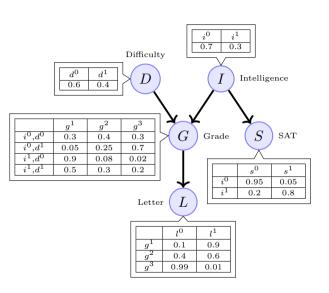
|               | $g^1$ | $g^2$ | $g^3$ |
|---------------|-------|-------|-------|
| $i^{0},d^{0}$ | 0.3   | 0.4   | 0.3   |
| $i^{0},d^{1}$ | 0.05  | 0.25  | 0.7   |
| $i^1, d^0$    | 0.9   | 0.08  | 0.02  |
| $i^1,d^1$     | 0.5   | 0.3   | 0.2   |



• Now what if we start adding information about the factors that could influence  $l^1$ 

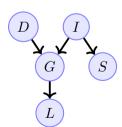


- Now what if we start adding information about the factors that could influence  $l^1$
- What if someone reveals that the student is not intelligent?

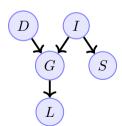


- Now what if we start adding information about the factors that could influence  $l^1$
- What if someone reveals that the student is not intelligent?
- Intelligence will affect the score and hence the grade

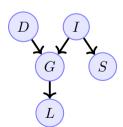
$$P(l^{1}|i^{0}) = \frac{P(l^{1}, i^{0})}{P(i^{0})}$$



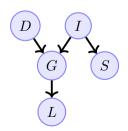
$$\begin{split} &P(l^{1}|i^{0}) = \frac{P(l^{1},i^{0})}{P(i^{0})} \\ &P(l^{1},i^{0}) = \sum_{D \in \{0,1\}} \sum_{S \in \{0,1\}} \sum_{G \in \{A,B,C\}} P(i^{0},D,G,S,l^{1}) \end{split}$$



$$\begin{split} P(l^{1}|i^{0}) &= \frac{P(l^{1}, i^{0})}{P(i^{0})} \\ P(l^{1}, i^{0}) &= \sum_{D \in \{0,1\}} \sum_{S \in \{0,1\}} \sum_{G \in \{A,B,C\}} P(i^{0}, D, G, S, l^{1}) \\ &= \sum_{D \in \{0,1\}} P(D) \sum_{S \in \{0,1\}} P(S|i^{0}) \sum_{G \in \{A,B,C\}} \frac{P(G|D, i^{0})P(l^{1}|G)}{P(D, i^{0})P(l^{1}|G)} \end{split}$$



$$\begin{split} P(l^{1}|i^{0}) &= \frac{P(l^{1},i^{0})}{P(i^{0})} \\ P(l^{1},i^{0}) &= \sum_{D \in \{0,1\}} \sum_{S \in \{0,1\}} \sum_{G \in \{A,B,C\}} P(i^{0},D,G,S,l^{1}) \\ &= \sum_{D \in \{0,1\}} P(D) \sum_{S \in \{0,1\}} P(S|i^{0}) \sum_{G \in \{A,B,C\}} P(G|D,i^{0})P(l^{1}|G) \\ &= \sum_{D \in \{0,1\}} P(D) \sum_{S \in \{0,1\}} P(S|i^{0}) \sum_{G \in \{A,B,C\}} \frac{0.9P(g^{1}|D,i^{0}) + 0.6P(g^{2}|D,i^{0}) + 0.01P(g^{3}|D,i^{0})}{0.9P(g^{1}|D,i^{0}) + 0.6P(g^{2}|D,i^{0}) + 0.01P(g^{3}|D,i^{0})} \end{split}$$



|       | $l^0$ | $l^1$ |
|-------|-------|-------|
| $g^1$ | 0.1   | 0.9   |
| $g^2$ | 0.4   | 0.6   |
| $g^3$ | 0.99  | 0.01  |

|               | $g^1$ | $g^2$ | $g^3$ |
|---------------|-------|-------|-------|
| $i^{0},d^{0}$ | 0.3   | 0.4   | 0.3   |
| $i^{0},d^{1}$ | 0.05  | 0.25  | 0.7   |
| $i^1, d^0$    | 0.9   | 0.08  | 0.02  |
| $i^1,d^1$     | 0.5   | 0.3   | 0.2   |

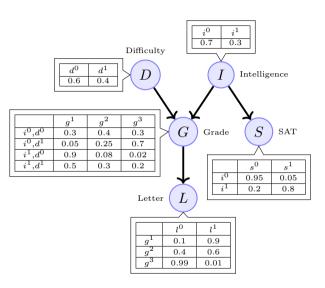
$$\begin{split} P(l^{1}|i^{0}) &= \frac{P(l^{1},i^{0})}{P(i^{0})} \\ P(l^{1},i^{0}) &= \sum_{D \in \{0,1\}} \sum_{S \in \{0,1\}} \sum_{G \in \{A,B,C\}} P(i^{0},D,G,S,l^{1}) \\ &= \sum_{D \in \{0,1\}} P(D) \sum_{S \in \{0,1\}} P(S|i^{0}) \sum_{G \in \{A,B,C\}} \frac{P(G|D,i^{0})P(l^{1}|G)}{P(D,i^{0})P(l^{1}|G)} \\ &= \sum_{D \in \{0,1\}} P(D) \sum_{S \in \{0,1\}} P(S|i^{0}) \sum_{G \in \{A,B,C\}} \frac{0.9P(g^{1}|D,i^{0}) + 0.6P(g^{2}|D,i^{0}) + 0.01P(g^{3}|D,i^{0})}{P(l^{1}|i^{0}) = 0.389} \end{split}$$

|       | $l^0$ | $l^1$ |
|-------|-------|-------|
| $g^1$ | 0.1   | 0.9   |
| $g^2$ | 0.4   | 0.6   |
| $g^3$ | 0.99  | 0.01  |

|               | $g^1$ | $g^2$ | $g^3$ |
|---------------|-------|-------|-------|
| $i^{0},d^{0}$ | 0.3   | 0.4   | 0.3   |
| $i^{0},d^{1}$ | 0.05  | 0.25  | 0.7   |
| $i^1, d^0$    | 0.9   | 0.08  | 0.02  |
| $i^1,d^1$     | 0.5   | 0.3   | 0.2   |

• What if the course was easy?





