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Module 21.1: Revisiting Autoencoders
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X

W

h

W ∗

X̂

h = g(WX + b)

X̂ = f(W ∗h + c)

Before we start talking about VAEs, let us
quickly revisit autoencoders

An autoencoder contains an encoder which
takes the input X and maps it to a hidden
representation

The decoder then takes this hidden represent-
ation and tries to reconstruct the input from
it as X̂

The training happens using the following ob-
jective function

min
W,W∗,c,b

1

m

m∑
i=1

n∑
j=1

(x̂ij − xij)2

where m is the number of training instances,
{xi}mi=1 and each xi ∈ Rn (xij is thus the j-th
dimension of the i-th training instance)
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X

W

h

W ∗

X̂

h = g(WX + b)

X̂ = f(W ∗h + c)

But where’s the fun in this ?

We are taking an input and simply recon-
structing it

Of course, the fun lies in the fact that we are
getting a good abstraction of the input

But RBMs were able to do something more
besides abstraction

(they were able to do gen-
eration)

Let us revisit generation in the context of au-
toencoders
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X

W

h

W ∗

X̂

h = g(WX + b)

X̂ = f(W ∗h + c)

Can we do generation with autoencoders ?

In other words, once the autoencoder is
trained can I remove the encoder, feed a hid-
den representation h to the decoder and de-
code a X̂ from it ?

In principle, yes! But in practice there is a
problem with this approach

h is a very high dimensional vector and only
a few vectors in this space would actually cor-
respond to meaningful latent representations
of our input

So of all the possible value of h which values
should I feed to the decoder (we had asked a
similar question before: slide 67, bullet 5 of
lecture 19)
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h

W ∗

X̂

X̂ = f(W ∗h + c)

Ideally, we should only feed those values of h
which are highly likely

In other words, we are interested in sampling
from P (h|X) so that we pick only those h’s
which have a high probability

But unlike RBMs, autoencoders do not have
such a probabilistic interpretation

They learn a hidden representation h but not
a distribution P (h|X)

Similarly the decoder is also deterministic and
does not learn a distribution over X (given a
h we can get a X but not P (X|h) )
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We will now look at variational autoencoders which have the same structure as
autoencoders but they learn a distribution over the hidden variables
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Module 21.2: Variational Autoencoders: The Neural
Network Perspective
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Let {X = xi}Ni=1 be the training data

We can think of X as a random variable in Rn

For example, X could be an image and the
dimensions of X correspond to pixels of the
image

We are interested in learning an abstraction
(i.e., given an X find the hidden representa-
tion z)

We are also interested in generation (i.e.,
given a hidden representation generate an X)

In probabilistic terms we are interested in
P (z|X) and P (X|z) (to be consistent with the
literation on VAEs we will use z instead of H
and X instead of V )
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Figure: Abstraction
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Figure: Abstraction

Figure: Generation
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v1 v2 · · · vm

V ∈ {0, 1}m
b1 b2 bm

h1 h2 · · · hn

H ∈ {0, 1}n
c1 c2 cn

W ∈ Rm×nw1,1 wm,n

Earlier we saw RBMs where we learnt P (z|X)
and P (X|z)

Below we list certain characteristics of RBMs

Structural assumptions: We assume cer-
tain independencies in the Markov Network

Computational: When training with Gibbs
Sampling we have to run the Markov Chain
for many time steps which is expensive

Approximation: When using Contrastive
Divergence, we approximate the expectation
by a point estimate

(Nothing wrong with the above but we just
mention them to make the reader aware of
these characteristics)
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z

Data: X

Encoder Qθ(z|X)

Reconstruction: X̂

Decoder Pφ(X|z)

θ: the parameters of the encoder
neural network
φ: the parameters of the decoder
neural network

We now return to our goals

Goal 1: Learn a distribution over the latent
variables (Q(z|X))

Goal 2: Learn a distribution over the visible
variables (P (X|z))
VAEs use a neural network based encoder for
Goal 1

and a neural network based decoder for Goal
2

We will look at the encoder first
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X

z

Qθ(z|X)

X ∈ Rn, µ ∈ Rm and Σ ∈ Rm×m

Encoder: What do we mean when we say
we want to learn a distribution?

We mean
that we want to learn the parameters of the
distribution

But what are the parameters of Q(z|X)?

Well it depends on our modeling assump-
tion!

In VAEs we assume that the latent variables
come from a standard normal distribution
N (0, I) and the job of the encoder is to then
predict the parameters of this distribution
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Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i
Now what about the decoder?

