CS7015 (Deep Learning) : Lecture 9 Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch Normalization

Mitesh M. Khapra

Department of Computer Science and Engineering Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

Module 9.1 : A quick recap of training deep neural networks

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

$$w = w - \eta \nabla w \quad where,$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

$$w = w - \eta \nabla w \quad where,$$
$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

$$w = w - \eta \nabla w \quad where,$$

$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

$$= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * x$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

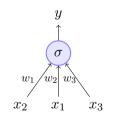
$$w = w - \eta \nabla w \quad where,$$

$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

$$= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * x$$

• What about a wider network with more inputs:

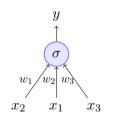
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



$$w = w - \eta \nabla w \quad where,$$

$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

$$= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * x$$

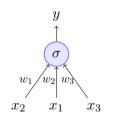


• What about a wider network with more inputs: $w_1 = w_1 - \eta \nabla w_1$

$$w = w - \eta \nabla w \quad where,$$

$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

$$= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * x$$



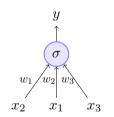
• What about a wider network with more inputs: $w_1 = w_1 - \eta \nabla w_1$

$$w_2 = w_2 - \eta \nabla w_2$$

$$w = w - \eta \nabla w \quad where,$$

$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

$$= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * x$$



• What about a wider network with more inputs:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

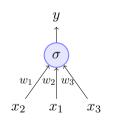
$$w_1 = w_1 - \eta \nabla w_1$$
$$w_2 = w_2 - \eta \nabla w_2$$
$$w_3 = w_3 - \eta \nabla w_3$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

$$w = w - \eta \nabla w \quad where,$$

$$\nabla w = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial w}$$

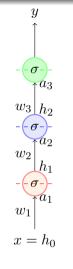
$$= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * x$$



• What about a wider network with more inputs:

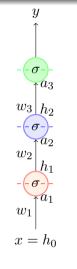
$$\begin{split} w_1 &= w_1 - \eta \nabla w_1 \\ w_2 &= w_2 - \eta \nabla w_2 \\ w_3 &= w_3 - \eta \nabla w_3 \\ where, \nabla w_i &= (f(\mathbf{x}) - y) * f(\mathbf{x}) * (1 - f(\mathbf{x})) * \mathbf{x_i} \end{split}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



 $a_i = w_i h_{i-1}; h_i = \sigma(a_i)$ $a_1 = w_1 * x = w_1 * h_0$ • What if we have a deeper network ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

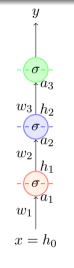


 $a_i = w_i h_{i-1}; h_i = \sigma(a_i)$ $a_1 = w_1 * x = w_1 * h_0$

- What if we have a deeper network ?
- We can now calculate ∇w_1 using chain rule:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

4/67



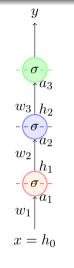
 $a_i = w_i h_{i-1}; h_i = \sigma(a_i)$ $a_1 = w_1 * x = w_1 * h_0$

- What if we have a deeper network ?
- We can now calculate ∇w_1 using chain rule:

$$\frac{\partial \mathscr{L}(\mathbf{w})}{\partial w_1} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial a_3} \cdot \frac{\partial a_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial a_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$

イロト イポト イヨト イヨト ヨー のくで

4/67



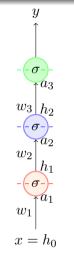
- What if we have a deeper network ?
- We can now calculate ∇w_1 using chain rule:

$$\frac{\partial \mathscr{L}(\mathbf{w})}{\partial w_1} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial a_3} \cdot \frac{\partial a_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial a_2} \cdot \frac{\partial a_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$
$$= \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

4/67

 $a_i = w_i h_{i-1}; h_i = \sigma(a_i)$ $a_1 = w_1 * x = w_1 * h_0$



- What if we have a deeper network ?
- We can now calculate ∇w_1 using chain rule:

$$\frac{\partial \mathscr{L}(\mathbf{w})}{\partial w_1} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial a_3} \cdot \frac{\partial a_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial a_2} \cdot \frac{\partial a_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$
$$= \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_0$$

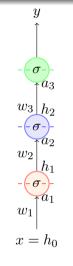
• In general,

$$\nabla w_i = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_{i-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

4/67

 $a_i = w_i h_{i-1}; h_i = \sigma(a_i)$ $a_1 = w_1 * x = w_1 * h_0$



$$a_i = w_i h_{i-1}; h_i = \sigma(a_i)$$

 $a_1 = w_1 * x = w_1 * h_0$

- What if we have a deeper network ?
- We can now calculate ∇w_1 using chain rule:

$$\frac{\partial \mathscr{L}(\mathbf{w})}{\partial w_1} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial a_3} \cdot \frac{\partial a_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial a_2} \cdot \frac{\partial a_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$
$$= \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_0$$

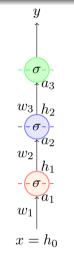
• In general,

$$\nabla w_i = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_{i-1}$$

• Notice that ∇w_i is proportional to the corresponding input h_{i-1}

イロト イポト イヨト イヨト ヨー のくで

4/67



$$a_i = w_i h_{i-1}; h_i = \sigma(a_i)$$

 $a_1 = w_1 * x = w_1 * h_0$

- What if we have a deeper network ?
- We can now calculate ∇w_1 using chain rule:

$$\frac{\partial \mathscr{L}(\mathbf{w})}{\partial w_1} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial a_3} \cdot \frac{\partial a_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial a_2} \cdot \frac{\partial a_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$
$$= \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_0$$

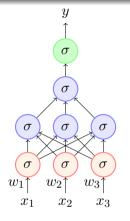
• In general,

$$\nabla w_i = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} * \dots * h_{i-1}$$

• Notice that ∇w_i is proportional to the corresponding input h_{i-1} (we will use this fact later)

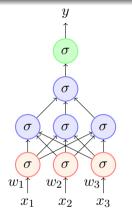
▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

4/67



• What happens if we have a network which is deep and wide?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

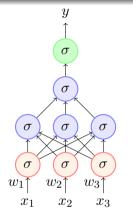


• What happens if we have a network which is deep and wide?

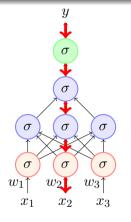
イロト イポト イヨト イヨト ヨー のくで

• How do you calculate $\nabla w_2 = ?$

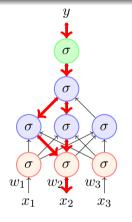
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



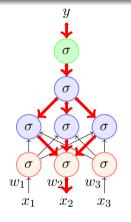
- What happens if we have a network which is deep and wide?
- How do you calculate $\nabla w_2 = ?$
- It will be given by chain rule applied across multiple paths



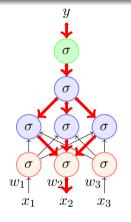
- What happens if we have a network which is deep and wide?
- How do you calculate $\nabla w_2 = ?$
- It will be given by chain rule applied across multiple paths



- What happens if we have a network which is deep and wide?
- How do you calculate $\nabla w_2 = ?$
- It will be given by chain rule applied across multiple paths



- What happens if we have a network which is deep and wide?
- How do you calculate $\nabla w_2 = ?$
- It will be given by chain rule applied across multiple paths



- What happens if we have a network which is deep and wide?
- How do you calculate $\nabla w_2 = ?$
- It will be given by chain rule applied across multiple paths (We saw this in detail when we studied **back propagation**)

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

Things to remember

• Training Neural Networks is a *Game of Gradients* (played using any of the existing gradient based approaches that we discussed)

Things to remember

- Training Neural Networks is a *Game of Gradients* (played using any of the existing gradient based approaches that we discussed)
- The gradient tells us the responsibility of a parameter towards the loss

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

Things to remember

- Training Neural Networks is a *Game of Gradients* (played using any of the existing gradient based approaches that we discussed)
- The gradient tells us the responsibility of a parameter towards the loss
- The gradient w.r.t. a parameter is proportional to the input to the parameters (recall the "..... *x" term or the ".... $*h_i$ " term in the formula for ∇w_i)

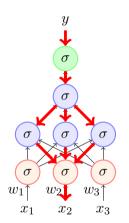
▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for neworks of neuron-like units. The procedure repeatedly adjusts the wave of the differences have in the second so as to more of the entropy of the differences have been as the second so as the second method. The second second second second second second adjustments, internal "bidden" units which are not part of the lippet adjustments, internal "bidden" units which are not part of the lippet adjustments, internal "bidden" units which are not part of the lippet adjustments, internal "bidden" units which are not part of the lippet adjustments, internal "bidden" units which are not part of the adjustments, internal "bidden" units and the regularized second second and the regularized second second second second second the parceptation-convergence procedure."

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○



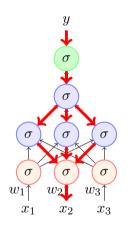
David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

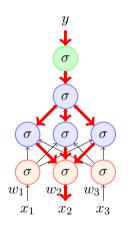
* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neuron-like units. The procedure repeatedly adjusts measure of the difference hetween the actual output vector of the adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the regularized output vector, da a result of the input adjustments, internal "bidder" units which are not part of the regularized output vector, and the regularized bidder of these units. The philips to create sizeful new features distinted perception-convergence procedure".

• Backpropagation was made popular by Rumelhart et.al in 1986

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで





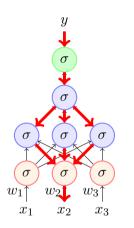
David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

 Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
 Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphil 15213, USA

We describe a new learning procedure, back-propagation, for networks of neuron-like units. The procedure repeatedly adjusts measure of the difference hetween the actual output vector of the adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the regularized output vector, da a result of the input adjustments, internal "bidder" units which are not part of the regularized output vector, and the regularized bidder of these units. The philips to create sizeful new features distinted perception-convergence procedure".

- Backpropagation was made popular by Rumelhart et.al in 1986
- However when used for really deep networks it was not very successful

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで



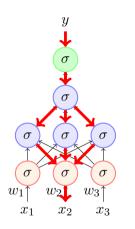
David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

 Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
 Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphil 15213, USA

We describe a new learning procedure, back-propagation, for networks of neuron-like units. The procedure repeatedly adjusts measure of the difference hetween the actual output vector of the adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the input adjustments, internal "bidder" units which are not part of the regularized output vector, da a result of the input adjustments, internal "bidder" units which are not part of the regularized output vector, and the regularized bidder of these units. The philips to create sizeful new features distinted perception-convergence procedure".

- Backpropagation was made popular by Rumelhart et.al in 1986
- However when used for really deep networks it was not very successful
- In fact, till 2006 it was very hard to train very deep networks

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで



David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

 Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
 Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neuron-like units. The procedure repeatedly adjusts to prove the second second second second second second second measure of the difference hetween the actual output vector of the adjustments, internal "bidden" units which are not part of the input adjustments, internal "bidden" units which are not part of the input adjustments, internal "bidden" units which are not part of the input adjustments, internal "bidden" units which are not part of the input adjustments, internal "bidden" units which are not part of the adjustments, internal "bidden with the interactions of these units. The philips to create night have features distinted perception-convergence procedure".