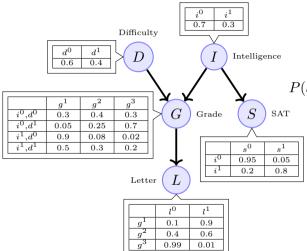
## Causal Reasoning

- What if the course was easy?
- A not so intelligent student may still be able to get a good grade and hence a good letter

#### Causal Reasoning

- What if the course was easy?
- A not so intelligent student may still be able to get a good grade and hence a good letter

$$P(l^{1}|i^{0}, d^{0}) = \sum_{G \in (A, B, C)} \sum_{S \in (0, 1)} P(i^{0}, d^{0}, G, S, l^{1})$$

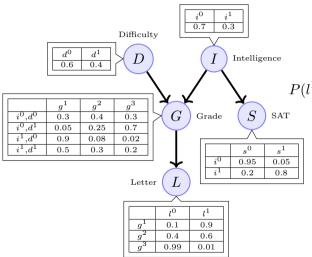


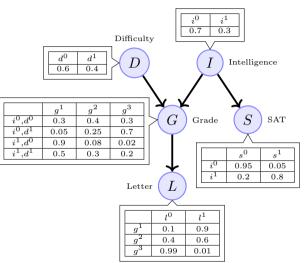
#### **Causal Reasoning**

- What if the course was easy?
- A not so intelligent student may still be able to get a good grade and hence a good letter

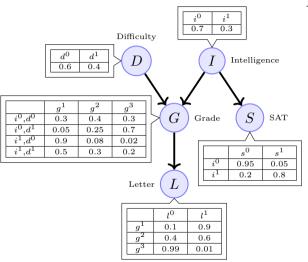
$$P(l^{1}|i^{0}, d^{0}) = \sum_{G \in (A, B, C)} \sum_{S \in (0, 1)} P(i^{0}, d^{0}, G, S, l^{1})$$

$$P(l^{1}|i^{0}, d^{1}) = 0.513 \text{ (increases)}$$



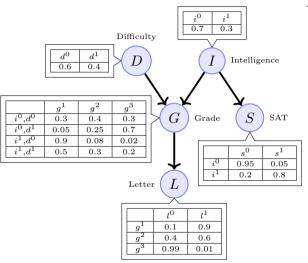


• Here, we reason about causes by looking at their effects



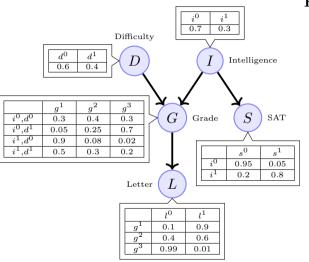
- Here, we reason about causes by looking at their effects
- What is the probability of the student being intelligent?

$$P(i^1) = ?$$



- Here, we reason about causes by looking at their effects
- What is the probability of the student being intelligent?

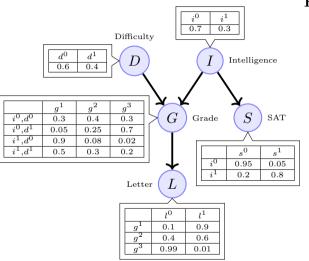
$$P(i^1) = 0.3$$



- Here, we reason about causes by looking at their effects
- What is the probability of the student being intelligent?
- What is the probability of the course being difficult?

$$P(i^1) = 0.3$$
$$P(d^1) = ?$$

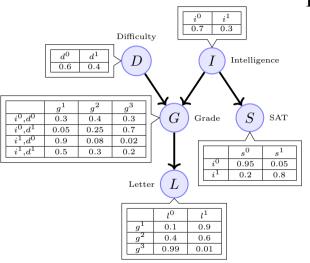
$$P(d^1) = ?$$



- Here, we reason about causes by looking at their effects
- What is the probability of the student being intelligent?
- What is the probability of the course being difficult?

$$P(i^1) = 0.3$$
  
 $P(d^1) = 0.4$ 

$$P(d^1) = 0.4$$

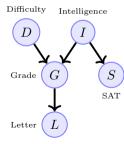


- Here, we reason about causes by looking at their effects
- What is the probability of the student being intelligent?
- What is the probability of the course being difficult?
- Now let us see what happens if we observe some effects

$$P(i^1) = 0.3$$

$$P(d^1) = 0.4$$

$$P(i^1) = 0.3$$
$$P(d^1) = 0.4$$



• What if someone tells us that the student secured C grade?

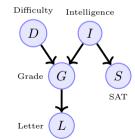
$$P(i^1) = 0.3$$
  
 $P(d^1) = 0.4$   
 $P(i^1|g^3) = 0.079(drops)$ 

 $P(d^1|g^3) = 0.629(increases)$ 

## **Evidential Reasoning**

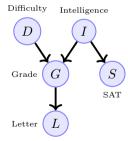
• What if someone tells us that the student secured C grade?

$$P(i^{1}) = 0.3$$
  
 $P(d^{1}) = 0.4$   
 $P(i^{1}|g^{3}) = 0.079(drops)$   
 $P(d^{1}|g^{3}) = 0.629(increases)$ 



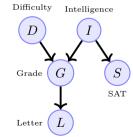
- What if someone tells us that the student secured C grade?
- What if instead of getting to know the grade, we get to know that the student got a poor recommendation letter?

$$P(i^{1}) = 0.3$$
  
 $P(d^{1}) = 0.4$   
 $P(i^{1}|g^{3}) = 0.079(drops)$   
 $P(d^{1}|g^{3}) = 0.629(increases)$   
 $P(i^{1}|l^{0}) = 0.14(drops)$ 



- What if someone tells us that the student secured C grade?
- What if instead of getting to know the grade, we get to know that the student got a poor recommendation letter?

$$P(i^{1}) = 0.3$$
  
 $P(d^{1}) = 0.4$   
 $P(i^{1}|g^{3}) = 0.079(drops)$   
 $P(d^{1}|g^{3}) = 0.629(increases)$   
 $P(i^{1}|l^{0}) = 0.14(drops)$ 



- What if someone tells us that the student secured C grade?
- What if instead of getting to know the grade, we get to know that the student got a poor recommendation letter?
- What if we know about the grade as well as the recommendation letter?