The job of the decoder is to predict a probab-
ility distribution over X : P (X|z)
Once again we will assume a certain form for
this distribution

For example, if we want to predict 28 x 28
pixels and each pixel belongs to R (i.e., X ∈
R784) then what would be a suitable family
for P (X|z)?
We could assume that P (X|z) is a Gaussian
distribution with unit variance

The job of the decoder f would then be to
predict the mean of this distribution as fφ(z)
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Qθ(z|X)

Σµ
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X̂i
What would be the objective function of the
decoder ?

For any given training sample xi it should
maximize P (xi) given by

P (xi) =

ˆ
P (z)P (xi|z)dz

= −Ez∼Qθ(z|xi)[logPφ(xi|z)]

(As usual we take log for numerical stability)
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X̂i

KL divergence captures
the difference (or distance)
between 2 distributions

This is the loss function for one data point
(li(θ)) and we will just sum over all the data
points to get the total loss L (θ)

L (θ) =

m∑
i=1

li(θ)

In addition, we also want a constraint on the
distribution over the latent variables

Specifically, we had assumed P (z) to be
N (0, I) and we want Q(z|X) to be as close
to P (z) as possible

Thus, we will modify the loss function such
that

li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))
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li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))

The second term in the loss function can actually be
thought of as a regularizer

It ensures that the encoder does not cheat by mapping
each xi to a different point (a normal distribution with
very low variance) in the Euclidean space

In other words, in the absence of the regularizer the
encoder can learn a unique mapping for each xi and
the decoder can then decode from this unique mapping

Even with high variance in samples from the distribu-
tion, we want the decoder to be able to reconstruct
the original data very well (motivation similar to the
adding noise)

To summarize, for each data point we predict a distri-
bution such that, with high probability a sample from
this distribution should be able to reconstruct the ori-
ginal data point

But why do we choose a normal distribution? Isn’t
it too simplistic to assume that z follows a normal
distribution
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li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))

Isn’t it a very strong assumption that P (z) ∼
N (0, I) ?

For example, in the 2-dimensional case how
can we be sure that P (z) is a normal distri-
bution and not any other distribution

The key insight here is that any distribution
in d dimensions can be generated by the fol-
lowing steps

Step 1: Start with a set of d variables that are
normally distributed (that’s exactly what we
are assuming for P (z))

Step 2: Mapping these variables through a
sufficiently complex function (that’s exactly
what the first few layers of the decoder can
do)
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li(θ, φ) = −Ez∼Qθ(z|xi)[logPφ(xi|z)]
+KL(Qθ(z|xi)||P (z))

In particular, note that in the adjoining example if z
is 2-D and normally distributed then f(z) is roughly
ring shaped (giving us the distribution in the bottom
figure)

f(z) =
z

10
+

z

||z||

A non-linear neural network, such as the one we use
for the decoder, could learn a complex mapping from
z to fφ(z) using its parameters φ

The initial layers of a non linear decoder could learn
their weights such that the output is fφ(z)

The above argument suggests that even if we start with
normally distributed variables the initial layers of the
decoder could learn a complex transformation of these
variables say fφ(z) if required

The objective function of the decoder will ensure that
an appropriate transformation of z is learnt to recon-
struct X
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Module 21.3: Variational autoencoders: (The graphical
model perspective)
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X

z

N

Here we can think of z and X as random vari-
ables

We are then interested in the joint prob-
ability distribution P (X, z) which factorizes
as P (X, z) = P (z)P (X|z)
This factorization is natural because we can
imagine that the latent variables are fixed first
and then the visible variables are drawn based
on the latent variables

For example, if we want to draw a digit we
could first fix the latent variables: the digit,
size, angle, thickness, position and so on and
then draw a digit which corresponds to these
latent variables

And of course, unlike RBMs, this is a directed
graphical model
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X

z

N

Now at inference time, we are given an X (observed
variable) and we are interested in finding the most
likely assignments of latent variables z which would
have resulted in this observation

Mathematically, we want to find

P (z|X) =
P (X|z)P (z)

P (X)

This is hard to compute because the LHS contains
P (X) which is intractable

P (X) =

ˆ
P (X|z)P (z)dz

=

ˆ ˆ
...

