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Question Answering

who won the 2014 world cup? § Q is germany still in the world cup? $ Q
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the 2014 FIFA World Cup Final in Germany's favour, crowning the Europeans as champions with a 1-0
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Watson: complex multi-stage system

DeepQA: The Technology Behind Watson ® IEFIWATSON

An example of a new software paradigm

DeepQA generates and scores many hypotheses using an extensible collection of

Natural Language Processing, Machine Learning and Reasoning Algorithms.

These gather and weigh evidence over both unstructured and structured content to
determine the answer with the best confidence.
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Moving towards end-to-end systems

e [ranslation

e Question Answering



Lots of Datasets Available

SQuUAD2.0 Narrative QA

The Stanford Question Answering Dataset

MS Marco fiQuAC

Question Answering in Context
AC tional Question Al ing Chall : :
onversationa uestion Answering allenge T r I VI a QA




Stanford Question Answer Dataset (SQuAD)

Data: Crowdsourced 100k question-answer pairs on 500 Wikipedia articles.

In education, teachers facilitate student learning, often in a school or

Passage: [|academy or perhaps in another environment such as outdoors. A teacher
who teaches on an individual basis may be described as a tutor.

Question: What is the role of teachers in education?

Groundtruth: | facilitate student learning

Prediction 1: | facilitate student learning EM=1, F1=1
Prediction 2: | student learning EM=0, F1=0.8
Prediction 3: | teachers facilitate student learning EM=0, F1=0.86




Roadmap

e Models for text
e General neural structures for QA
e Building blocks for QANet
o Fully parallel (CNN + Self-attention)
o data augmentation via back-translation

o transfer learning from unsupervised tasks



That movie was awful.
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That movie was awful
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Male-Female

walked
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walking 7
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Verb tense
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Italy —-——-—_-—.________--Madrid

Germany ———___________________ Rome
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INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

W(t-2) W(t—2)
w(t-1) w(t-1)
\SUM /

/ o w(t) w(t) I
w(t+1) / x w(t+1)
w(t+2) w(t+2)

Continuous bag-of-words and skip-gram
architectures (Mikolov et al., 2013a;
2013b)

CBOW Skip-gram
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Recurrent Neural Networks
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The quick brown fox jumped over the lazy ____



The quick brown fox jumped over the lazy dog



i-th output = P(w, = i | context)

softmax

(X0 - (XX D
AN

. \
most| computation here \

tanh

shared parameters
across words

index for w,_,41 index for w,_» index for w,_ A feed-forward neural network language
model (Bengio et al., 2001; 2003)



Language Models

The quick brown fox jumped
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Farguage-Medels-Seq2Seq
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Seq2Seq + Attention

Ja bitte </s>
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mountain in the background.



https://distill.pub/2016/augmented-rnns/#

attention

memory

The RNN gives an attention distribution
which describe how we spread out the
amount we care about different memory

positions.

The read result is a weighted sum.



Attention: a weighted average

The cat stuck out its tongue and licked its owner
{ { { { { { { { {
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The cat stuck out its tongue and licked its owner



Convolution:
Different linear transformations by relative position.

The cat stuck out its tongue and licked its owner
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The cat stuck out its tongue and licked its owner



Attention: a weighted average

The cat stuck out its tongue and licked its owner
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The cat stuck out its tongue and licked its owner



Multi-head Attention

Parallel attention layers with different linear transformations on input and output.

stuck tongue licked its owner
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The cat stuck out its tongue and licked its owner



Seqg2Seq + Attention
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Language Models with attention

The quick brown fox jumped

S I T T T
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Output
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Figure 1: The Transformer - model architecture.