$$P(i^1) = 0.3$$

$$P(d^1) = 0.4$$

$$P(i^1|g^3) = 0.079(drops)$$

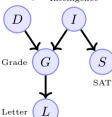
$$P(d^1|g^3) = 0.629(increases)$$

$$P(i^1|l^0) = 0.14(drops)$$

$$P(l^1|l^0, g^3) = 0.079$$

(same as  $P(i^1|g^3)$ )

Difficulty Intelligence



- What if someone tells us that the student secured C grade?
- What if instead of getting to know the grade, we get to know that the student got a poor recommendation letter?
- What if we know about the grade as well as the recommendation letter?

$$P(i^1) = 0.3$$

$$P(d^1) = 0.4$$

$$P(i^1|g^3) = 0.079(drops)$$

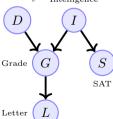
$$P(d^1|g^3) = 0.629(increases)$$

$$P(i^1|l^0) = 0.14(drops)$$

$$P(l^1|l^0, g^3) = 0.079$$

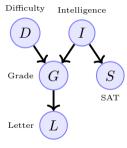
(same as  $P(i^1|g^3)$ )

Difficulty Intelligence



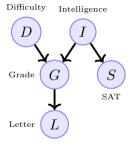
- What if someone tells us that the student secured C grade?
- What if instead of getting to know the grade, we get to know that the student got a poor recommendation letter?
- What if we know about the grade as well as the recommendation letter?
- The last case is interesting! (We will return to it later)

$$P(i^1) = 0.3$$



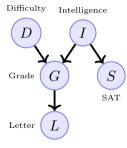
• Here, we see how different causes of the same effect can interact

$$P(i^1) = 0.3$$
  
 $P(i^1|g^3) = 0.079(drops)$ 



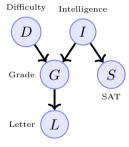
- Here, we see how different causes of the same effect can interact
- We already saw how knowing the grade influences our estimate of intelligence

$$P(i^1) = 0.3$$
  
 $P(i^1|g^3) = 0.079(drops)$ 



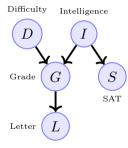
- Here, we see how different causes of the same effect can interact
- We already saw how knowing the grade influences our estimate of intelligence
- What if we were told the course was difficult?

$$\begin{split} &P(i^1) = 0.3 \\ &P(i^1|g^3) = 0.079 (drops) \\ &P(i^1|g^3,d^1) = 0.11 (improves) \end{split}$$



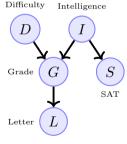
- Here, we see how different causes of the same effect can interact
- We already saw how knowing the grade influences our estimate of intelligence
- What if we were told the course was difficult?
- Our belief in the student's intelligence improves

$$\begin{split} &P(i^1) = 0.3 \\ &P(i^1|g^3) = 0.079 (drops) \\ &P(i^1|g^3,d^1) = 0.11 (improves) \end{split}$$



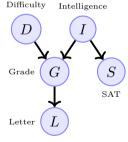
- Here, we see how different causes of the same effect can interact
- We already saw how knowing the grade influences our estimate of intelligence
- What if we were told the course was difficult?
- Our belief in the student's intelligence improves
- Why? Let us see

$$P(i^1) = 0.3$$
  
 $P(i^1|g^3) = 0.079$   
 $P(i^1|g^3, d^1) = 0.11$ 



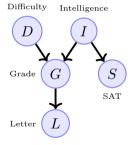
• Knowing that the course was difficult explains away the bad grade

$$P(i^1) = 0.3$$
  
 $P(i^1|g^3) = 0.079$   
 $P(i^1|g^3, d^1) = 0.11$ 



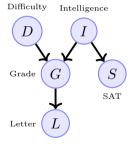
- Knowing that the course was difficult explains away the bad grade
- "Oh! Maybe the course was just too difficult and the student might have received a bad grade despite being intelligent!"

$$\begin{split} &P(i^1) = 0.3 \\ &P(i^1|g^3) = 0.079 \\ &P(i^1|g^3,d^1) = 0.11 \end{split}$$



- Knowing that the course was difficult explains away the bad grade
- "Oh! Maybe the course was just too difficult and the student might have received a bad grade despite being intelligent!"
- The explaining away effect could be even more dramatic

$$P(i^1) = 0.3$$
  
 $P(i^1|g^3) = 0.079$   
 $P(i^1|g^3, d^1) = 0.11$ 



- Knowing that the course was difficult explains away the bad grade
- "Oh! Maybe the course was just too difficult and the student might have received a bad grade despite being intelligent!"
- The explaining away effect could be even more dramatic
- ullet Let us consider the case when the grade was B

$$P(i^{1}) = 0.3$$
  
 $P(i^{1}|g^{3}) = 0.079$   
 $P(i^{1}|g^{3}, d^{1}) = 0.11$   
 $P(i^{1}|g^{2}) = 0.175$   
 $P(i^{1}|g^{2}, d^{1}) = 0.34$   
Difficulty Intelligence

D

SAT

Letter

L

- Knowing that the course was difficult explains away the bad grade
- "Oh! Maybe the course was just too difficult and the student might have received a bad grade despite being intelligent!"
- The explaining away effect could be even more dramatic
- ullet Let us consider the case when the grade was B

$$P(d^1) = 0.40$$
  
 $P(d^1|g^3) = 0.629$ 



• Suppose we know that the student had a high SAT Score, what happens to our belief about the difficulty of the course?

$$P(d^1) = 0.40$$
 $P(d^1|g^3) = 0.629$ 
 $P(d^1|s^1, g^3) = 0.76$ 
Difficulty Intelligence

Of Saturday Saturday

Letter

## **Explaining Away**

• Suppose we know that the student had a high SAT Score, what happens to our belief about the difficulty of the course?

$$P(d^{1}) = 0.40$$

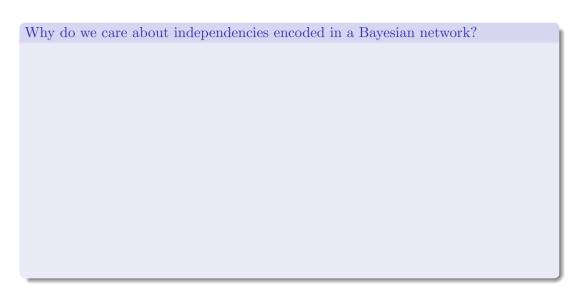
$$P(d^{1}|g^{3}) = 0.629$$

$$P(d^{1}|s^{1}, g^{3}) = 0.76$$
Difficulty Intelligence

Of Section 1

- Suppose we know that the student had a high SAT Score, what happens to our belief about the difficulty of the course?
- Knowing that the SAT score was high tells us that the student seems intelligent and perhaps the reason why he scored a poor grade is that the course was difficult.

