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So far we have looked at generative
models which explicitly model the
joint probability distribution or
conditional probability distribution

For example, in RBMs we learn
P (X,H), in VAEs we learn P (z|X)
and P (X|z) whereas in AR models we
learn P (X)

What if we are only interested in
sampling from the distribution and
don’t really care about the explicit
density function P (X)?

What does this mean?

Let us see
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As usual we are given some training data (say, MNIST images) which obviously
comes from some underlying distribution

Our goal is to generate more images from this distribution (i.e., create images
which look similar to the images from the training data)

In other words, we want to sample from a complex high dimensional distribution
which is intractable (recall RBMs, VAEs and AR models deal with this
intractability in their own way)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23



4/38

As usual we are given some training data (say, MNIST images) which obviously
comes from some underlying distribution

Our goal is to generate more images from this distribution (i.e., create images
which look similar to the images from the training data)

In other words, we want to sample from a complex high dimensional distribution
which is intractable (recall RBMs, VAEs and AR models deal with this
intractability in their own way)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23



4/38

As usual we are given some training data (say, MNIST images) which obviously
comes from some underlying distribution

Our goal is to generate more images from this distribution (i.e., create images
which look similar to the images from the training data)

In other words, we want to sample from a complex high dimensional distribution
which is intractable (recall RBMs, VAEs and AR models deal with this
intractability in their own way)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23



5/38

z ∼ N(0, I)

Complex Transformation

Sample Generated

GANs take a different approach to this problem where the idea is to sample
from a simple tractable distribution (say, z ∼ N(0, I)) and then learn a complex
transformation from this to the training distribution

In other words, we will take a z ∼ N(0, I), learn to make a series of complex
transformations on it so that the output looks as if it came from our training
distribution
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

What can we use for such a complex
transformation?

A Neural Network

How do you train such a neural network? Using a
two player game

There are two players in the game: a generator
and a discriminator

The job of the generator is to produce images
which look so natural that the discriminator
thinks that the images came from the real data
distribution

The job of the discriminator is to get better and
better at distinguishing between true images and
generated (fake) images
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

So let’s look at the full picture

Let Gφ be the generator and Dθ be the
discriminator (φ and θ are the parameters of G
and D, respectively)

We have a neural network based generator which
takes as input a noise vector z ∼ N(0, I) and
produces Gφ(z) = X

We have a neural network based discriminator
which could take as input a real X or a generated
X = Gφ(z) and classify the input as real/fake
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

What should be the objective function of the
overall network?

Let’s look at the objective function of the
generator first

Given an image generated by the generator as
Gφ(z) the discriminator assigns a score Dθ(Gφ(z))
to it

This score will be between 0 and 1 and will tell us
the probability of the image being real or fake

For a given z, the generator would want
to maximize logDθ(Gφ(z)) (log likelihood) or
minimize log(1−Dθ(Gφ(z)))
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

This is just for a single z and the generator would
like to do this for all possible values of z,

For example, if z was discrete and drawn from a
uniform distribution (i.e., p(z) = 1

N ∀z) then the
generator’s objective function would be

min
φ

N∑
i=1

1

N
log(1−Dθ(Gφ(z)))

However, in our case, z is continuous and not
uniform (z ∼ N(0, I)) so the equivalent objective
function would be

min
φ

ˆ
p(z) log(1−Dθ(Gφ(z)))

min
φ
E

z∼p(z)
[log(1−Dθ(Gφ(z)))]
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

Now let’s look at the discriminator

The task of the discriminator is to assign a high
score to real images and a low score to fake images

And it should do this for all possible real images
and all possible fake images

In other words, it should try to maximize the
following objective function

max
θ
Ex∼pdata

[logDθ(x)]+Ez∼p(z)[log(1−Dθ(Gφ(z)))]
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

If we put the objectives of the generator and
discriminator together we get a minimax game

min
φ

max
θ

[Ex∼pdata logDθ(x)

+ Ez∼p(z) log(1−Dθ(Gφ(z)))]

The first term in the objective is only w.r.t. the
parameters of the discriminator (θ)

The second term in the objective is w.r.t. the
parameters of the generator (φ) as well as the
discriminator (θ)

The discriminator wants to maximize the second
term whereas the generator wants to minimize it
(hence it is a two-player game)
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Generator

z ∼ N(0, I)

Real Images

Discriminator

Real or Fake

So the overall training proceeds by alternating
between these two step

Step 1: Gradient Ascent on Discriminator

max
θ

[Ex∼pdata logDθ(x)+Ez∼p(z) log(1−Dθ(Gφ(z)))]