Roadmap

e Models for text
e General neural structures for QA
e Building blocks for QANet
o Fully parallel (CNN + Self-attention)
o data augmentation via back-translation

o transfer learning from unsupervised tasks



General (Doc, Question) — Answer Model
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General framework neural QA Systems

Output Layer

Start

End

Dense + Softmax

LSTM + Softmax

Modeling Layer

Attention Flow
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[Seo et al., ICLR’17]



Similar general architectures:

Base Model (BiDAF) e R-Net[Wang etal, ACL'17]

e DCN [Xiong et al., ICLR'17]

Phrase Embed
Layer
Word Embed
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Character Word Character
Embed Layer - - - ] - — Embedding  Embedding
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Context Query




Base Model (BiDAF)

Similar general architectures:

e R-Net[Wangetal, ACL'17]
e DCN [Xiong et al., ICLR'17]
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Similar general architectures:

Base Model (BiDAF) e R-Net[Wang etal, ACL'17]

e DCN [Xiong et al., ICLR'17]
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Base Model (BiDAF)

Output Layer

Modeling Layer

Attention Flow
Layer

Phrase Embed
Layer

Word Embed
Layer

Character
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Start End
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e R-Net[Wangetal, ACL'17]
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Base Model (BiDAF) .

Similar general architectures:
R-Net [Wang et al, ACL’17]
e DCN [Xiong et al., ICLR'17]
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Base Model (BiDAF)

Start End
my ms My
RNN . )
Two Challenges with RNNs Remain...
RNN
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First challenge: hard to capture long dependency

Seriously, a 12-year old could have told you how this movie was
going to move along, and that's not a good thing in my book. Fans of "Beat" Takeshi: his
part in this movie is not really more than a cameo, and unless you're a rabid fan, you
don't need to suffer through this waste of film.

h h h h h h

Il




Second challenge: hard to compute in parallel

Strictly Sequential!

S A N A A A




What do RNNs Capture?

1. local context
h h

hidden state

h, h, h
S
input 4 L
3. Temporal info

Substitution?




Roadmap

e Models for text
e General neural structures for QA
e Building blocks for QANet
o Fully parallel (CNN + Self-attention)
o data augmentation via back-translation

o transfer learning from unsupervised tasks



Convolution: Capturing Local Context

The weather is nice today

E




Convolution: Capturing Local Context

k=2
——




Convolution: Capturing Local Context

k=2




Convolution: Capturing Local Context




Convolution: Capturing Local Context

k=2 k=3k=3

A | |

[ I 1T 1 |

k-gram features

Fully parallel!



How about Global Interaction?

layer 3 l

” - = ~
ayer 2 m om m
- sl S <
wet WS W W W M

The weather is nice today
N: Seq length. 1. May need O(log, N) layers
k: Filter size. 2. Interaction may become weaker



The weather is nice today

[Vaswani et al., NIPS’17]

The The weather nice today

W, —softmax(_ lIII'

The weather is nice today




is nice today

weather

The

nice today

IS

weather

The

Self-attention is fully parallel & all-to-all!



Complexity

Self-Attn
Conv IImeesaill Tireesanil TIzesssill_TIzsesaill
RNN ) 5 5
T e | evenon
N: Seq length. Per '—Yer (Path Memory)
d: Dim. (N > d) Self-Atn O(Nd) O(NZ2d) o(1)
k: Filter size. Conv O(kd?) O(kNd?) O(1)

RNN 0(d?) O(Nd?) O(N)



Explicitly Encode Temporal Info

RNN L — — ] ]

Position an + | + e + a + | +
Embedding 1 2 3 4 5

explicit encode



QANet Encoder

5T

| Feedforward |

A A
| Layer Norm |

/[ Feedforward ]\ 4’@

if you want to [ Self Attention |
[ Self Attention | go deeper [ Layer’Norm ]
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Repeat
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________________
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| Layer Norm |

[Yu et al., ICLR18] \[ POSItIin Emb ]/




Base Model (BiDAF) — QANet

Start End Start End
Dense + Softmax [—#{ LSTM + Softmax Dense + Softmax [—#{ LSTM + Softmax

Query2Context and Context2Query Query2Context and Context2Query
Attention Attention

QANet Encoder

Context Query Context



QANet — 130+ Iayers (Deepest NLP NN)

------ >

Answer
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QANet — First QA system with No Recurrence

Stacked Encoder

( Encoder Block )

( Encoder Biock ) 4

( Encoder Biock ) J:

Encoder Block

( Self-attention )
A

A

CSeparable Conv)

Yy

\ (Position .Encoding) /)

e Very fast!