- Backpropagation was made popular by Rumelhart et.al in 1986
- However when used for really deep networks it was not very successful
- In fact, till 2006 it was very hard to train very deep networks
- Typically, even after a large number of epochs the training did not converge

Module 9.2 : Unsupervised pre-training

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

8/67

• What has changed now? How did Deep Learning become so popular despite this problem with training large networks?

 1 G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.

- What has changed now? How did Deep Learning become so popular despite this problem with training large networks?
- Well, until 2006 it wasn't so popular

¹G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, July 2006.

- What has changed now? How did Deep Learning become so popular despite this problem with training large networks?
- Well, until 2006 it wasn't so popular
- $\bullet\,$ The field got revived after the seminal work of Hinton and Salakhutdinov in $2006\,$

 1 G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.

Let's look at the idea of unsupervised pre-training introduced in this paper ...

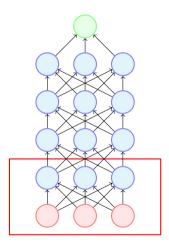
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

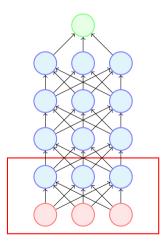
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let's look at the idea of unsupervised pre-training introduced in this paper ... (note that in this paper they introduced the idea in the context of RBMs but we will discuss it in the context of Autoencoders)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

• Consider the deep neural network shown in this figure

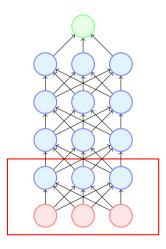




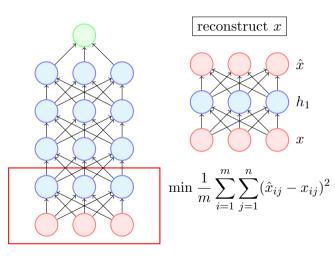
- Consider the deep neural network shown in this figure
- Let us focus on the first two layers of the network (x and h₁)

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

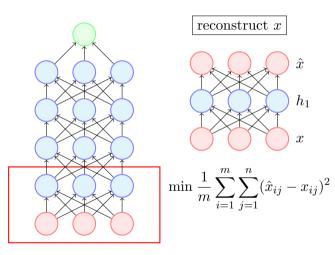


- Consider the deep neural network shown in this figure
- Let us focus on the first two layers of the network (x and h_1)
- We will first train the weights between these two layers using an **unsupervised objective**



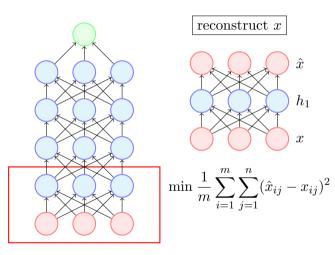
- Consider the deep neural network shown in this figure
- Let us focus on the first two layers of the network (x and h₁)
- We will first train the weights between these two layers using an **unsupervised objective**
- Note that we are trying to reconstruct the input (x) from the hidden representation (h₁)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



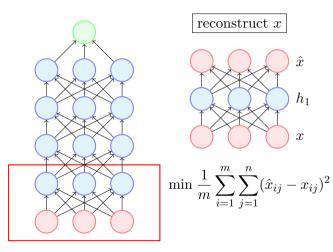
- Consider the deep neural network shown in this figure
- Let us focus on the first two layers of the network (x and h₁)
- We will first train the weights between these two layers using an **unsupervised objective**
- Note that we are trying to reconstruct the input (x) from the hidden representation (h₁)
- We refer to this as an unsupervised objective because it does not involve the output label (y) and only uses the input data (x)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



- Consider the deep neural network shown in this figure
- Let us focus on the first two layers of the network (x and h₁)
- We will first train the weights between these two layers using an **unsupervised objective**
- Note that we are trying to reconstruct the input (x) from the hidden representation (h₁)
- We refer to this as an unsupervised objective because it does not involve the output label (y) and only uses the input data (x)

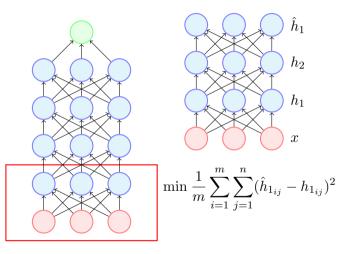
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



• At the end of this step, the weights in layer 1 are trained such that h_1 captures an abstract representation of the input x

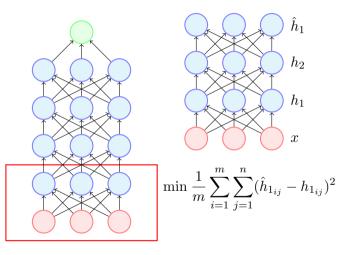
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



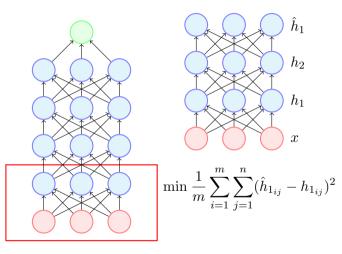
- At the end of this step, the weights in layer 1 are trained such that h_1 captures an abstract representation of the input x
- We now fix the weights in layer 1 and repeat the same process with layer 2

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



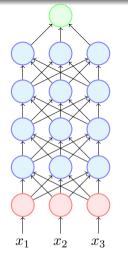
- At the end of this step, the weights in layer 1 are trained such that h_1 captures an abstract representation of the input x
- We now fix the weights in layer 1 and repeat the same process with layer 2
- At the end of this step, the weights in layer 2 are trained such that h_2 captures an abstract representation of h_1

▲ロト ▲樹下 ▲ヨト ▲ヨト ヨー のなの



- At the end of this step, the weights in layer 1 are trained such that h_1 captures an abstract representation of the input x
- We now fix the weights in layer 1 and repeat the same process with layer 2
- At the end of this step, the weights in layer 2 are trained such that h_2 captures an abstract representation of h_1
- We continue this process till the last hidden layer (*i.e.*, the layer before the output layer) so that each successive layer captures an abstract representation of the previous layer

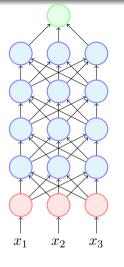
◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー のへで



• After this layerwise pre-training, we add the output layer and train the whole network using the task specific objective

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー のへで

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$



$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

- After this layerwise pre-training, we add the output layer and train the whole network using the task specific objective
- Note that, in effect we have initialized the weights of the network using the greedy unsupervised objective and are now fine tuning these weights using the supervised objective

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

²Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009

 $^{^1\}mathrm{The}$ difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et al,2009

• Is it because of better optimization?

²Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009 (=) = 2000 - 13/6

 $^{^1\}mathrm{The}$ difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et al,2009

- Is it because of better optimization?
- Is it because of better regularization?

²Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009

 $^{^1{\}rm The}$ difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et al,2009

- Is it because of better optimization?
- Is it because of better regularization?

Let's see what these two questions mean and try to answer them based on some (among many) existing studies 1,2

²Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009

 $^{^1\}mathrm{The}$ difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et al,2009

- Is it because of better optimization?
- Is it because of better regularization?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

minimize
$$\mathscr{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

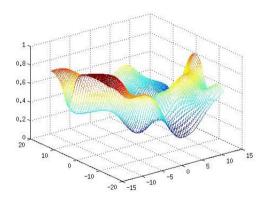
▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

minimize
$$\mathscr{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

• Is it the case that in the absence of unsupervised pre-training we are not able to drive $\mathscr{L}(\theta)$ to 0 even for the training data (hence poor optimization) ?

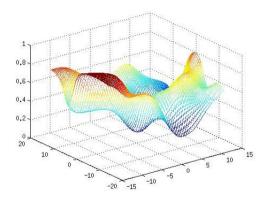
minimize
$$\mathscr{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

- Is it the case that in the absence of unsupervised pre-training we are not able to drive $\mathscr{L}(\theta)$ to 0 even for the training data (hence poor optimization) ?
- Let us see this in more detail ...



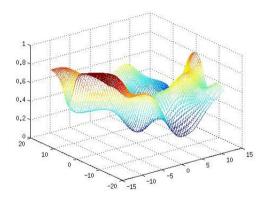
• The error surface of the supervised objective of a Deep Neural Network is highly non-convex

¹Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009 (Ξ) Ξ 2000 (E) 16/67



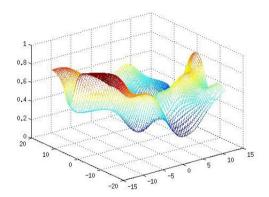
- The error surface of the supervised objective of a Deep Neural Network is highly non-convex
- With many hills and plateaus and valleys

¹Exploring Strategies for Training Deep Neural Networks, Larocelle et al,2009 (abc) bc bc cc 16/67

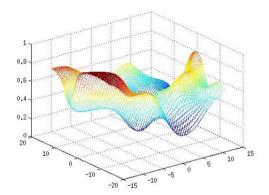


- The error surface of the supervised objective of a Deep Neural Network is highly non-convex
- With many hills and plateaus and valleys
- Given that large capacity of DNNs it is still easy to land in one of these 0 error regions

¹Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009 (\exists) \exists) \exists $0 \leq 16/67$



- The error surface of the supervised objective of a Deep Neural Network is highly non-convex
- With many hills and plateaus and valleys
- Given that large capacity of DNNs it is still easy to land in one of these 0 error regions
- Indeed Larochelle et.al.¹ show that if the last layer has large capacity then ℒ(θ) goes to 0 even without pretraining



- The error surface of the supervised objective of a Deep Neural Network is highly non-convex
- With many hills and plateaus and valleys
- Given that large capacity of DNNs it is still easy to land in one of these 0 error regions
- Indeed Larochelle et.al.¹ show that if the last layer has large capacity then ℒ(θ) goes to 0 even without pretraining
- However, if the capacity of the network is small, unsupervised pretraining helps

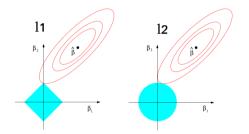
¹Exploring Strategies for Training Deep Neural Networks, Larocelle et al, 2009 $\leftarrow \equiv \leftarrow = -2$ $\sim -16/67$

- Is it because of better optimization?
- Is it because of better regularization?

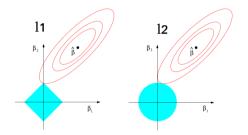
• What does regularization do?