Module 17.6: Independencies encoded by a Bayesian network (Case 1: Node and its parents)



• We saw that if two variables are independent then the chain rule gets simplified, resulting in simpler factors which in turn reduces the number of parameters.

- We saw that if two variables are independent then the chain rule gets simplified, resulting in simpler factors which in turn reduces the number of parameters.
- In the extreme case, we say that in the Bayesian network model, each factor was very simple (just  $P(X_i|Y)$  and as a result each factor just added 3 parameters

- We saw that if two variables are independent then the chain rule gets simplified, resulting in simpler factors which in turn reduces the number of parameters.
- In the extreme case, we say that in the Bayesian network model, each factor was very simple (just  $P(X_i|Y)$  and as a result each factor just added 3 parameters
- The more the number of independencies, the fewer the parameters and the lesser is the inference time

- We saw that if two variables are independent then the chain rule gets simplified, resulting in simpler factors which in turn reduces the number of parameters.
- In the extreme case, we say that in the Bayesian network model, each factor was very simple (just  $P(X_i|Y)$  and as a result each factor just added 3 parameters
- The more the number of independencies, the fewer the parameters and the lesser is the inference time
- For example, if we want to the compute the marginal P(S) then we just need to sum over the values of I and not on any other variables

- We saw that if two variables are independent then the chain rule gets simplified, resulting in simpler factors which in turn reduces the number of parameters.
- In the extreme case, we say that in the Bayesian network model, each factor was very simple (just  $P(X_i|Y)$  and as a result each factor just added 3 parameters
- The more the number of independencies, the fewer the parameters and the lesser is the inference time
- For example, if we want to the compute the marginal P(S) then we just need to sum over the values of I and not on any other variables
- Hence we are interested in finding the independencies encoded in a Bayesian network

In general, given n random variables, we are interested in knowing if

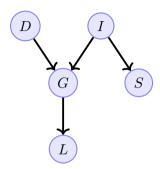
•  $X_i \perp X_j$ 

In general, given n random variables, we are interested in knowing if

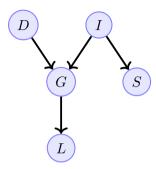
- $\bullet$   $X_i \perp X_j$
- $X_i \perp X_j | Z$ , where  $Z \subseteq X_1, X_2, ..., X_n / X_i, X_j$

In general, given n random variables, we are interested in knowing if

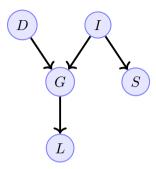
- $\bullet$   $X_i \perp X_j$
- $X_i \perp X_j | Z$ , where  $Z \subseteq X_1, X_2, ..., X_n / X_i, X_j$
- Let us answer some of the questions for our student Bayesian Network



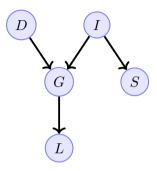
• To understand this let us return to our student example



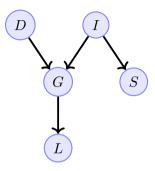
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph



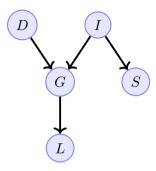
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is  $L \perp G$ ? (No, by construction)



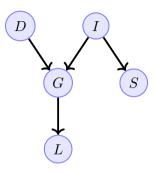
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is  $L \perp G$ ? (No, by construction)
- Is  $G \perp D$ ? (No, by construction)



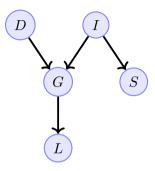
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is  $L \perp G$ ? (No, by construction)
- Is  $G \perp D$ ? (No, by construction)
- Is  $G \perp I$ ? (No, by construction)



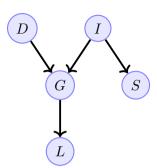
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is  $L \perp G$ ? (No, by construction)
- Is  $G \perp D$ ? (No, by construction)
- Is  $G \perp I$ ? (No, by construction)
- Is  $S \perp I$ ? (No, by construction)



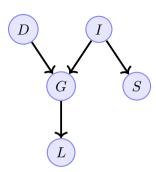
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is  $L \perp G$ ? (No, by construction)
- Is  $G \perp D$ ? (No, by construction)
- Is  $G \perp I$ ? (No, by construction)
- Is  $S \perp I$ ? (No, by construction)
- Rule?



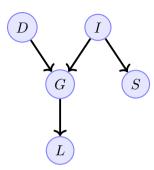
- To understand this let us return to our student example
- First, let us see some independencies which clearly do not exist in the graph
- Is  $L \perp G$ ? (No, by construction)
- Is  $G \perp D$ ? (No, by construction)
- Is  $G \perp I$ ? (No, by construction)
- Is  $S \perp I$ ? (No, by construction)
- Rule: A node is not independent of its parents



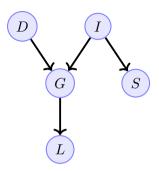
• Let us focus on G and L.



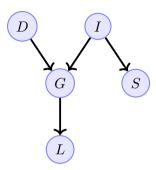
- ullet Let us focus on G and L.
- We already know that  $G \not\perp L$ .



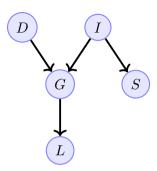
- $\bullet$  Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of I? Does G become independent of L?



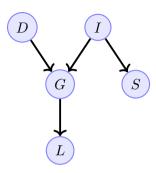
- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of *I*? Does *G* become independent of *L*?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)



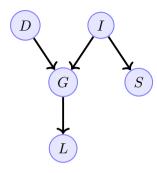
- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of I? Does G become independent of L?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)
- If we know the value of D, does G become independent of L.



- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of *I*? Does *G* become independent of *L*?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)
- If we know the value of D, does G become independent of L.
- No (intuitively, the course may be easy or hard but the letter would depend on the performance in the course)

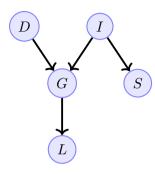


- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of *I*? Does *G* become independent of *L*?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)
- If we know the value of D, does G become independent of L.
- No (intuitively, the course may be easy or hard but the letter would depend on the performance in the course)
- What if we know the value of S? Does G become independent of  $L^2$



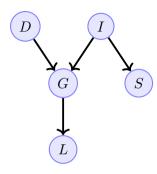
• No, the instructor is not going to look at the SAT score but the grade

- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of *I*? Does *G* become independent of *L*?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)
- If we know the value of D, does G become independent of L.
- No (intuitively, the course may be easy or hard but the letter would depend on the performance in the course)
- What if we know the value of S? Does G become independent of  $L^2$



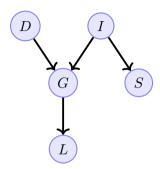
- No, the instructor is not going to look at the SAT score but the grade
- Rule?

- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of *I*? Does *G* become independent of *L*?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)
- If we know the value of D, does G become independent of L.
- No (intuitively, the course may be easy or hard but the letter would depend on the performance in the course)
- What if we know the value of S? Does G become independent of  $L^2$

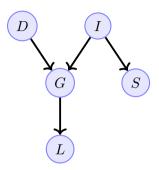


- No, the instructor is not going to look at the SAT score but the grade
- Rule: A node is not independent of its parents even when we are given the values of other variables

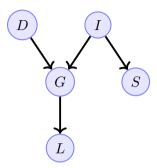
- Let us focus on G and L.
- We already know that  $G \not\perp L$ .
- What if we know the value of *I*? Does *G* become independent of *L*?
- No (intuitively, the student may be intelligent or not but ultimately, the letter depends on the performance in the course.)
- If we know the value of D, does G become independent of L.
- No (intuitively, the course may be easy or hard but the letter would depend on the performance in the course)
- What if we know the value of S? Does G become independent of  $L^2$



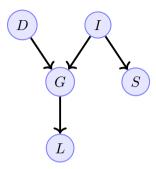
• The same argument can be made about the following pairs



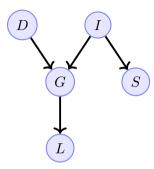
- The same argument can be made about the following pairs
- $G \not\perp D$  (even when other variables are given)



- The same argument can be made about the following pairs
- $G \not\perp D$  (even when other variables are given)
- $G \not\perp I$  (even when other variables are given)

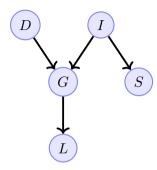


- The same argument can be made about the following pairs
- $G \not\perp D$  (even when other variables are given)
- $G \not\perp I$  (even when other variables are given)
- $S \not\perp I$  (even when other variables are given)



## • Rule?

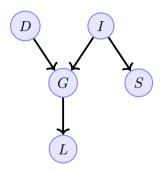
- The same argument can be made about the following pairs
- $G \not\perp D$  (even when other variables are given)
- $G \not\perp I$  (even when other variables are given)
- $S \not\perp I$  (even when other variables are given)



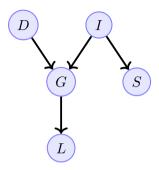
• Rule: A node is not independent of its parents even when we are given the values of other variables

- The same argument can be made about the following pairs
- $G \not\perp D$  (even when other variables are given)
- $G \not\perp I$  (even when other variables are given)
- $S \not\perp I$  (even when other variables are given)

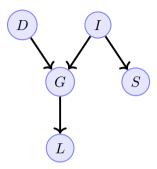
Module 17.7: Independencies encoded by a Bayesian network (Case 2: Node and its non-parents)



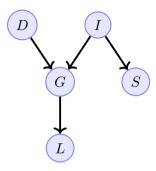
• Now let's look at the relation between a node and its non-parent nodes



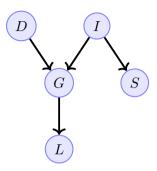
- Now let's look at the relation between a node and its non-parent nodes
- Is  $L \perp S$ ?



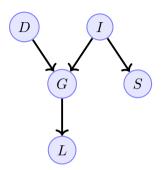
- Now let's look at the relation between a node and its non-parent nodes
- Is  $L \perp S$ ?
- No, knowing the SAT score tells us about I which in turn tells us something about G and hence L



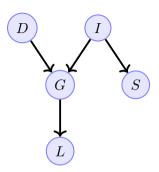
- Now let's look at the relation between a node and its non-parent nodes
- Is  $L \perp S$ ?
- No, knowing the SAT score tells us about I which in turn tells us something about G and hence L
- Hence we expect  $P(l^1|s^1) > P(l^1|s^0)$



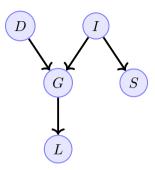
- Now let's look at the relation between a node and its non-parent nodes
- Is  $L \perp S$ ?
- No, knowing the SAT score tells us about I which in turn tells us something about G and hence L
- Hence we expect  $P(l^1|s^1) > P(l^1|s^0)$
- Similarly we can argue  $L \not\perp D$  and  $L \not\perp I$



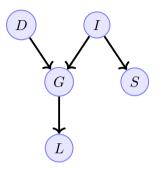
• But what if we know the value of G?



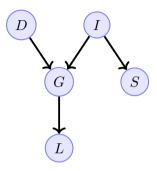
- $\bullet$  But what if we know the value of G?
- Is  $(L \perp S)|G$ ?



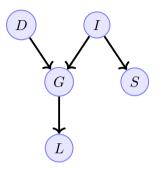
- But what if we know the value of *G*?
- Is  $(L \perp S)|G$ ?
- Yes, the grade completely determines the recommendation letter



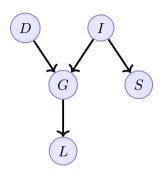
- But what if we know the value of *G*?
- Is  $(L \perp S)|G$ ?
- Yes, the grade completely determines the recommendation letter
- Once we know the grade, other variables do not add any information



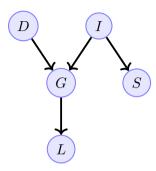
- But what if we know the value of *G*?
- Is  $(L \perp S)|G$ ?
- Yes, the grade completely determines the recommendation letter
- Once we know the grade, other variables do not add any information
- Hence  $(L \perp S)|G$



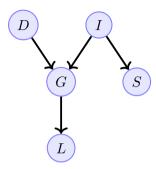
- But what if we know the value of *G*?
- Is  $(L \perp S)|G$ ?
- Yes, the grade completely determines the recommendation letter
- Once we know the grade, other variables do not add any information
- Hence  $(L \perp S)|G$
- Similarly we can argue  $(L \perp I)|G$  and  $(L \perp D)|G$



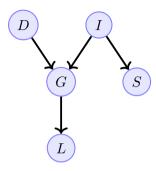
• But, wait a minute!