Step 2: Gradient Descent on Generator

min
φ

Ez∼p(z) log(1−Dθ(Gφ(z)))

In practice, the above generator objective does not
work well and we use a slightly modified objective

Let us see why
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When the sample is likely fake, we want
to give a feedback to the generator (using
gradients)

However, in this region where D(G(z)) is close
to 0, the curve of the loss function is very flat
and the gradient would be close to 0

Trick: Instead of minimizing the likelihood of
the discriminator being correct, maximize the
likelihood of the discriminator being wrong

In effect, the objective remains the same but
the gradient signal becomes better
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With that we are now ready to see the full algorithm for training GANs

1: procedure GAN Training

2: for number of training iterations do

3: for k steps do

4: • Sample minibatch of m noise samples {z(1), .., z(m)} from noise prior pg(z)
5: • Sample minibatch of m examples {x(1), ..,x(m)} from data generating distribution pdata(x)
6: • Update the discriminator by ascending its stochastic gradient:

∇θ
1

m

m∑
i=1

[
logDθ

(
x(i)
)

+ log
(

1−Dθ

(
Gφ

(
z(i)
)))]

7: end for
8: • Sample minibatch of m noise samples {z(1), .., z(m)} from noise prior pg(z)
9: • Update the generator by ascending its stochastic gradient

∇φ
1

m

m∑
i=1

[
log
(
Dθ

(
Gφ

(
z(i)
)))]

10: end for

11: end procedure
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Module 23.2: Generative Adversarial Networks -
Architecture
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We will now look at one of the popular neural networks used for the generator
and discriminator (Deep Convolutional GANs)

For discriminator, any CNN based classifier with 1 class (real) at the output
can be used (e.g. VGG, ResNet, etc.)

Figure: Generator (Redford et al 2015) (left) and discriminator (Yeh et al 2016) (right)
used in DCGAN
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Architecture guidelines for stable Deep Convolutional GANs

Replace any pooling layers with strided convolutions (discriminator) and
fractional-strided convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use ReLU activation in generator for all layers except for the output, which
uses tanh.

Use LeakyReLU activation in the discriminator for all layers
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Module 23.3: Generative Adversarial Networks - The
Math Behind it
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We will now delve a bit deeper into the objective function used by GANs and
see what it implies

Suppose we denote the true data distribution by pdata(x) and the distribution
of the data generated by the model as pG(x)

What do we wish should happen at the end of training?

pG(x) = pdata(x)

Can we prove this formally even though the model is not explicitly computing
this density?

We will try to prove this over the next few slides
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Theorem

The global minimum of the virtual training criterion C(G) = max
D

V (G,D) is

achieved if and only if pG = pdata

is equivalent to

Theorem

1 If pG = pdata then the global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved and

2 The global minimum of the virtual training criterion C(G) = max
D

V (G,D) is

achieved only if pG = pdata
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Outline of the Proof

The ‘if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved if pG = pdata

(a) Find the value of V (D,G) when the generator is optimal i.e., when pG = pdata

(b) Find the value of V (D,G) for other values of the generator i.e., for any pG
such that pG 6= pdata

(c) Show that a < b ∀ pG 6= pdata(and hence the minimum V (D,G) is achieved
when pG = pdata)

The ‘only if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved only if pG = pdata

Show that when V (D,G) is minimum then pG = pdata
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First let us look at the objective function again

min
φ

max
θ

[Ex∼pdata logDθ(x) + Ez∼p(z) log(1−Dθ(Gφ(z)))]

We will expand it to its integral form

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
z
p(z) log(1−Dθ(Gφ(z)))

Let pG(X) denote the distribution of the X’s generated by the generator and
since X is a function of z we can replace the second integral as shown below

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
x
pG(x) log(1−Dθ(x))

The above replacement follows from the law of the unconscious statistician
(click to link of wikipedia page)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23

https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician


22/38

First let us look at the objective function again

min
φ

max
θ

[Ex∼pdata logDθ(x) + Ez∼p(z) log(1−Dθ(Gφ(z)))]

We will expand it to its integral form

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
z
p(z) log(1−Dθ(Gφ(z)))

Let pG(X) denote the distribution of the X’s generated by the generator and
since X is a function of z we can replace the second integral as shown below

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
x
pG(x) log(1−Dθ(x))

The above replacement follows from the law of the unconscious statistician
(click to link of wikipedia page)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23

https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician


22/38

First let us look at the objective function again

min
φ

max
θ

[Ex∼pdata logDθ(x) + Ez∼p(z) log(1−Dθ(Gφ(z)))]