• What does regularization do? It constrains the weights to certain regions of the parameter space

¹Image Source: The Elements of Statistical Learning-T. Hastie, R. Tibshirani, and J. Friedman, Pg 71



- What does regularization do? It constrains the weights to certain regions of the parameter space
- L-1 regularization: constrains most weights to be 0



- What does regularization do? It constrains the weights to certain regions of the parameter space
- L-1 regularization: constrains most weights to be 0
- L-2 regularization: prevents most weights from taking large values

¹Image Source:The Elements of Statistical Learning-T. Hastie, R. Tibshirani, and J. Friedman, Pg 71

• Indeed, pre-training constrains the weights to lie in only certain regions of the parameter space

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

- Indeed, pre-training constrains the weights to lie in only certain regions of the parameter space
- Specifically, it constrains the weights to lie in regions where the characteristics of the data are captured well (as governed by the unsupervised objective)

• Unsupervised objective:

$$\Omega(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2$$

- Indeed, pre-training constrains the weights to lie in only certain regions of the parameter space
- Specifically, it constrains the weights to lie in regions where the characteristics of the data are captured well (as governed by the unsupervised objective)

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー のへで

• Unsupervised objective:

$$\Omega(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2$$

• We can think of this unsupervised objective as an additional constraint on the optimization problem

- Indeed, pre-training constrains the weights to lie in only certain regions of the parameter space
- Specifically, it constrains the weights to lie in regions where the characteristics of the data are captured well (as governed by the unsupervised objective)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Unsupervised objective:

$$\Omega(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - \hat{x}_{ij})^2$$

- We can think of this unsupervised objective as an additional constraint on the optimization problem
- Supervised objective:

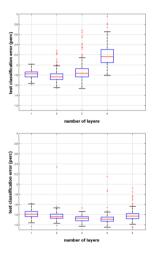
$$\mathscr{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(x_i))^2$$

- Indeed, pre-training constrains the weights to lie in only certain regions of the parameter space
- Specifically, it constrains the weights to lie in regions where the characteristics of the data are captured well (as governed by the unsupervised objective)
- This unsupervised objective ensures that that the learning is not greedy w.r.t. the supervised objective (and also satisfies the unsupervised objective)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Some other experiments have also shown that pre-training is more robust to random initializations

¹The difficulty of training deep architectures and effect of unsupervised pre-training - Erhan et al,2009 ($\square > \langle \square > \langle \square$



- Some other experiments have also shown that pre-training is more robust to random initializations
- One accepted hypothesis is that pretraining leads to better weight initializations (so that the layers capture the internal characteristics of the data)

So what has happened since 2006-2009?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• Better optimization algorithms

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Better optimization algorithms
- Better regularization methods

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Better optimization algorithms
- Better regularization methods
- Better activation functions

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Better optimization algorithms
- Better regularization methods
- Better activation functions
- Better weight initialization strategies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

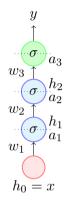
Module 9.3 : Better activation functions

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- Better optimization algorithms
- Better regularization methods
- Better activation functions
- Better weight initialization strategies

• Before we look at activation functions, let's try to answer the following question: "What makes Deep Neural Networks powerful ?"

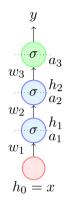


• Consider this deep neural network

《曰》 《曰》 《曰》 《曰》

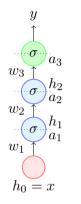
E 990

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



- Consider this deep neural network
- Imagine if we replace the sigmoid in each layer by a simple linear transformation

イロト 不得 トイヨト イヨト

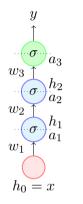


- Consider this deep neural network
- Imagine if we replace the sigmoid in each layer by a simple linear transformation

$$y = (w_4 * (w_3 * (w_2 * (w_1 x)))))$$

イロト 不得下 イヨト イヨト

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

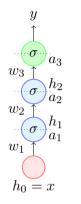


- Consider this deep neural network
- Imagine if we replace the sigmoid in each layer by a simple linear transformation

$$y = (w_4 * (w_3 * (w_2 * (w_1 x)))))$$

• Then we will just learn y as a linear transformation of x

イロト 不得下 イヨト イヨト

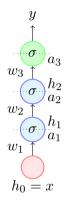


- Consider this deep neural network
- Imagine if we replace the sigmoid in each layer by a simple linear transformation

$$y = (w_4 * (w_3 * (w_2 * (w_1 x)))))$$

- Then we will just learn y as a linear transformation of x
- In other words we will be constrained to learning linear decision boundaries

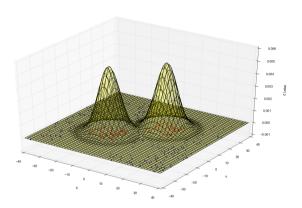
《日》 《圖》 《日》 《日》



- Consider this deep neural network
- Imagine if we replace the sigmoid in each layer by a simple linear transformation

$$y = (w_4 * (w_3 * (w_2 * (w_1 x)))))$$

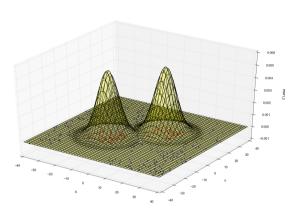
- Then we will just learn y as a linear transformation of x
- In other words we will be constrained to learning linear decision boundaries
- We cannot learn arbitrary decision boundaries



• In particular, a deep linear neural network cannot learn such boundaries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



- In particular, a deep linear neural network cannot learn such boundaries
- But a deep non linear neural network can indeed learn such boundaries (recall Universal Approximation Theorem)

・ロト ・雪ト ・ヨト ・ヨー

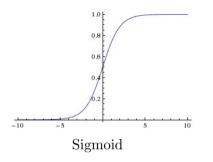
• Now let's look at some non-linear activation functions that are typically used in deep neural networks (Much of this material is taken from Andrej Karpathy's lecture notes ¹)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

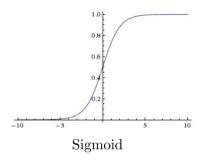
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



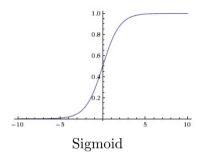
- $\sigma(x) = \frac{1}{1+e^{-x}}$
- As is obvious, the sigmoid function compresses all its inputs to the range [0,1]

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで



- $\sigma(x) = \frac{1}{1+e^{-x}}$
- As is obvious, the sigmoid function compresses all its inputs to the range [0,1]
- Since we are always interested in gradients, let us find the gradient of this function

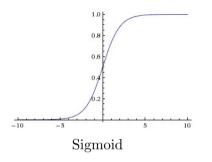
イロト イヨト イヨト ヨー りへつ



- $\sigma(x) = \frac{1}{1+e^{-x}}$
- As is obvious, the sigmoid function compresses all its inputs to the range [0,1]
- Since we are always interested in gradients, let us find the gradient of this function

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

(you can easily derive it)

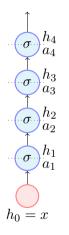


- $\sigma(x) = \frac{1}{1+e^{-x}}$
- As is obvious, the sigmoid function compresses all its inputs to the range [0,1]
- Since we are always interested in gradients, let us find the gradient of this function

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

(you can easily derive it)

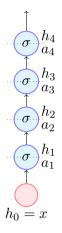
• Let us see what happens if we use sigmoid in a deep network



$$a_3 = w_2 h_2$$
$$h_3 = \sigma(a_3)$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□ → < □ → < Ξ → < Ξ → Ξ < つ Q ○ 29/67</p>



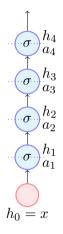
$$a_3 = w_2 h_2$$
$$h_3 = \sigma(a_3)$$

• While calculating ∇w₂ at some point in the chain rule we will encounter

$$\frac{\partial h_3}{\partial a_3} = \frac{\partial \sigma(a_3)}{\partial a_3} = \sigma(a_3)(1 - \sigma(a_3))$$

イロト 不得下 イヨト イヨト

€ 990



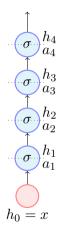
 $a_3 = w_2 h_2$ $h_3 = \sigma(a_3)$

• While calculating ∇w₂ at some point in the chain rule we will encounter

$$\frac{\partial h_3}{\partial a_3} = \frac{\partial \sigma(a_3)}{\partial a_3} = \sigma(a_3)(1 - \sigma(a_3))$$

• What is the consequence of this ?

・ 御 ト ・ ヨ ト ・ ヨ ト



 $a_3 = w_2 h_2$ $h_3 = \sigma(a_3)$

• While calculating ∇w₂ at some point in the chain rule we will encounter

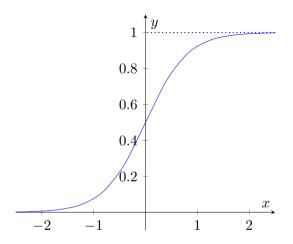
$$\frac{\partial h_3}{\partial a_3} = \frac{\partial \sigma(a_3)}{\partial a_3} = \sigma(a_3)(1 - \sigma(a_3))$$

• What is the consequence of this ?

・ロト ・ 一下・ ・ ヨト・

3

• To answer this question let us first understand the concept of saturated neuron ?

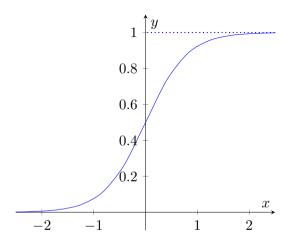


A sigmoid neuron is said to have saturated when σ(x) = 1 or σ(x) = 0

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

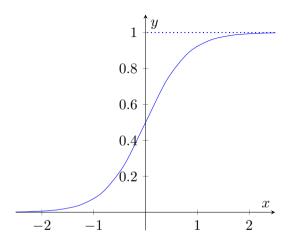
30/67

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

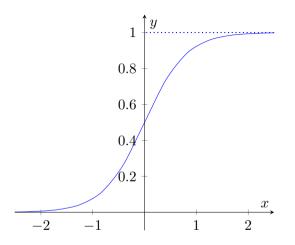


- A sigmoid neuron is said to have saturated when $\sigma(x) = 1$ or $\sigma(x) = 0$
- What would the gradient be at saturation?

イロト 不得下 イヨト イヨト



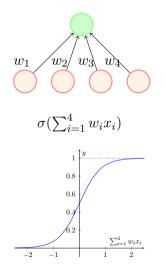
- A sigmoid neuron is said to have saturated when $\sigma(x) = 1$ or $\sigma(x) = 0$
- What would the gradient be at saturation?
- Well it would be 0 (you can see it from the plot or from the formula that we derived)



Saturated neurons thus cause the gradient to vanish.

- A sigmoid neuron is said to have saturated when $\sigma(x) = 1$ or $\sigma(x) = 0$
- What would the gradient be at saturation?
- Well it would be 0 (you can see it from the plot or from the formula that we derived)

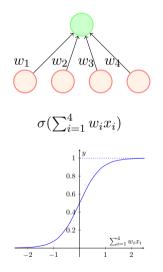
・ 御 ト ・ ヨ ト ・ ヨ ト



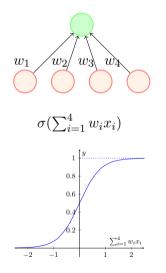
• But why would the neurons saturate ?

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

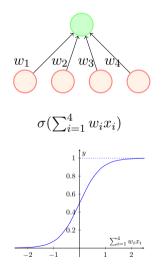
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



- But why would the neurons saturate ?
- Consider what would happen if we use sigmoid neurons and initialize the weights to very high values ?