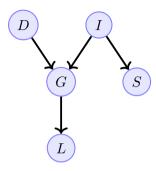
- But, wait a minute!
- The instructor may also want to look at the SAT score in addition to the grade



- But, wait a minute!
- The instructor may also want to look at the SAT score in addition to the grade
- Well, we "assumed" that the instructor only relies on the grade.

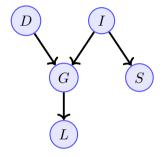


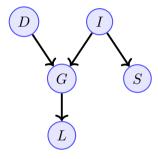
- But, wait a minute!
- The instructor may also want to look at the SAT score in addition to the grade
- Well, we "assumed" that the instructor only relies on the grade.
- That was our "belief" of how the world works



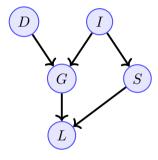
- But, wait a minute!
- The instructor may also want to look at the SAT score in addition to the grade
- Well, we "assumed" that the instructor only relies on the grade.
- That was our "belief" of how the world works
- And hence we drew the network accordingly

• Of course we are free to change our assumptions

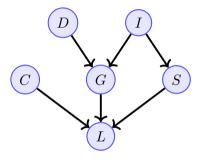




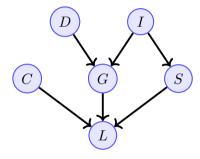
- Of course we are free to change our assumptions
- We may want to assume that the instructor also looks at the SAT score



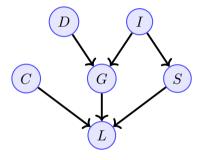
- Of course we are free to change our assumptions
- We may want to assume that the instructor also looks at the SAT score
- But if that is the case we have to change the network to reflect this dependence



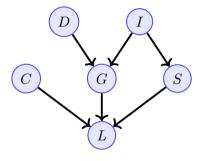
- Of course we are free to change our assumptions
- We may want to assume that the instructor also looks at the SAT score
- But if that is the case we have to change the network to reflect this dependence
- Why just SAT score? The instructor may even consult one of his colleagues and seek his/her opinion



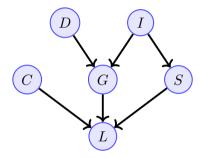
• Remember: The graph is a reflection of our assumptions about how the world works



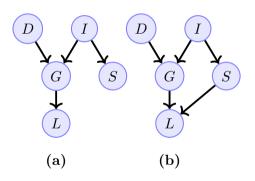
- Remember: The graph is a reflection of our assumptions about how the world works
- Our assumptions about dependencies are encoded in the graph



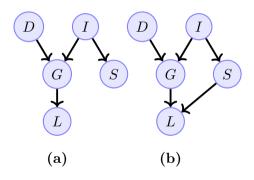
- Remember: The graph is a reflection of our assumptions about how the world works
- Our assumptions about dependencies are encoded in the graph
- Once we build the graph we freeze it and do all the reasoning and analysis (independence) on this graph



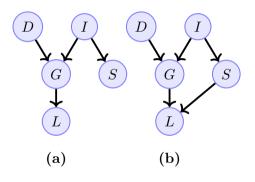
- Remember: The graph is a reflection of our assumptions about how the world works
- Our assumptions about dependencies are encoded in the graph
- Once we build the graph we freeze it and do all the reasoning and analysis (independence) on this graph
- It is not fair to ask "what if" questions involving other factors (For example, what if the professor was in a bad mood?)



• If we believe Graph (a) is how the world works then  $(L \perp S)|G$ 



- If we believe Graph (a) is how the world works then  $(L \perp S)|G$
- If we believe Graph(b) is how the world works then  $(L \not\perp S)|G$

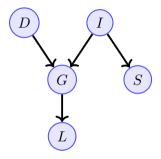


- If we believe Graph (a) is how the world works then  $(L \perp S)|G$
- If we believe Graph(b) is how the world works then  $(L \not\perp S)|G$
- We will stick to Graph(a) for the discussion

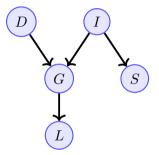
• Let's return back to our discussion of finding independence relations in the graph

- Let's return back to our discussion of finding independence relations in the graph
- So far we have seen three cases as summarized in the next module

Module 17.8: Independencies encoded by a Bayesian network (Case 3: Node and its descendants)

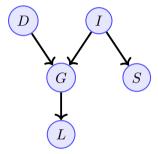


•  $(G \not\perp D)$   $(G \not\perp I)$   $(S \not\perp I)$   $(L \not\perp G)$ A node is not independent of its parents



- $(G \not\perp D) (G \not\perp I) (S \not\perp I) (L \not\perp G)$ A node is not independent of its parents
- $(G \not\perp D, I)|S, L$   $(S \not\perp I)|D, G, L$  $(L \not\perp G)|D, I, S$

A node is not independent of its parents even when other variables are given



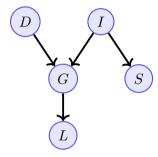
- $(G \not\perp D) (G \not\perp I) (S \not\perp I) (L \not\perp G)$ A node is not independent of its parents
- $(G \not\perp D, I)|S, L$   $(S \not\perp I)|D, G, L$   $(L \not\perp G)|D, I, S$ A node is not independent of its par-

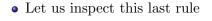
A node is not independent of its parents even when other variables are given

• 
$$(S \perp G)|I?$$
  
 $(L \perp D, I, S)|G?$   
 $(G \perp L)|D, I?$ 

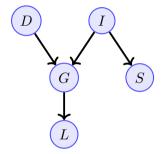
A node **seems to be** independent of other variables given its parents

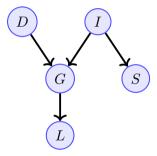
• Let us inspect this last rule



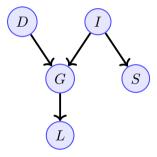


• Is 
$$(G \perp L)|D,I$$
?

