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Reading Comprehension Style QA
PASSAGE

The role of teacher is often formal and ongoing, carried out at 

a school or other place of formal education. In many 

countries, a person who wishes to become a teacher must 

first obtain specified professional qualifications or credentials 

from a university or college. These professional qualifications 

may include the study of pedagogy, the science of teaching. 

Teachers, like other professionals, may have to continue their 

education after they qualify, a process known as continuing 

professional development. Teachers may use a lesson plan 

to facilitate student learning, providing a course of study 

which is called the curriculum.

Query: What is a course of study called?

Answer: The curriculum

Query: What can a teacher use to help 
students learn?

Answer:  lesson plan



Current Datasets 
Datasets Question Source Formulation Size

CNN/Dailymail[9] summary + Cloze fill in single entity 1.4M

CBT[10] Cloze fill in single entity 688K

SQuAD[26] crowdsourced spans in passages 100K

RACE[17] Standardized tests Multiple choice 80K

MS-Marco[23] query logs Human generated +100K

Trivia-QA[14] query logs answer span 95K

MCTest[27] crowdsourced multiple choice 2640

WDW[24] Cloze fill in single entity +185K



Wave of Neural RCQA models:



The Problem:
● Too many models..
● Each work fine-tunes a different module to beat the state-of-the-art 

performance

Need a common platform to analyze all the works in an 
apples-to-apples fashion



Proposed RCQA Framework



Embedding  Layer
● Objective: Each word in query and 

passage could be represented as a 
d-dimensional vector 

● Modules:
○ Word Embedding Module
○ Character Embedding Module
○ POS/NE/TF-IDF Features Module

● Existing Works using this layer: 
○ ALL



Embedding Aggregation Layer
● Objective:  If more than one module is 

used in the previous layer, this layer 
combines the different vector 
representations of the same word 

● Methods for Aggregation
○ Concatenation
○ Algebraic Sum
○ Scalar Gate 
○ Vector Gate 

● Existing Works using this layer: 
○ [6], [37], [29], [8], [32]



Encoding Layer
● Objective: Contextual information for 

each of the word in the document and 
query is encoded using RNNs:

● Methods for Encoding:
○ Bidirectional LSTMs
○ Stacked Bidirectional LSTMs
○ Deep LSTMs with skip connections 

across layers
● Exisiting Works Using this layer

○ ALL



Cross Interaction Layer
● Objective: Captures the interaction 

between document and query, either at 
word level or sentence-level

● Modules:
○ Document Aware Query Representation: 

Read document in light of the query
○ Query Aware Document Representation: 

Read query in light of the document 
○ Bilinear Matrix: Captures word-word 

interaction between query and 
document

● ExistingWorks Using this layer
○ ALL



Self Interaction Layer
● Motivation:  To infer some of the 

answer, it is necessary to infer from 
more than one sentence in a document 
(might not be continuous )

● Objective: Capture long term 
dependency by computing word-word 
interaction of every document word pair

● Module:
○ Bilinear Matrix

● Existing Works Using this layer
○ [8],[29],[12],[35]



Multihop Layer
● Motivation:  Documents need to be 

re-read a couple of times to be 
confident about the answer

● Objective:  Decides on how many times 
document needs to be re-read and 
ensures information flow is consistent 
from self-interaction layer to encoding 
layer

● Module:
○ Bilinear Matrix

● Existing Works Using this layer
○ [30], [6], [31]



Merging Layer
● Objective:  Merge the representations 

obtained using cross-interaction and 
self-interaction layers

● Module:
○ Bilinear Matrix

● Existing Works Using this layer
○ ALL



Ouput Layer
● Objective:  Uses the representation 

obtained from merging layer to predict 
the correct span or generate the answer 
in natural language

● Existing Works Using this layer
○ ALL



Conclusion
● This unified framework will help us understand,  the plethora of concepts 

introduced in RCQA models, better
● This framework would help in comparing the efficacy of different 

modules/models 













Questions ?
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