- But why would the neurons saturate ?
- Consider what would happen if we use sigmoid neurons and initialize the weights to very high values ?
- The neurons will saturate very quickly



- But why would the neurons saturate ?
- Consider what would happen if we use sigmoid neurons and initialize the weights to very high values ?
- The neurons will saturate very quickly
- The gradients will vanish and the training will stall (more on this later)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

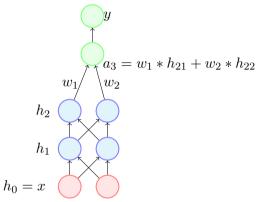
• Why is this a problem??

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

• Why is this a problem??

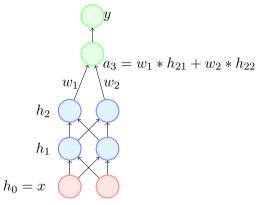


イロト イヨト イヨト ヨー りへつ

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered
- Consider the gradient w.r.t. w_1 and w_2

 $\nabla w_1 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \frac{\partial a_3}{\partial w_1}$ $\nabla w_2 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \frac{\partial a_3}{\partial w_2}$

• Why is this a problem??



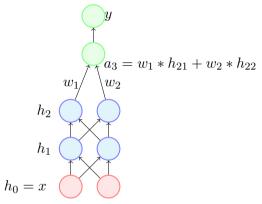
◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー のへで

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered
- Consider the gradient w.r.t. w_1 and w_2

 $\nabla w_1 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} h_{21}$ $\nabla w_2 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} h_{22}$

• Note that h_{21} and h_{22} are between [0,1] (*i.e.*, they are both positive)

• Why is this a problem??



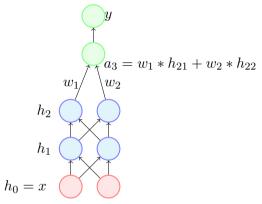
◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー のへで

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered
- Consider the gradient w.r.t. w_1 and w_2

 $\nabla w_1 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \quad h_{21}$ $\nabla w_2 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} \quad h_{22}$

- Note that h_{21} and h_{22} are between [0, 1] (*i.e.*, they are both positive)
- So if the first common term (in red) is positive (negative) then both ∇w₁ and ∇w₂ are positive (negative)

• Why is this a problem??



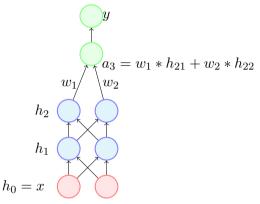
◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨー のへで

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered
- Consider the gradient w.r.t. w_1 and w_2

 $\nabla w_1 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} h_{21}$ $\nabla w_2 = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \frac{\partial y}{h_3} \frac{\partial h_3}{\partial a_3} h_{22}$

- Note that h_{21} and h_{22} are between [0,1] (*i.e.*, they are both positive)
- So if the first common term (in red) is positive (negative) then both ∇w_1 and ∇w_2 are positive (negative)

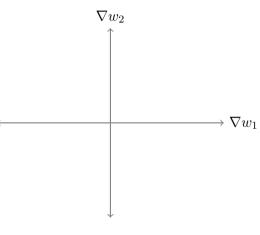
• Why is this a problem??



• Essentially, either all the gradients at a layer are positive or all the gradients at a layer are negative

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

• This restricts the possible update directions



- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

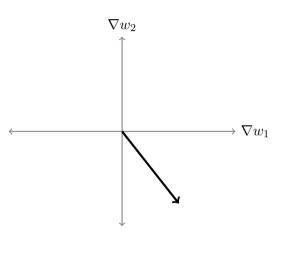
• This restricts the possible update directions ∇w_2 (Not possible) Quadrant in which all gradients are +ve(Allowed) ∇w_1 Quadrant in which all gradients are -ve (Allowed) (Not possible)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

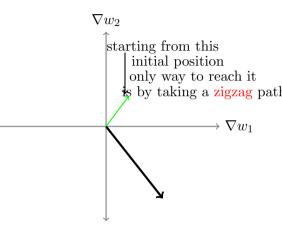
• This restricts the possible update directions ∇w_2 Quadrant in which (Not possible) all gradients are +ve(Allowed) ∇w_1 Now imagine: Quadrant in which this is the all gradients are optimal w -ve (Allowed) (Not possible)

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered



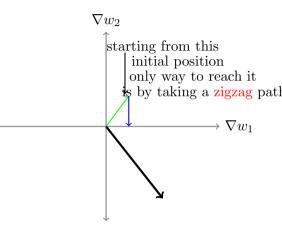
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered



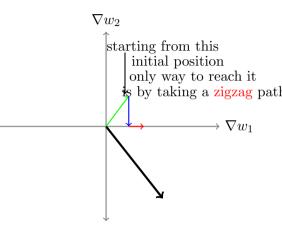
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

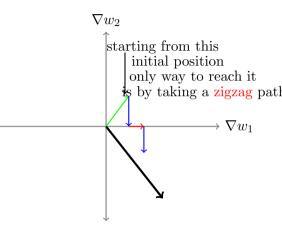


Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

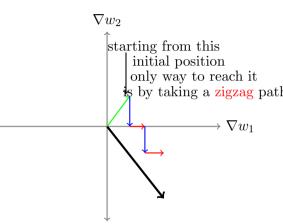


- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered

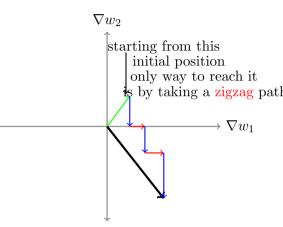


Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

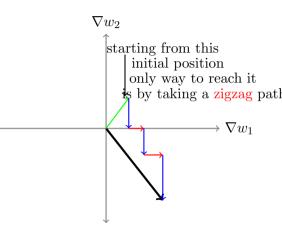
- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered



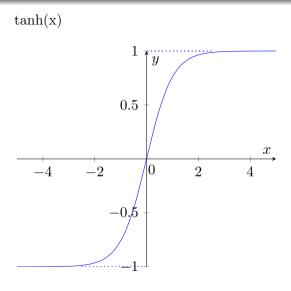
- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered



- Saturated neurons cause the gradient to vanish
- Sigmoids are not zero centered
- And lastly, sigmoids are computationally expensive (because of $\exp(x)$)

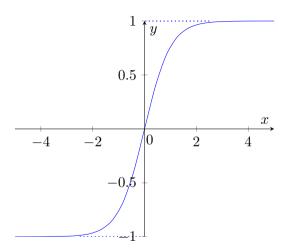


イロト (雪) (日) (日) (日) (日)



• Compresses all its inputs to the range [-1,1]

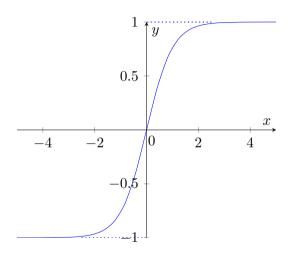
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



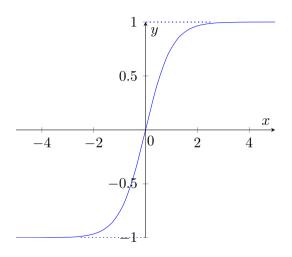
• Compresses all its inputs to the range [-1,1]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Zero centered

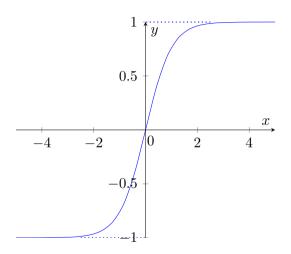


- Compresses all its inputs to the range [-1,1]
- Zero centered
- What is the derivative of this function?



- Compresses all its inputs to the range [-1,1]
- Zero centered
- What is the derivative of this function?

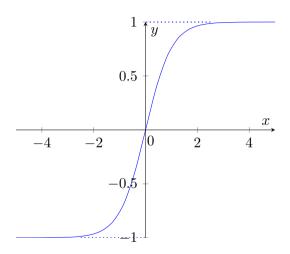
$$\frac{\partial tanh(x)}{\partial x} = (1 - tanh^2(x))$$



- Compresses all its inputs to the range [-1,1]
- Zero centered
- What is the derivative of this function?

$$\frac{\partial tanh(x)}{\partial x} = (1 - tanh^2(x))$$

• The gradient still vanishes at saturation

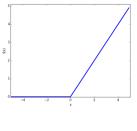


- Compresses all its inputs to the range [-1,1]
- Zero centered
- What is the derivative of this function?

$$\frac{\partial tanh(x)}{\partial x} = (1 - tanh^2(x))$$

• The gradient still vanishes at saturation

• Also computationally expensive



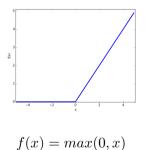
• Is this a non-linear function?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

36/67

 $f(x) = \max(0, x)$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

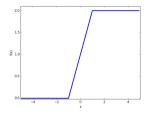


• Is this a non-linear function?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

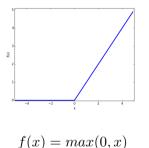
36/67

• Indeed it is!



$$f(x) = max(0, x + 1) - max(0, x - 1)$$

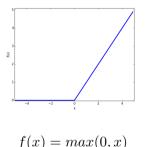
- Is this a non-linear function?
- Indeed it is!
- In fact we can combine two ReLU units to recover a piecewise linear approximation of the sigmoid function



Advantages of ReLU

• Does not saturate in the positive region

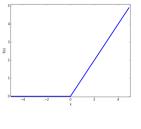
¹ImageNet Classification with Deep Convolutional Neural Networks- Alex Krizhevsky Ilya Sutskever, Geoffrey E. Hinton, 2012



Advantages of ReLU

- Does not saturate in the positive region
- Computationally efficient

 $^{^1 {\}rm ImageNet}$ Classification with Deep Convolutional Neural Networks- Alex Krizhevsky Ilya Sutskever, Geoffrey E. Hinton, 2012



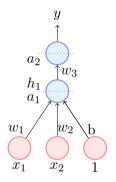
f(x) = max(0, x)

Advantages of ReLU

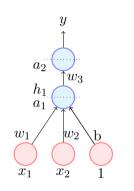
- Does not saturate in the positive region
- Computationally efficient
- \bullet In practice converges much faster than $sigmoid/tanh^1$

¹ImageNet Classification with Deep Convolutional Neural Networks- Alex Krizhevsky Ilya Sutskever, Geoffrey E. Hinton, 2012

• In practice there is a caveat



▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

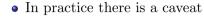


• In practice there is a caveat

Ċ

• Let's see what is the derivative of ReLU(x)

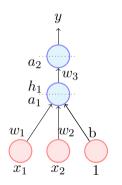
$$\frac{\partial ReLU(x)}{\partial x} = 0 \quad if \quad x < 0$$
$$= 1 \quad if \quad x > 0$$

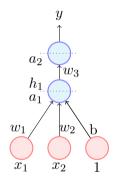


• Let's see what is the derivative of ReLU(x)

$$\frac{\partial ReLU(x)}{\partial x} = 0 \quad if \quad x < 0$$
$$= 1 \quad if \quad x > 0$$

• Now consider the given network





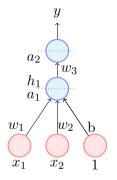
- In practice there is a caveat
- Let's see what is the derivative of ReLU(x)

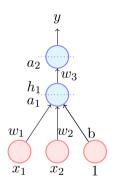
$$\frac{\partial ReLU(x)}{\partial x} = 0 \quad if \quad x < 0$$
$$= 1 \quad if \quad x > 0$$

- Now consider the given network
- What would happen if at some point a large gradient causes the bias b to be updated to a large negative value?