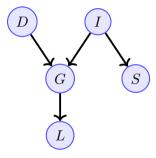




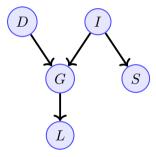
- Let us inspect this last rule
- Is  $(G \perp L)|D, I$ ?
- If you know that d = 0 and i = 1 then you would expect the student to get a good grade



- Let us inspect this last rule
- Is  $(G \perp L)|D,I$ ?
- If you know that d = 0 and i = 1 then you would expect the student to get a good grade
- But now if someone tells you that the student got a poor letter, your belief will change



- Let us inspect this last rule
- Is  $(G \perp L)|D, I$ ?
- If you know that d = 0 and i = 1 then you would expect the student to get a good grade
- But now if someone tells you that the student got a poor letter, your belief will change
- So  $(G \not\perp L)|D, I$



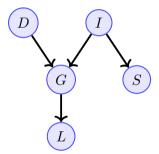
- Let us inspect this last rule
- Is  $(G \perp L)|D, I$ ?
- If you know that d = 0 and i = 1 then you would expect the student to get a good grade
- But now if someone tells you that the student got a poor letter, your belief will change
- So  $(G \not\perp L)|D,I$
- The effect (letter) actually gives us information about the cause (grade)

•  $(G \not\perp D) (G \not\perp I) (S \not\perp I) (L \not\perp G)$ A node is not independent of its parents



- $(G \not\perp D) (G \not\perp I) (S \not\perp I) (L \not\perp G)$ A node is not independent of its parents
- $\begin{array}{c} \bullet \ (G \not\perp D, I) | S, L \\ (S \not\perp I) | D, G, L \\ (L \not\perp G) | D, I, S \end{array}$

A node is not independent of its parents even when other variables are given



- $(G \not\perp D) (G \not\perp I) (S \not\perp I) (L \not\perp G)$ A node is not independent of its parents
- $\begin{array}{c} \bullet \ (G \not\perp D, I) | S, L \\ (S \not\perp I) | D, G, L \\ (L \not\perp G) | D, I, S \end{array}$

A node is not independent of its parents even when other variables are given

 $\begin{array}{c} \bullet \ (S \perp G) | I \\ (L \perp D, I, S) | G \\ (G \not\perp L) | D, I \end{array}$ 

Given its parents, a node is independent of all variables except its descendants

Module 17.9: Bayesian Networks: Formal Semantics

We are now ready to formally define the semantics of a Bayesian Network

## Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph

# Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph where nodes represent random variables  $X_1, X_2, ..., X_n$ .

# Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph where nodes represent random variables  $X_1, X_2, ..., X_n$ . Let  $P_{a_{X_i}}^G$  denote the parents of  $X_i$  in G

# Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph where nodes represent random variables  $X_1, X_2, ..., X_n$ . Let  $P_{a_{X_i}}^G$  denote the parents of  $X_i$  in G and NonDescendants $(X_i)$  denote the variables in the graph that are not descendants of  $X_i$ .

# Bayesian Network Semantics:

A Bayesian Network structure G is a directed acyclic graph where nodes represent random variables  $X_1, X_2, ..., X_n$ . Let  $P_{a_{X_i}}^G$  denote the parents of  $X_i$  in G and NonDescendants $(X_i)$  denote the variables in the graph that are not descendants of  $X_i$ . Then G encodes the following set of conditional independence assumptions called the local independencies and denoted by  $I_i(G)$  for each variable  $X_i$ .

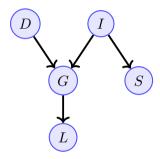
# Bayesian Network Semantics:

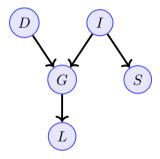
A Bayesian Network structure G is a directed acyclic graph where nodes represent random variables  $X_1, X_2, ..., X_n$ . Let  $P_{a_{X_i}}^G$  denote the parents of  $X_i$  in G and NonDescendants $(X_i)$  denote the variables in the graph that are not descendants of  $X_i$ . Then G encodes the following set of conditional independence assumptions called the local independencies and denoted by  $I_i(G)$  for each variable  $X_i$ .  $(X_i \perp \text{NonDescendants}(X_i)|P_{a_{X_i}}^G)$ 

• We will see some more formal definitions and then return to the question of independencies.

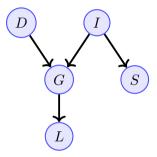
Module 17.10: I Maps

• Let P be a joint distribution over  $X = X_1, X_2, ..., X_n$ 

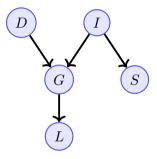




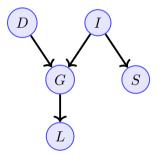
- Let P be a joint distribution over  $X = X_1, X_2, ..., X_n$
- We define I(P) as the set of independence assumptions that hold in P.



- Let P be a joint distribution over  $X = X_1, X_2, ..., X_n$
- We define I(P) as the set of independence assumptions that hold in P.
- For Example:  $I(P) = \{ (G \perp S | I, D), ..... \}$

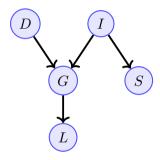


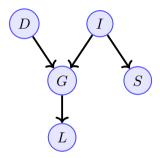
- Let P be a joint distribution over  $X = X_1, X_2, ..., X_n$
- We define I(P) as the set of independence assumptions that hold in P.
- For Example:  $I(P) = \{(G \perp S | I, D), \dots\}$
- Each element of this set is of the form  $X_i \perp X_j | Z, Z \subseteq X | X_i, X_j$



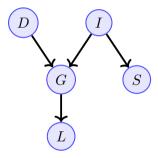
- Let P be a joint distribution over  $X = X_1, X_2, ..., X_n$
- We define I(P) as the set of independence assumptions that hold in P.
- For Example:  $I(P) = \{(G \perp S | I, D), \dots\}$
- Each element of this set is of the form  $X_i \perp X_j | Z, Z \subseteq X | X_i, X_j$
- Let I(G) be the set of independence assumptions associated with a graph G.