ˆ
P (X|z1, z2, ..., zn)P (z1, z2, ..., zn)dz1, ...dzn

In RBMs, we had a similar integral which we approx-
imated using Gibbs Sampling

VAEs, on the other hand, cast this into an optimiza-
tion problem and learn the parameters of the optim-
ization problem
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X

z

N

Specifically, in VAEs, we assume that instead
of P (z|X) which is intractable, the posterior
distribution is given by Qθ(z|X)

Further, we assume that Qθ(z|X) is a Gaus-
sian whose parameters are determined by a
neural network µ, Σ = gθ(X)

The parameters of the distribution are thus
determined by the parameters θ of a neural
network

Our job then is to learn the parameters of this
neural network
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X

z

N

But what is the objective function for this
neural network

Well we want the proposed distribution
Qθ(z|X) to be as close to the true distribu-
tion

We can capture this using the following ob-
jective function

minimize KL(Qθ(z|X)||P (z|X))

What are the parameters of the objective
function ?

(they are the parameters of the
neural network - we will return back to this
again)
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Let us expand the KL divergence term

D[Qθ(z|X)||P (z|X)]

=

ˆ
Qθ(z|X) logQθ(z|X)dz −

ˆ
Qθ(z|X) logP (z|X)dz

= Ez∼Qθ(z|X)[logQθ(z|X)− logP (z|X)]

For shorthand we will use EQ = Ez∼Qθ(z|X)

Substituting P (z|X) = P (X|z)P (z)
P (X) , we get

D[Qθ(z|X)||P (z|X)] = EQ[logQθ(z|X)− logP (X|z)− logP (z) + logP (X)]

= EQ[logQθ(z|X)− logP (z)]− EQ[logP (X|z)] + logP (X)

= D[Qθ(z|X)||p(z)]− EQ[logP (X|z)] + logP (X)

∴ log p(X) = EQ[logP (X|z)]−D[Qθ(z|X)||P (z)] +D[Qθ(z|X)||P (z|X)]
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So, we have

logP (X) = EQ[logP (X|z)]−D[Qθ(z|X)||P (z)] +D[Qθ(z|X)||P (z|X)]

Recall that we are interested in maximizing the log likelihood of the data i.e.
P (X)
Since KL divergence (the red term) is always >= 0 we can say that

EQ[logP (X|z)]−D[Qθ(z|X)||P (z)] <= logP (X)

The quantity on the LHS is thus a lower bound for the quantity that we want
to maximize and is knows as the Evidence lower bound (ELBO)
Maximizing this lower bound is the same as maximizing logP (X) and hence
our equivalent objective now becomes

maximize EQ[logP (X|z)]−D[Qθ(z|X)||P (z)]

And, this method of learning parameters of probability distributions associ-
ated with graphical models using optimization (by maximizing ELBO) is called
variational inference
Why is this any easier? It is easy because of certain assumptions that we make
as discussed on the next slide
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First we will just reintroduce the parameters in the
equation to make things explicit

maximize EQ[logPφ(X|z)]−D[Qθ(z|X)||P (z)]

At training time, we are interested in learning the
parameters θ which maximize the above for every
training example (xi ∈ {xi}Ni=1)

So our total objective function is

maximize
θ

N∑
i=1

EQ[logPφ(X = xi|z)]

−D[Qθ(z|X = xi)||P (z)]

We will shorthand P (X = xi) as P (xi)

However, we will assume that we are using stochastic
gradient descent so we need to deal with only one of the
terms in the summation corresponding to the current
training example
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So our objective function w.r.t. one example is

maximize
θ

EQ[logPφ(xi|z)]−D[Qθ(z|xi)||P (z)]

Now, first we will do a forward prop through the en-
coder using Xi and compute µ(X) and Σ(X)

The second term in the above objective function
is the difference between two normal distribution
N (µ(X),Σ(X)) and N (0, I)

With some simple trickery you can show that this term
reduces to the following expression (Seep proof here)

D[N (µ(X),Σ(X))||N (0, I)]

=
1

2
(tr(Σ(X)) + (µ(X))T [µ(X))− k − log det(Σ(X))]

where k is the dimensionality of the latent variables

This term can be computed easily because we have
already computed µ(X) and Σ(X) in the forward pass
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Now let us look at the other term in the ob-
jective function

n∑
i=1

EQ[logPφ(X|z)]

This is again an expectation and hence in-
tractable (integral over z)

In VAEs, we approximate this with a single z
sampled from N (µ(X),Σ(X))

Hence this term is also easy to compute (of
course it is a nasty approximation but we will
live with it!)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