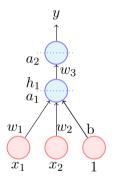
• The neuron would output 0 [dead neuron]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで





- The neuron would output 0 [dead neuron]
- Not only would the output be 0 but during backpropagation even the gradient $\frac{\partial h_1}{\partial a_1}$ would be zero



- The neuron would output 0 [dead neuron]
- Not only would the output be 0 but during backpropagation even the gradient $\frac{\partial h_1}{\partial a_1}$ would be zero
- The weights w₁, w₂ and b will not get updated [∵ there will be a zero term in the chain rule]

$$\nabla w_1 = \frac{\partial \mathscr{L}(\theta)}{\partial y} \cdot \frac{\partial y}{\partial a_2} \cdot \frac{\partial a_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$

御下 《曰下 《曰下 》曰:

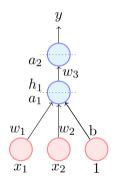


- The neuron would output 0 [dead neuron]
- Not only would the output be 0 but during backpropagation even the gradient $\frac{\partial h_1}{\partial a_1}$ would be zero
- The weights w₁, w₂ and b will not get updated [∵ there will be a zero term in the chain rule]

$$\nabla w_1 = \frac{\partial \mathscr{L}(\theta)}{\partial y} \cdot \frac{\partial y}{\partial a_2} \cdot \frac{\partial a_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial a_1} \cdot \frac{\partial a_1}{\partial w_1}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• The neuron will now stay dead forever!!

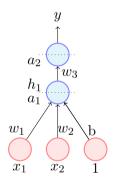


• In practice a large fraction of ReLU units can die if the learning rate is set too high

イロト 不得下 イヨト イヨト

40/67

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

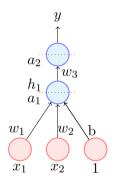


- In practice a large fraction of ReLU units can die if the learning rate is set too high
- It is advised to initialize the bias to a positive value (0.01)

イロト 不得下 イヨト イヨト

3

40/67



- In practice a large fraction of ReLU units can die if the learning rate is set too high
- It is advised to initialize the bias to a positive value (0.01)
- Use other variants of ReLU (as we will soon see)

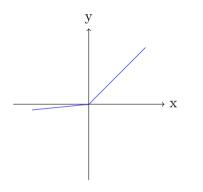
< ロ > (何 > (三 > (三 >)))

3

40/67

• No saturation

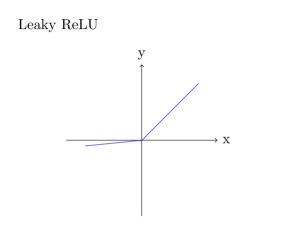
Leaky ReLU



 $f(x) = \max(0.01x, x)$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

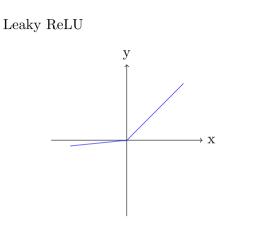
▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで



- No saturation
- Will not die (0.01x ensures that at least a small gradient will flow through)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $f(x) = \max(0.01x,\!x)$

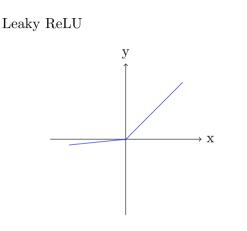


- No saturation
- Will not die (0.01x ensures that at least a small gradient will flow through)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Computationally efficient

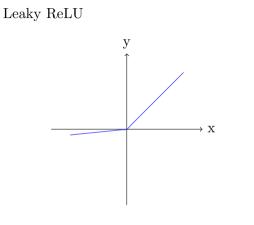
 $f(x) = \max(0.01x, x)$



- No saturation
- Will not die (0.01x ensures that at least a small gradient will flow through)

- Computationally efficient
- Close to zero centered ouputs

 $f(x) = \max(0.01x, x)$



- No saturation
- Will not die (0.01x ensures that at least a small gradient will flow through)
- Computationally efficient
- Close to zero centered ouputs

Parametric ReLU

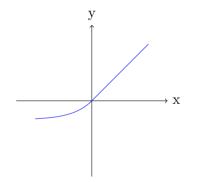
 $f(x) = \max(\alpha x, x)$

 α is a parameter of the model

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

 $\alpha \quad will \; get \; updated \; during \; backpropagation$

 $f(x) = \max(0.01x, x)$

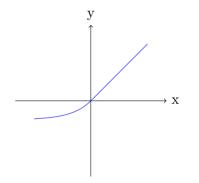


• All benefits of ReLU

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

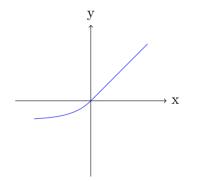
$$f(x) = x \quad if \quad x > 0$$
$$= ae^{x} - 1 \quad if \quad x \le 0$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



- All benefits of ReLU
- $ae^x 1$ ensures that at least a small gradient will flow through

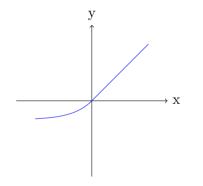
$$f(x) = x \quad if \quad x > 0$$
$$= ae^{x} - 1 \quad if \quad x \le 0$$



- All benefits of ReLU
- $ae^x 1$ ensures that at least a small gradient will flow through

• Close to zero centered outputs

$$f(x) = x \quad if \quad x > 0$$
$$= ae^{x} - 1 \quad if \quad x \le 0$$



- All benefits of ReLU
- $ae^x 1$ ensures that at least a small gradient will flow through
- Close to zero centered outputs
- Expensive (requires computation of $\exp(x)$)

$$f(x) = x \quad if \quad x > 0$$
$$= ae^x - 1 \quad if \quad x \le 0$$

Maxout Neuron

• Generalizes ReLU and Leaky ReLU

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 のへで

$$max(w_1^T x + b_1, w_2^T x + b_2)$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

Maxout Neuron

$$max(w_1^T x + b_1, w_2^T x + b_2)$$

• Generalizes ReLU and Leaky ReLU

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• No saturation! No death!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

Maxout Neuron

$$max(w_1^T x + b_1, w_2^T x + b_2)$$

- Generalizes ReLU and Leaky ReLU
- No saturation! No death!
- Doubles the number of parameters

イロト (個) (日) (日) 日) つくで

• Sigmoids are bad

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Sigmoids are bad
- ReLU is more or less the standard unit for Convolutional Neural Networks

イロト (個) (日) (日) 日) つくで

- Sigmoids are bad
- ReLU is more or less the standard unit for Convolutional Neural Networks
- Can explore Leaky ReLU/Maxout/ELU

- Sigmoids are bad
- ReLU is more or less the standard unit for Convolutional Neural Networks
- Can explore Leaky ReLU/Maxout/ELU
- tanh sigmoids are still used in LSTMs/RNNs (we will see more on this later)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

Module 9.4 : Better initialization strategies

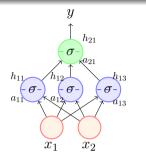
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Deep Learning has evolved

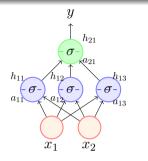
- Better optimization algorithms
- Better regularization methods
- Better activation functions
- Better weight initialization strategies

46/67



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

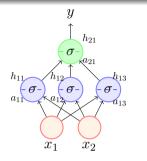
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

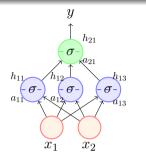
$$a_{11} = w_{11}x_1 + w_{12}x_2$$

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9



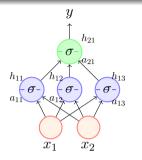
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ のへで

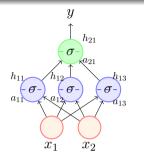
 $a_{11} = w_{11}x_1 + w_{12}x_2$ $a_{12} = w_{21}x_1 + w_{22}x_2$ $\therefore a_{11} = a_{12} = 0$



- What happens if we initialize all weights to 0?
- All neurons in layer 1 will get the same activation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

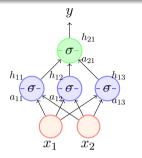
$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$



• Now what will happen during back propagation?

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

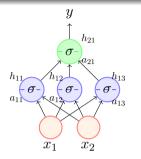


• Now what will happen during back propagation?

$$\nabla w_{11} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $a_{11} = w_{11}x_1 + w_{12}x_2$ $a_{12} = w_{21}x_1 + w_{22}x_2$ $\therefore a_{11} = a_{12} = 0$ $\therefore h_{11} = h_{12}$



• Now what will happen during back propagation?

$$\nabla w_{11} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$
$$\nabla w_{21} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$

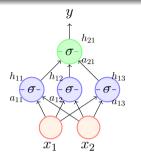
◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

$$a_{11} = w_{11}x_1 + w_{12}x_2$$

$$a_{12} = w_{21}x_1 + w_{22}x_2$$

$$\therefore a_{11} = a_{12} = 0$$

$$\therefore h_{11} = h_{12}$$

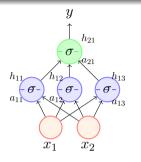


• Now what will happen during back propagation?

$$\nabla w_{11} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$
$$\nabla w_{21} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$
$$put \quad h_{11} = h_{12}$$

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

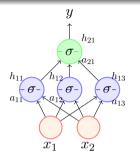


$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

• Now what will happen during back propagation?

$$\nabla w_{11} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$
$$\nabla w_{21} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$
$$but \quad h_{11} = h_{12}$$
$$and \quad a_{12} = a_{12}$$

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

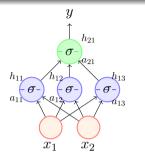


$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

• Now what will happen during back propagation?

$$\nabla w_{11} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{11}} \cdot \frac{\partial h_{11}}{\partial a_{11}} \cdot x_1$$
$$\nabla w_{21} = \frac{\partial \mathscr{L}(\mathbf{w})}{\partial y} \cdot \frac{\partial y}{\partial h_{12}} \cdot \frac{\partial h_{12}}{\partial a_{12}} \cdot x_1$$
but $h_{11} = h_{12}$
and $a_{12} = a_{12}$
$$\therefore \nabla w_{11} = \nabla w_{21}$$

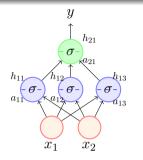
◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○



• Hence both the weights will get the same update and remain equal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$



- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training

イロト 不得 トイヨト イヨト

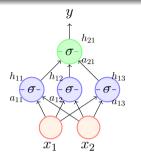
3

$$a_{11} = w_{11}x_1 + w_{12}x_2$$

$$a_{12} = w_{21}x_1 + w_{22}x_2$$

$$\therefore a_{11} = a_{12} = 0$$

$$\therefore h_{11} = h_{12}$$



$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

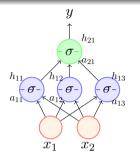
- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training

イロト 不得 トイヨト イヨト

3

47/67

• The same is true for w_{12} and w_{22}

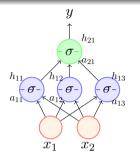


$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training
- The same is true for w_{12} and w_{22}
- And for all weights in layer 2 (infact, work out the math and convince yourself that all the weights in this layer will remain equal)

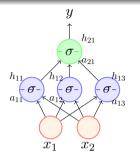
(日本) (日本) (日本)

3



$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training
- The same is true for w_{12} and w_{22}
- And for all weights in layer 2 (infact, work out the math and convince yourself that all the weights in this layer will remain equal)
- This is known as the **symmetry breaking problem**



$$a_{11} = w_{11}x_1 + w_{12}x_2$$
$$a_{12} = w_{21}x_1 + w_{22}x_2$$
$$\therefore a_{11} = a_{12} = 0$$
$$\therefore h_{11} = h_{12}$$

- Hence both the weights will get the same update and remain equal
- Infact this symmetry will never break during training
- The same is true for w_{12} and w_{22}
- And for all weights in layer 2 (infact, work out the math and convince yourself that all the weights in this layer will remain equal)
- This is known as the **symmetry breaking problem**
- This will happen if all the weights in a network are initialized to the **same value**

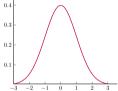
```
p = np.random.randn(1000,500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']en(hidden_layer_sizes)
act = {'relu':lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x),
'sigmoid':lambda x: 1/ (1 + np.exp( x))}
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else HS[i-1]
    fan_in = X.shape[1]
    fan_in = K.shape[1]
    fan_out = hidden layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01
    H = np.dot(X, W)
    H = act[nonlinearities[i]](H)
    Hs[i] = H
```

```
D = np.random.randn(1000,500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']en(hidden_layer_sizes)
act = {'relu':lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x),
'sigmoid':lambda x: 1/ (1 + np.exp( x)))
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else HS[i-1]
    fan_in = X.shape[1]
    fan_in = A.shape[1]
    fan_out = hidden layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01
    H = np.dot(X, W)
    H = act[nonlinearities[i]](H)
    Hs[i] = H
```

• input: 1000 points, each $\in R^{500}$

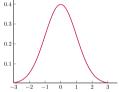
```
D = np.random.randn(1000,500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']=len(hidden_layer_sizes)
act = {'relu':lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x),
'sigmoid':lambda x: 1/ (1 + np.exp('x)))
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
X = D if i == 0 else Hs[i-1]
fan_in = X.shape[1]
fan_in = hidden layer_sizes[i]
W = np.random.randn(fan_in, fan_out) * 0.01
H = np.dot(X, W)
H = act[nonlinearities[i]](H)
Hs[i] = H
```

- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian



```
D = np.random.randn(1000,500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']en(hidden_layer_sizes)
act = {'relu':lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x),
'sigmoid':lambda x: 1/ (1 + np.exp( x)))
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else HS[i-1]
    fan_in = X.shape[1]
    fan_in = A.shape[1]
    fan_out = hidden layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01
    H = np.dot(X, W)
    H = act[nonlinearities[i]](H)
    Hs[i] = H
```

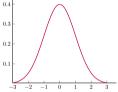
- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian



• the network has 5 layers

```
D = np.random.randn(1000,500)
hidden layer sizes = [500]*10
nonlinearities = ['tanh]'len(hidden_layer_sizes)
act = {'relu':lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x),
'sigmoid':lambda x: 1/ (1 + np.exp('x)))
Hs = {}
for i in xrange(len(hidden layer sizes)):
X = D if i == 0 else Hs[i-1]
fan_in = X.shape[1]
fan_in = A.shape[1]
w = np.random.randn(fan_in, fan_out) * 0.01
H = np.dot(X, W)
H = act[nonlinearities[i]](H)
Hs[i] = H
```

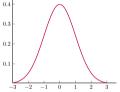
- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian



- the network has 5 layers
- each layer has 500 neurons

```
D = np.random.randn(1000,500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']'len(hidden_layer_sizes)
act = {'relu':lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(X),
'sigmoid':lambda x: 1/ (1 + np.exp('x)))
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
X = D if 1 == 0 else Hs[i-1]
fan_in = X.shape[1]
fan_in = N.shape[1]
w = np.random.randn(fan_in, fan_out) * 0.01
H = np.dot(X, W)
H = act[nonlinearities[i]](H)
Hs[i] = H
```

- input: 1000 points, each $\in R^{500}$
- input data is drawn from unit Gaussian

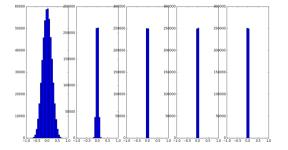


- the network has 5 layers
- each layer has 500 neurons
- we will run forward propagation on this network with different weight initializations

• Let's try to initialize the weights to small random numbers

イロト (個) (日) (日) 日) つくで

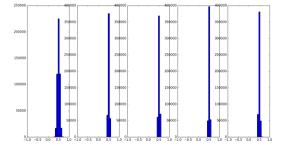
- Let's try to initialize the weights to small random numbers
- We will see what happens to the activation across different layers



tanh activation functions

- Let's try to initialize the weights to small random numbers
- We will see what happens to the activation across different layers

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●



sigmoid activation functions

• What will happen during back propagation?

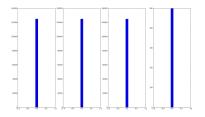
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ≣ のへで 50/67

- What will happen during back propagation?
- Recall that ∇w₁ is proportional to the activation passing through it

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

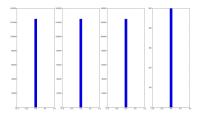
- What will happen during back propagation?
- Recall that ∇w₁ is proportional to the activation passing through it
- If all the activations in a layer are very close to 0, what will happen to the gradient of the weights connecting this layer to the next layer?

イロト イヨト イヨト ヨー りへつ



- What will happen during back propagation?
- Recall that ∇w_1 is proportional to the activation passing through it
- If all the activations in a layer are very close to 0, what will happen to the gradient of the weights connecting this layer to the next layer?

3



- What will happen during back propagation?
- Recall that ∇w₁ is proportional to the activation passing through it
- If all the activations in a layer are very close to 0, what will happen to the gradient of the weights connecting this layer to the next layer?
- They will all be close to 0 (vanishing gradient problem)

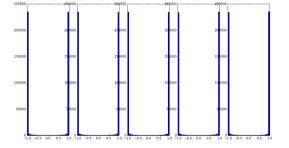
・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

• Let us try to initialize the weights to large random numbers

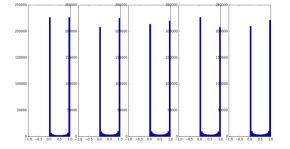
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Let us try to initialize the weights to large random numbers



tanh activation with large weights

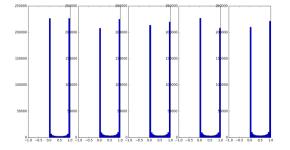
• Let us try to initialize the weights to large random numbers



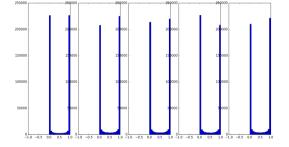
sigmoid activations with large weights

• Let us try to initialize the weights to large random numbers

• Most activations have saturated



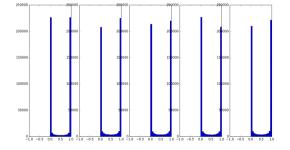
sigmoid activations with large weights



- Let us try to initialize the weights to large random numbers
- Most activations have saturated
- What happens to the gradients at saturation?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

sigmoid activations with large weights



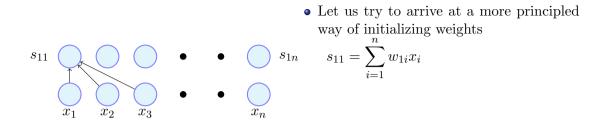
sigmoid activations with large weights

- Let us try to initialize the weights to large random numbers
- Most activations have saturated
- What happens to the gradients at saturation?
- They will all be close to 0 (vanishing gradient problem)

(四) (日) (日) (日)

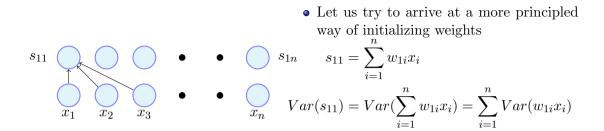
• Let us try to arrive at a more principled way of initializing weights

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



▲ロト ▲局ト ▲ヨト ▲ヨト ヨー のくぐ

• Let us try to arrive at a more principled
way of initializing weights
$$s_{11} \longrightarrow x_{2} \longrightarrow x_{3}$$
• • • $s_{1n} = \sum_{i=1}^{n} w_{1i}x_{i}$
• $w_{n} = Var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_{i}) = \sum_{i=1}^{n} Var(w_{1i}x_{i})$
$$= \sum_{i=1}^{n} \left[(E[w_{1i}])^{2} Var(w_{1i}) + Var(x_{i}) Var(w_{1i}) \right]$$

• Let us try to arrive at a more principled
way of initializing weights
$$s_{11} \quad \underbrace{\qquad}_{x_1} \quad \underbrace{\qquad}_{x_2} \quad \underbrace{\qquad}_{x_3} \quad \underbrace{\qquad}_{x_n} \quad s_{1n} \quad s_{11} = \sum_{i=1}^n w_{1i}x_i$$
$$\underbrace{\qquad}_{x_1} \quad v_{2n}(x_{11}) = Var(\sum_{i=1}^n w_{1i}x_i) = \sum_{i=1}^n Var(w_{1i}x_i)$$
$$= \sum_{i=1}^n \left[(E[w_{1i}])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$
$$+ (E[x_i])^2 Var(w_{1i}) + Var(x_i) Var(w_{1i}) \right]$$

• [Assuming 0 Mean inputs and weights]

< □ > < □ > < □ > < Ξ > < Ξ > Ξ のへで 52/67

• Let us try to arrive at a more principled
way of initializing weights
$$s_{11} \quad \overbrace{x_{2} \quad x_{3}}^{n} \quad \bullet \quad \bigcirc \quad s_{1n} \quad s_{11} = \sum_{i=1}^{n} w_{1i}x_{i}$$
$$\bullet \quad \bigcirc \quad var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_{i}) = \sum_{i=1}^{n} Var(w_{1i}x_{i})$$
$$= \sum_{i=1}^{n} [(E[w_{1i}])^{2}Var(w_{1i})$$
$$+ (E[x_{i}])^{2}Var(w_{1i}) + Var(x_{i})Var(w_{1i})]$$
$$= \sum_{i=1}^{n} Var(x_{i})Var(w_{1i})$$