• We say that G is an I-map for P if  $I(G) \subseteq I(P)$ 

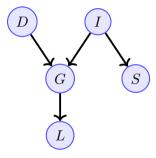




- We say that G is an I-map for P if  $I(G) \subseteq I(P)$
- ullet G does not mislead us about independencies in P



- We say that G is an I-map for P if  $I(G) \subseteq I(P)$
- G does not mislead us about independencies in P
- Any independence that G states must hold in P



- We say that G is an I-map for P if  $I(G) \subseteq I(P)$
- G does not mislead us about independencies in P
- Any independence that G states must hold in P
- But P can have additional independencies.

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

• Consider this joint distribution over X, Y

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

- Consider this joint distribution over X, Y
- We need to find a G which is an I-map for this P

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

- Consider this joint distribution over X, Y
- We need to find a G which is an I-map for this P
- How do we find such a G?

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

• Well since there are only 2 variables here the only possibilities are  $I(P) = \{(X \perp Y)\}\$ or  $I(P) = \Phi$ 

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

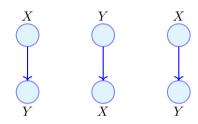
- Well since there are only 2 variables here the only possibilities are  $I(P) = \{(X \perp Y)\}\$ or  $I(P) = \Phi$
- From the table we can easily check P(X,Y) = P(X).P(Y)

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

- Well since there are only 2 variables here the only possibilities are  $I(P) = \{(X \perp Y)\}\$ or  $I(P) = \Phi$
- From the table we can easily check P(X,Y) = P(X).P(Y)
- $I(P) = \{(X \perp Y)\}$

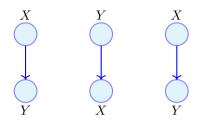
| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

- Well since there are only 2 variables here the only possibilities are  $I(P) = \{(X \perp Y)\}\$ or  $I(P) = \Phi$
- From the table we can easily check P(X,Y) = P(X).P(Y)
- $I(P) = \{(X \perp Y)\}$
- Now can you come up with a G which satisfies  $I(G) \subseteq I(P)$ ?



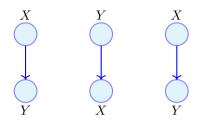
$$I(G) = \Phi$$
  $I(G_2) = \Phi$   $I(G_3) = \{(X \perp Y)\}$ 

• Since we have only two variables there are only 3 possibilities for G



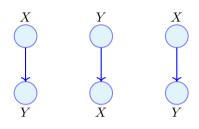
$$I(G) = \Phi$$
  $I(G_2) = \Phi$   $I(G_3) = \{(X \perp Y)\}$ 

- Since we have only two variables there are only 3 possibilities for G
- Which of these is an I-Map for P?



$$I(G) = \Phi$$
  $I(G_2) = \Phi$   $I(G_3) = \{(X \perp Y)\}$ 

- Since we have only two variables there are only 3 possibilities for G
- Which of these is an I-Map for P?
- $\bullet$  Well all three are I-Maps for P



 $I(G) = \Phi$   $I(G_2) = \Phi$   $I(G_3) = \{(X \perp Y)\}$ 

- Since we have only two variables there are only 3 possibilities for G
- Which of these is an I-Map for P?
- $\bullet$  Well all three are I-Maps for P
- They all satisfy the condition  $I(G) \subseteq I(P)$

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

• Of course, this was just a toy example

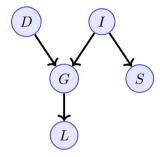
| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

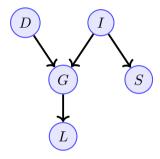
- Of course, this was just a toy example
- In practice, we do not know P and hence can't compute I(P)

| X | Y | P(X,Y) |
|---|---|--------|
| 0 | 0 | 0.08   |
| 0 | 1 | 0.32   |
| 1 | 0 | 0.12   |
| 1 | 1 | 0.48   |

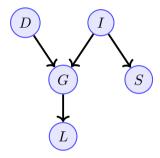
- Of course, this was just a toy example
- In practice, we do not know P and hence can't compute I(P)
- We just make some assumptions about I(P) and then construct a G such that  $I(G) \subseteq I(P)$

• So why do we care about I-Map?

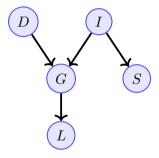




- So why do we care about I-Map?
- If G is an I-Map for a joint distribution P then P factorizes over G



- So why do we care about I-Map?
- If G is an I-Map for a joint distribution P then P factorizes over G
- What does that mean?



- So why do we care about I-Map?
- If G is an I-Map for a joint distribution P then P factorizes over G
- What does that mean?
- Well, it just means that P can be written as a product of factors where each factor is a c.p.d associated with the nodes of G

#### Theorem

Let G be a BN structure over a set of random variables X and let P be a joint distribution over these variables. If G is an I-Map for P, then P factorizes according to G Proof:Exercise

### Theorem

Let G be a BN structure over a set of random variables X and let P be a joint distribution over these variables. If P factorizes according to G, then G is an I-Map of P

Proof:Exercise

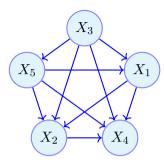
• Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$ 

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations

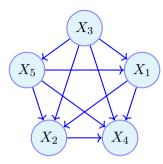
- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.
- Can you think of a G which will be an I-Map for any distribution over P?



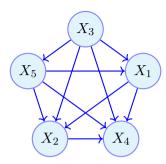
• What is this graph called?

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.
- Can you think of a G which will be an I-Map for any distribution over P?



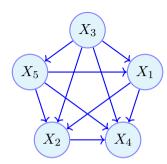
• Answer: A complete graph

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.
- Can you think of a G which will be an I-Map for any distribution over P?



- Answer: A complete graph
- The factorization entailed by the above graph is  $P(X_3)P(X_5|X_3)P(X_1|X_3,X_5) \\ P(X_2|X_1,X_3,X_5)P(X_4|X_1,X_2,X_3,X_5)$

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.
- Can you think of a G which will be an I-Map for any distribution over P?



- Answer: A complete graph
- The factorization entailed by the above graph is  $P(X_3)P(X_5|X_3)P(X_1|X_3,X_5)$   $P(X_2|X_1,X_3,X_5)P(X_4|X_1,X_2,X_3,X_5)$
- which is just chain rule of probability which holds for any distribution

- Consider a set of random variables  $X_1, X_2, X_3, X_4, X_5$
- There are many joint distributions possible
- Each may entail different independence relations
- For example, in some cases L could be independent of S; in some not.
- Can you think of a G which will be an I-Map for any distribution over P?