We will expand it to its integral form

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
z
p(z) log(1−Dθ(Gφ(z)))

Let pG(X) denote the distribution of the X’s generated by the generator and
since X is a function of z we can replace the second integral as shown below

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
x
pG(x) log(1−Dθ(x))

The above replacement follows from the law of the unconscious statistician
(click to link of wikipedia page)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23

https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician


22/38

First let us look at the objective function again

min
φ

max
θ

[Ex∼pdata logDθ(x) + Ez∼p(z) log(1−Dθ(Gφ(z)))]

We will expand it to its integral form

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
z
p(z) log(1−Dθ(Gφ(z)))

Let pG(X) denote the distribution of the X’s generated by the generator and
since X is a function of z we can replace the second integral as shown below

min
φ

max
θ

ˆ
x
pdata(x) logDθ(x) +

ˆ
x
pG(x) log(1−Dθ(x))

The above replacement follows from the law of the unconscious statistician
(click to link of wikipedia page)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23

https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician


23/38

Okay, so our revised objective is given by

min
φ

max
θ

ˆ
x

(pdata(x) logDθ(x) + pG(x) log(1−Dθ(x))) dx

Given a generator G, we are interested in finding the optimum discriminator D which
will maximize the above objective function
The above objective will be maximized when the quantity inside the integral is
maximized ∀x
To find the optima we will take the derivative of the term inside the integral w.r.t. D
and set it to zero

d

d(Dθ(x))
(pdata(x) logDθ(x) + pG(x) log(1−Dθ(x))) = 0

pdata(x)
1

Dθ(x)
+ pG(x)

1

1−Dθ(x)
(−1) = 0

pdata(x)

Dθ(x)
=

pG(x)

1−Dθ(x)

(pdata(x))(1−Dθ(x)) = (pG(x))(Dθ(x))

Dθ(x) =
pdata(x)

pG(x) + pdata(x)
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This means for any given generator

D∗
G(G(x)) =

pdata(x)

pdata(x) + pG(x)

Now the if part of the theorem says “if pG = pdata ....”
So let us substitute pG = pdata into D∗

G(G(x)) and see what happens to the
loss functions

D∗
G =

pdata
pdata + pG

=
1

2

V (G,D∗
G) =

ˆ
x
pdata(x) logD(x) + pG(x) log (1−D(x)) dx

=

ˆ
x
pdata(x) log

1

2
+ pG(x) log

(
1− 1

2

)
dx

= log 2

ˆ
x
pG(x)dx− log 2

ˆ
x
pdata(x)dx

= −2 log 2 = − log 4
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Outline of the Proof

The ‘if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved if pG = pdata

(a) Find the value of V (D,G) when the generator is optimal i.e., when pG = pdata

(b) Find the value of V (D,G) for other values of the generator i.e., for any pG
such that pG 6= pdata

(c) Show that a < b ∀ pG 6= pdata(and hence the minimum V (D,G) is achieved
when pG = pdata)

The ‘only if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved only if pG = pdata

Show that when V (D,G) is minimum then pG = pdata
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So what we have proved so far is that if the generator is optimal (pG = pdata)
the discriminator’s loss value is − log 4

We still haven’t proved that this is the minima

For example, it is possible that for some pG 6= pdata, the discriminator’s loss
value is lower than − log 4

To show that the discriminator achieves its lowest value “if pG = pdata”, we
need to show that for all other values of pG the discriminator’s loss value is
greater than − log 4
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To show this we will get rid of the assumption that pG = pdata

C(G) =

ˆ
x

[
pdata(x) log

(
pdata(x)

pG(x) + pdata(x)

)
+ pG(x) log

(
1− pdata(x)

pG(x) + pdata(x)

)]
dx

=

ˆ
x

[
pdata(x) log

(
pdata(x)

pG(x) + pdata(x)

)
+ pG(x) log

(
pG(x)

pG(x) + pdata(x)

)
+ (log 2− log 2)(pdata + pG)

]
dx

= − log 2

ˆ
x

(pG(x) + pdata(x)) dx

+

ˆ
x

[
pdata(x)

(
log 2 + log

(
pdata(x)

pG(x) + pdata(x)

))
+ pG(x)

(
log 2 + log

(
pG(x)

PpG(x) + pdata(x)

))]
dx

= − log 2(1 + 1)

+

ˆ
x

[
pdata(x) log

(
pdata(x)

pG(x)+pdata(x)
2

)
+ pG(x) log

(
pG(x)

pG(x)+pdata(x)
2

)]
dx

= − log 4 +KL

(
pdata‖

pG(x) + pdata(x)