< □ > < @ > < 差 > < 差 > 差 少 Q ^Q 52/67

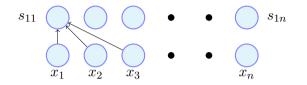
• Let us try to arrive at a more principled
way of initializing weights
11 • • • • • •
$$s_{1n} \quad s_{11} = \sum_{i=1}^{n} w_{1i}x_i$$

• • • • • • • $var(s_{11}) = Var(\sum_{i=1}^{n} w_{1i}x_i) = \sum_{i=1}^{n} Var(w_{1i}x_i)$
= $\sum_{i=1}^{n} [(E[w_{1i}])^2 Var(x_i)$
• [Assuming 0 Mean inputs and
weights]
• [Assuming $Var(x_i) = Var(x) \forall i$]
• [Assuming $Var(x_i) = Var(x) \forall i$]
• [Assuming $Var(x_i) = Var(x) \forall i$]
• [Assuming $Var(w_{1i}) = Var(w) \forall i$]

 s_{11}

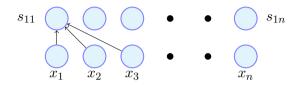
 $\widetilde{x_1}$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●



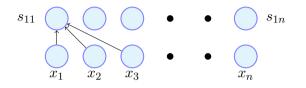
$$Var(S_{1i}) = (nVar(w))(Var(x))$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q ↔ 53/67



 $Var(S_{1i}) = (nVar(w))(Var(x))$

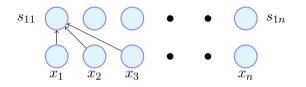
• What would happen if $nVar(w) \gg 1$?



- $Var(S_{1i}) = (nVar(w))(Var(x))$
- What would happen if $nVar(w) \gg 1$?

3

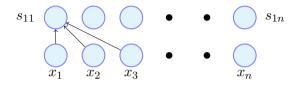
• The variance of S_{1i} will be large



- $Var(S_{1i}) = (nVar(w))(Var(x))$
- What would happen if $nVar(w) \gg 1$?
- The variance of S_{1i} will be large
- What would happen if $nVar(w) \to 0$?

3

• In general,



 $Var(S_{1i}) = (nVar(w))(Var(x))$

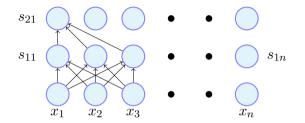
- What would happen if $nVar(w) \gg 1$?
- The variance of S_{1i} will be large
- What would happen if $nVar(w) \to 0$?

э.

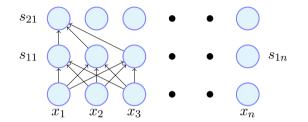
• The variance of S_{1i} will be small

• Let us see what happens if we add one more layer

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

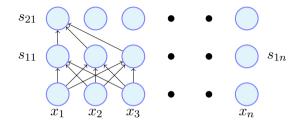


- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at



- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

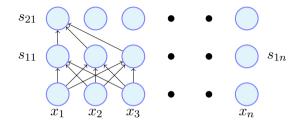
$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$



- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$

$$= nVar(s_{1i})Var(w_2)$$

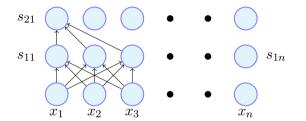


$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$

$$= nVar(s_{1i})Var(w_2)$$



$$Var(S_{i1}) = nVar(w_1)Var(x)$$

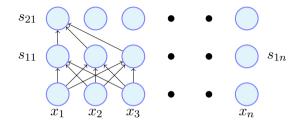
- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$

$$= nVar(s_{1i})Var(w_2)$$

 $Var(s_{21}) \propto [nVar(w_2)][nVar(w_1)]Var(x)$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●



$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

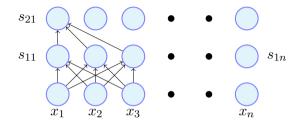
$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$

$$= nVar(s_{1i})Var(w_2)$$

 $Var(s_{21}) \propto [nVar(w_2)][nVar(w_1)]Var(x)$

$$\propto [nVar(w)]^2 Var(x)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●



$$Var(S_{i1}) = nVar(w_1)Var(x)$$

- Let us see what happens if we add one more layer
- Using the same procedure as above we will arrive at

$$Var(s_{21}) = \sum_{i=1}^{n} Var(s_{1i}) Var(w_{2i})$$

$$= nVar(s_{1i})Var(w_2)$$

 $Var(s_{21}) \propto [nVar(w_2)][nVar(w_1)]Var(x)$

 $\propto [nVar(w)]^2 Var(x)$

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ つ ・

Assuming weights across all layers have the same variance

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• In general,

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

n Var(w) = 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

nVar(w) = 1

• If we draw the weights from a unit Gaussian and scale them by $\frac{1}{\sqrt{n}}$ then, we have :

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

nVar(w) = 1

• If we draw the weights from a unit Gaussian and scale them by $\frac{1}{\sqrt{n}}$ then, we have :

$$nVar(w) = nVar(\frac{z}{\sqrt{n}})$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

nVar(w) = 1

• If we draw the weights from a unit Gaussian and scale them by $\frac{1}{\sqrt{n}}$ then, we have :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$nVar(w) = nVar(\frac{z}{\sqrt{n}})$$
$$= n * \frac{1}{n}Var(z) = 1$$

$$Var(az) = a^2(Var(z))$$

$$Var(s_{ki}) = [nVar(w)]^k Var(x)$$

• To ensure that variance in the output of any layer does not blow up or shrink we want:

$$n Var(w) = 1$$

• If we draw the weights from a unit Gaussian and scale them by $\frac{1}{\sqrt{n}}$ then, we have :

$$nVar(w) = n Var(\frac{z}{\sqrt{n}})$$
$$= n * \frac{1}{n} Var(z) = 1 \leftarrow (Unit Gaussian)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$Var(az) = a^2(Var(z))$$

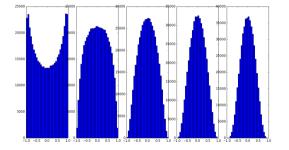
W = np.random.randn(fan_in, fan_out) / sqrt(fan_in)

• Let's see what happens if we use this initialization

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in)

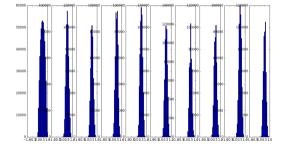
• Let's see what happens if we use this initialization



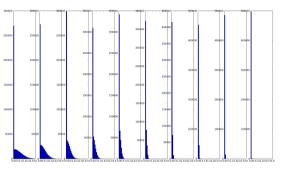
tanh activation

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in)

• Let's see what happens if we use this initialization

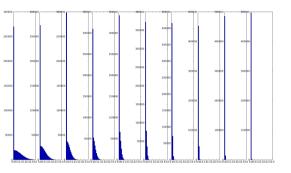


sigmoid activations



• However this does not work for ReLU neurons

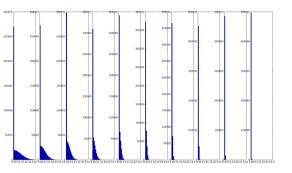
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



• However this does not work for ReLU neurons

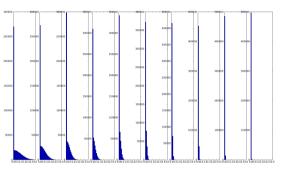
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Why ?



- However this does not work for ReLU neurons
- Why ?
- Intuition: *He et.al.* argue that a factor of 2 is needed when dealing with ReLU Neurons

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●



- However this does not work for ReLU neurons
- Why ?
- Intuition: *He et.al.* argue that a factor of 2 is needed when dealing with ReLU Neurons
- Intuitively this happens because the range of ReLU neurons is restricted only to the positive half of the space

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in/2)

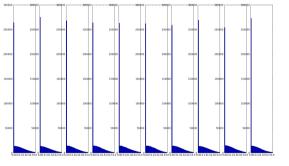
• Indeed when we account for this factor of 2 we see better performance

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

W = np.random.randn(fan_in, fan_out) / sqrt(fan_in/2)

• Indeed when we account for this factor of 2 we see better performance

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで



Module 9.5 : Batch Normalization

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

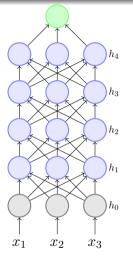
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

We will now see a method called batch normalization which allows us to be less careful about initialization

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

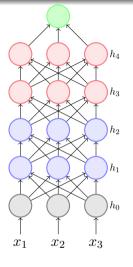
• To understand the intuition behind Batch Normalization let us consider a deep network

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

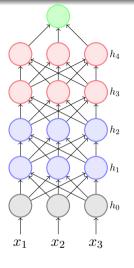


• To understand the intuition behind Batch Normalization let us consider a deep network

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで



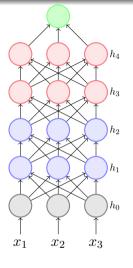
- To understand the intuition behind Batch Normalization let us consider a deep network
- Let us focus on the learning process for the weights between these two layers



- To understand the intuition behind Batch Normalization let us consider a deep network
- Let us focus on the learning process for the weights between these two layers

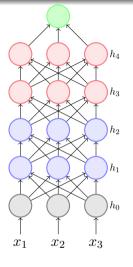
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

• Typically we use mini-batch algorithms



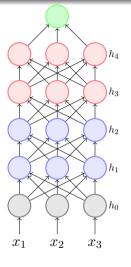
- To understand the intuition behind Batch Normalization let us consider a deep network
- Let us focus on the learning process for the weights between these two layers
- Typically we use mini-batch algorithms
- What would happen if there is a constant change in the distribution of h_3

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●



- To understand the intuition behind Batch Normalization let us consider a deep network
- Let us focus on the learning process for the weights between these two layers
- Typically we use mini-batch algorithms
- What would happen if there is a constant change in the distribution of h_3
- In other words what would happen if across minibatches the distribution of h_3 keeps changing

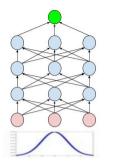
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○



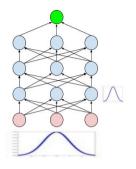
- To understand the intuition behind Batch Normalization let us consider a deep network
- Let us focus on the learning process for the weights between these two layers
- Typically we use mini-batch algorithms
- What would happen if there is a constant change in the distribution of h_3
- In other words what would happen if across minibatches the distribution of h_3 keeps changing

▲ロト ▲樹下 ▲ヨト ▲ヨト ヨー のへの

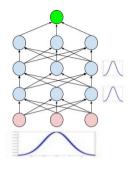
• Would the learning process be easy or hard?