30/36

Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Now let us look at the other term in the ob-
jective function

n∑
i=1

EQ[logPφ(X|z)]

This is again an expectation and hence in-
tractable (integral over z)

In VAEs, we approximate this with a single z
sampled from N (µ(X),Σ(X))

Hence this term is also easy to compute (of
course it is a nasty approximation but we will
live with it!)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



30/36

Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Now let us look at the other term in the ob-
jective function

n∑
i=1

EQ[logPφ(X|z)]

This is again an expectation and hence in-
tractable (integral over z)

In VAEs, we approximate this with a single z
sampled from N (µ(X),Σ(X))

Hence this term is also easy to compute (of
course it is a nasty approximation but we will
live with it!)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



30/36

Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Now let us look at the other term in the ob-
jective function

n∑
i=1

EQ[logPφ(X|z)]

This is again an expectation and hence in-
tractable (integral over z)

In VAEs, we approximate this with a single z
sampled from N (µ(X),Σ(X))

Hence this term is also easy to compute (of
course it is a nasty approximation but we will
live with it!)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 21



31/36

Sample

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Further, as usual, we need to assume some
parametric form for P (X|z)

For example, if we assume that P (X|z) is a
Gaussian with mean µ(z) and variance I then

logP (X = Xi|z) = C − 1

2
||Xi − µ(z)||2

µ(z) in turn is a function of the parameters of
the decoder and can be written as fφ(z)

logP (X = Xi|z) = C − 1

2
||Xi − fφ(z)||2

Our effective objective function thus becomes

minimize
θ,φ

N∑
n=1

[
1

2
(tr(Σ(Xi)) + (µ(Xi))

T [µ(Xi))− k

− log det(Σ(Xi))] + ||Xi − fφ(z)||2
]
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The above loss can be easily computed and we
can update the parameters θ of the encoder
and φ of decoder using backpropagation

However, there is a catch !

The network is not end to end differentiable
because the output fφ(z) is not an end to end
differentiable function of the input X

Why?

because after passing X through the
network we simply compute µ(X) and Σ(X)
and then sample a z to be fed to the decoder

This makes the entire process non-
deterministic and hence fφ(z) is not a
continuous function of the input X
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VAEs use a neat trick to get around this prob-
lem

This is known as the reparameterization trick
wherein we move the process of sampling to
an input layer

For 1 dimensional case, given µ and σ we can
sample from N (µ, σ) by first sampling ε ∼
N (0, 1), and then computing

z = µ+ σ ∗ ε

The adjacent figure shows the difference
between the original network and the repara-
mterized network

The randomness in fφ(z) is now associated
with ε and not X or the parameters of the
model
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Data: {Xi}Ni=1

Model: X̂ = fφ(µ(X)+Σ(X)∗ ε)
Parameters: θ, φ

Algorithm: Gradient descent

Objective:

N∑
n=1

[
1

2
(tr(Σ(Xi)) + (µ(Xi))

T [µ(Xi))

− k − log det(Σ(Xi))] + ||Xi − fφ(z)||2
]

With that we are done with the process of
training VAEs

Specifically, we have described the data,
model, parameters, objective function and
learning algorithm

Now what happens at test time? We need to
consider both abstraction and generation

In other words we are interested in computing
a z given a X as well as in generating a X
given a z

Let us look at each of these goals
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+

ε ∼ N (0, I)

z

Xi

Qθ(z|X)

Σµ

Pφ(X|z)

X̂i

Abstraction

After the model parameters are learned we
feed a X to the encoder

By doing a forward pass using the learned
parameters of the model we compute µ(X)
and Σ(X)

We then sample a z from the distribution
µ(X) and Σ(X) or using the same reparamet-
erization trick

In other words, once we have obtained
µ(X) and Σ(X), we first sample ε ∼
N (µ(X),Σ(X)) and then compute z

z = µ+ σ ∗ ε
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Generation

After the model parameters are learned we re-
move the encoder and feed a z ∼ N (0, I) to
the decoder

The decoder will then predict fφ(z) and we
can draw an X ∼ N (fφ(z), I)

Why would this work ?

Well, we had trained the model to minimize
D(Qθ(z|X)||p(z)) where p(z) was N (0, I)

If the model is trained well then Qθ(z|X)
should also become N (0, I)

Hence, if we feed z ∼ N (0, I), it is almost
as if we are feeding a z ∼ Qθ(z|X) and the
decoder was indeed trained to produce a good
fφ(z) from such a z

Hence this will work !
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