2

)
+KL

(
pG‖

pG(x) + pdata(x)

2

)
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Outline of the Proof

The ‘if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved if pG = pdata

(a) Find the value of V (D,G) when the generator is optimal i.e., when pG = pdata

(b) Find the value of V (D,G) for other values of the generator i.e., for any pG
such that pG 6= pdata

(c) Show that a < b ∀ pG 6= pdata(and hence the minimum V (D,G) is achieved
when pG = pdata)

The ‘only if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved only if pG = pdata

Show that when V (D,G) is minimum then pG = pdata
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Okay, so we have

C(G) = − log 4 +KL

(
pdata||

pdata + pg
2

)
+KL

(
pG||

pdata + pG
2

)

We know that KL divergence is always ≥ 0

∴ C(G) ≥ − log 4

Hence the minimum possible value of C(G) is − log 4

But this is the value that C(G) achieves when pG = pdata (and this is exactly
what we wanted to prove)

We have, thus, proved the if part of the theorem
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Outline of the Proof

The ‘if ’ part: The global minimum of the virtual training criterion
C(G) = max

D
V (G,D) is achieved if pG = pdata
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Now let’s look at the other part of the theorem
If the global minimum of the virtual training criterion C(G) = max

D
V (G,D) is achieved then

pG = pdata

We know that

C(G) = − log 4 +KL

(
pdata‖

pdata + pg
2

)
+KL

(
pG‖

pdata + pG
2

)
If the global minima is achieved then C(G) = − log 4 which implies that

KL

(
pdata‖

pdata + pg
2

)
+KL

(
pG‖

pdata + pG
2

)
= 0

This will happen only when pG = pdata (you can prove this easily)

In fact KL
(
pdata‖pdata+pg2

)
+KL

(
pG‖pdata+pG2

)
is the Jenson-Shannon divergence between

pG and pdata

KL

(
pdata‖

pdata + pg
2

)
+KL

(
pG‖

pdata + pG
2

)
= JSD(pdata‖pG)

which is minimum only when pG = pdata
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Module 23.4: Generative Adversarial Networks - Some
Cool Stuff and Applications
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In each row the first image was generated by the network by taking a vector
z1 as the input and the last images was generated by a vector z2 as the input

All intermediate images were generated by feeding z’s which were obtained by
interpolating z1 and z2 (z = λz1 + (1− λ)z2)

As we transition from z1 to z2 in the input space there is a corresponding
smooth transition in the image space also
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The first 3 images in the first column were generated by feeding some
z11, z12, z13 respectively as the input to the generator

The fourth image was generated by taking an average of z1 = z11, z12, z13 and
feeding it to the generator
Similarly we obtain the average vectors z2 and z3 for the 2nd and 3rd columns
If we do a simple vector arithmetic on these averaged vectors then we see the
corresponding effect in the generated images
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Module 23.5: Bringing it all together (the deep
generative summary)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23



37/38

RBMs VAEs AR models GANs

Abstraction Yes Yes No No

Generation Yes Yes Yes Yes

Compute P(X) Intractable Intractable Tractable No

Sampling MCMC Fast Slow Fast

Type of GM Undirected Directed Directed Directed

Loss KL-divergence KL-divergence KL-divergence JSD

Assumptions X independent given z X independent given z None N.A.

Samples Bad Ok Good Good (best)

Table: Comparison of Generative Models

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23



37/38

RBMs VAEs AR models GANs

Abstraction Yes Yes No No

Generation Yes Yes Yes Yes

Compute P(X) Intractable Intractable Tractable No

Sampling MCMC Fast Slow Fast

Type of GM Undirected Directed Directed Directed

Loss KL-divergence KL-divergence KL-divergence JSD

Assumptions X independent given z X independent given z None N.A.

Samples Bad Ok Good Good (best)

Table: Comparison of Generative Models

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 23



37/38

RBMs VAEs AR models GANs

Abstraction Yes Yes No No

Generation Yes Yes Yes Yes

Compute P(X) Intractable Intractable Tractable No

Sampling MCMC Fast Slow Fast

Type of GM Undirected Directed Directed Directed

Loss KL-divergence KL-divergence KL-divergence JSD

Assumptions X independent given z X independent given z None N.A.

Samples Bad Ok Good Good (best)
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Recent works look at combining these methods: e.g. Adversarial Autoencoders (Makhzani
2015), PixelVAE (Gulrajani 2016) and PixelGAN Autoencoders (Makhzani 2017)
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Source: Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks
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