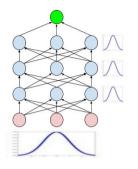
▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで



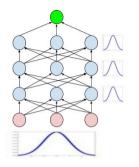
▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで



▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

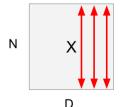


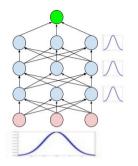
▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで



- It would help if the pre-activations at each layer were unit gaussians
- Why not explicitly ensure this by standardizing the pre-activation ?

$$\hat{s_{ik}} = \frac{s_{ik} - E[s_{ik}]}{\sqrt{var(s_{ik})}}$$



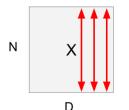


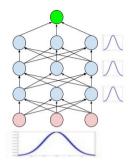
- It would help if the pre-activations at each layer were unit gaussians
- Why not explicitly ensure this by standardizing the pre-activation ?

$$\hat{s_{ik}} = \frac{s_{ik} - E[s_{ik}]}{\sqrt{var(s_{ik})}}$$

(1日) (1日) (1日) (1日)

• But how do we compute $E[s_{ik}]$ and $Var[s_{ik}]$?

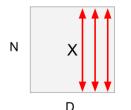


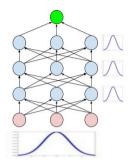


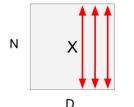
- It would help if the pre-activations at each layer were unit gaussians
- Why not explicitly ensure this by standardizing the pre-activation ?

$$\hat{s_{ik}} = \frac{s_{ik} - E[s_{ik}]}{\sqrt{var(s_{ik})}}$$

- But how do we compute $E[s_{ik}]$ and $Var[s_{ik}]$?
- We compute it from a mini-batch







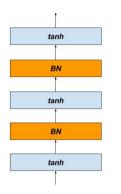
- It would help if the pre-activations at each layer were unit gaussians
- Why not explicitly ensure this by standardizing the pre-activation ?

$$\hat{s_{ik}} = \frac{s_{ik} - E[s_{ik}]}{\sqrt{var(s_{ik})}}$$

- But how do we compute $E[s_{ik}]$ and $Var[s_{ik}]$?
- We compute it from a mini-batch
- Thus we are explicitly ensuring that the distribution of the inputs at different layers does not change across batches

• This is what the deep network will look like with Batch Normalization

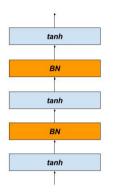
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



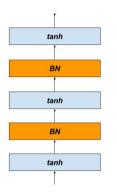
• This is what the deep network will look like with Batch Normalization

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

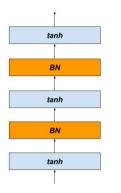
• Is this legal ?



- This is what the deep network will look like with Batch Normalization
- Is this legal ?
- Yes, it is because just as the *tanh* layer is differentiable, the Batch Normalization layer is also differentiable

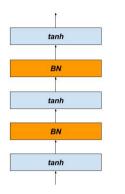


- This is what the deep network will look like with Batch Normalization
- Is this legal ?
- Yes, it is because just as the *tanh* layer is differentiable, the Batch Normalization layer is also differentiable
- Hence we can backpropagate through this layer

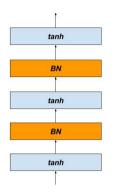


• Catch: Do we necessarily want to force a unit gaussian input to the *tanh* layer?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

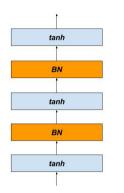


- Catch: Do we necessarily want to force a unit gaussian input to the *tanh* layer?
- Why not let the network learn what is best for it?



- Catch: Do we necessarily want to force a unit gaussian input to the *tanh* layer?
- Why not let the network learn what is best for it?
- After the Batch Normalization step add the following step:

$$y^{(k)} = \gamma^k \hat{s_{ik}} + \beta^{(k)}$$



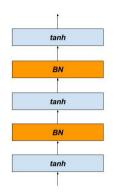
- Catch: Do we necessarily want to force a unit gaussian input to the *tanh* layer?
- Why not let the network learn what is best for it?
- After the Batch Normalization step add the following step:

$$y^{(k)} = \gamma^k \hat{s_{ik}} + \beta^{(k)}$$

• What happens if the network learns:

$$\gamma^k = \sqrt{var(x^k)}$$
$$\beta^k = E[x^k]$$

 γ^k and β^k are additional parameters of the network.



- Catch: Do we necessarily want to force a unit gaussian input to the *tanh* layer?
- Why not let the network learn what is best for it?
- After the Batch Normalization step add the following step:

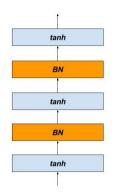
$$y^{(k)} = \gamma^k \hat{s_{ik}} + \beta^{(k)}$$

• What happens if the network learns:

$$\gamma^k = \sqrt{var(x^k)}$$
$$\beta^k = E[x^k]$$

• We will recover s_{ik}

 γ^k and β^k are additional parameters of the network.



 γ^k and β^k are additional parameters of the network.

- Catch: Do we necessarily want to force a unit gaussian input to the *tanh* layer?
- Why not let the network learn what is best for it?
- After the Batch Normalization step add the following step:

$$y^{(k)} = \gamma^k \hat{s_{ik}} + \beta^{(k)}$$

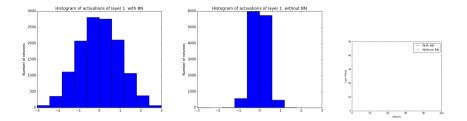
• What happens if the network learns:

 $\gamma^k = \sqrt{var(x^k)}$ $\beta^k = E[x^k]$

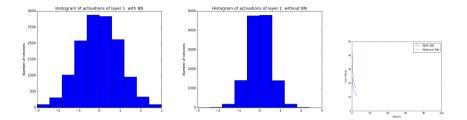
- We will recover s_{ik}
- In other words by adjusting these additional parameters the network can learn to recover s_{ik} if that is more favourable

We will now compare the performance with and without batch normalization on MNIST data using 2 layers....

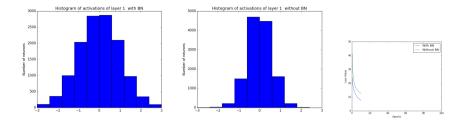
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 のへで



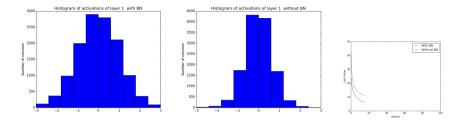
(ロ) (型) (三) (三) (三) (0) (0)



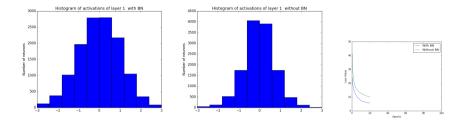
(ロ) (型) (三) (三) (三) (0) (0)



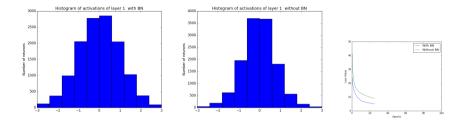
(ロ) (型) (三) (三) (三) (0) (0)



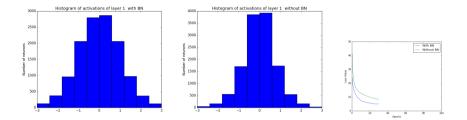
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで



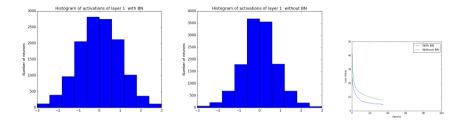
(ロ) (型) (三) (三) (三) (0) (0)



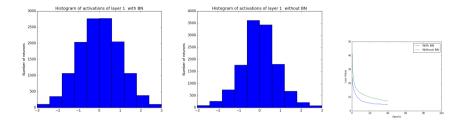
(ロ) (型) (三) (三) (三) (0) (0)



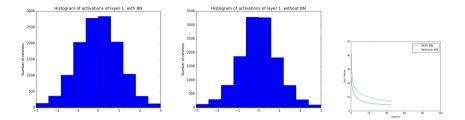
(ロ) (型) (三) (三) (三) (0) (0)



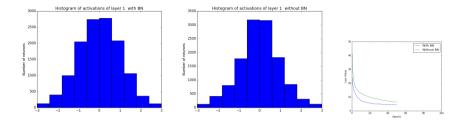
(ロ) (型) (三) (三) (三) (0) (0)



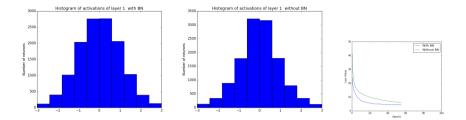
(ロ) (型) (三) (三) (三) (0) (0)



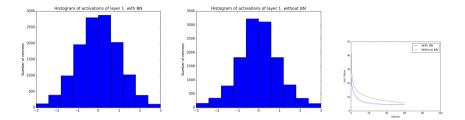
(ロ) (型) (三) (三) (三) (0) (0)



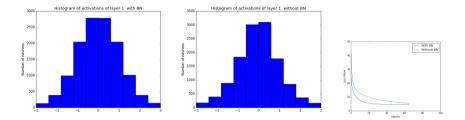
(ロ) (型) (三) (三) (三) (0) (0)



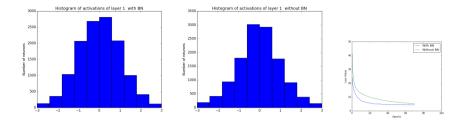
(ロ) (型) (三) (三) (三) (0) (0)



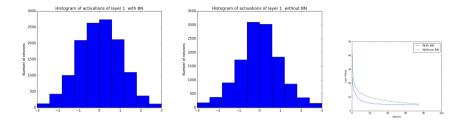
(ロ) (型) (三) (三) (三) (0) (0)



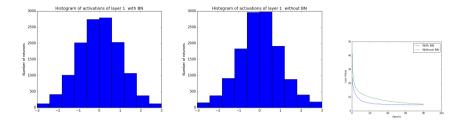
(ロ) (型) (三) (三) (三) (0) (0)



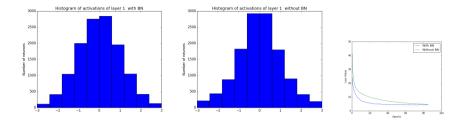
(ロ) (型) (三) (三) (三) (0) (0)



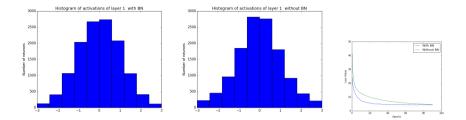
(ロ) (型) (三) (三) (三) (0) (0)



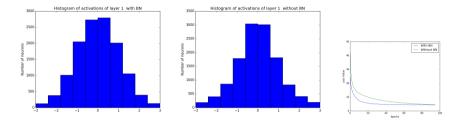
(ロ) (型) (三) (三) (三) (0) (0)



(ロ) (型) (三) (三) (三) (0) (0)



(ロ) (型) (三) (三) (三) (0) (0)



Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

(ロ) (型) (三) (三) (三) (0) (0)

2016-17: Still exciting times

• Even better optimization methods

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

2016-17: Still exciting times

- **Eve**n better optimization methods
- Data driven initialization methods

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

2016-17: Still exciting times

- **Eve**n better optimization methods
- Data driven initialization methods
- Beyond batch normalization

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 9

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●