©)
©)

Training: 3x - 13x
Inference: 4x - 9x



QANet — 130+ layers (Deepest NLP NN)

Stacked Encoder Encoder Block
(E s .@ N\
By | | e Layer normalization
: ( FeedForward )
p * 1 e Residual connections
& Encoder Block /} LayerNorm
: S e L. reqgularization
Gomn)! | 2 , reg
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Roadmap

e Models for text
e General neural structures for QA
e Building blocks for QANet
o Fully parallel (CNN + Self-attention)
o data augmentation via back-translation

o transfer learning from unsupervised tasks



Data augmentation: popular in vision & speech
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More data with NMT back-translation

Previously, tea had been used primarily for
Buddhist monks to stay awake during meditation.

Input — English — French — Autrefois, le the avait
. ete utilise surtout pour
Translation | jes moines bouddhistes
: (_/ pour rester eveille
Paraphrase <—— English «— French

pendant la meditation.

In the past, tea was used mostly for Buddhist
monks to stay awake during the meditation.




More data with NMT back-translation

Previously, tea had been used primarily for
Buddhist monks to stay awake during meditation.

Input —>| English — French —

Translation

Paraphrase <—— English «— French /

e More data
In the past, tea was used mostly for Buddhist o (Input, label)

monks to stay awake during the meditation.

o (Paraphrase, label)

Applicable to virtually any NLP tasks!



QANet augmentation

Input —>| English — French —

Translation

Paraphrase <—— English «— French /

Use 2 language pairs: English-French, English-German. 3x data.

Improvement: +1.1 F1




Roadmap

e Models for text
e General neural structures for QA
e Building blocks for QANet
o Fully parallel (CNN + Self-attention)
o data augmentation via back-translation

o transfer learning from unsupervised tasks



LMo

Deep contextualized word representations
Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt Gardner,




king ¥ .~
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Country-Capital



Transfer learning for richer presentation

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2) w(t-2)

w(t-1) w(t-1)
N w(t) w(t) —

w(t+1) 7’ x w(t+1)

w(t+2) w(t+2)

cBOW Skip-gram



Language Models

The quick brown fox jumped
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Transfer learning for richer presentation

Deep Embedding
) 7 A
C Highway Layer )
e Pretrained language model A
ELMo, [P ., NAACL'1 .
(o +04’1 E) IS:[IerS etal, CL18) Character Word
. % x
Language
Model
A
..................

: How many of the richest 400 Americans :
: grew up in substantial privilege?



Transfer learning for richer presentation
Deep Embedding

Pretrained language model
(ELMo, [Peters et al., NAACL’18])

O

Pretrained machine translation
model (CoVe [McCann, NIPS’17])

@)

+4.0 F1

+ 0.3 F1

f

A

( Highway Layer )

)

T i I ]
Word (ContextuaD (Contextu
A A A

\ )
Machine
La;,g::?e Translation
Encoder
X A

.................. | I

: How many of the richest 400 Americans

grew up in substantial privilege?
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SQuAD1.1 Leaderboard

[ ]
QA N et — 3 key Ideas Since the release of SQUAD1.0, the community has made rapid progress, with the best

models now rivaling human performance on the task. Here are the ExactMatch (EM)
and F1 scores evaluated on the test set of v1.1.

Rank Model EM F1

. D e e p ArCh ite Ctu re W i th O Ut R N N Human Performance 82.304 915224

Stanford University
(Rajpurkar et al. '16)

o 130-layer (Deepestin NLP) i, oo, o

2 QANet (ensemble) 84.454 90.490
T f L " Google Brain & CMU
. ra n S e r e a rn I n g 3 r-net (ensemble) 84.003 90.147
Microsoft Research Asia
4 Inet (singl del) 83.468 90.133
o leverage unlabeled data
4 MARS (ensemble) 83.982 89.796
. YUANFUDAO research NLP
e Data Augmentation 5
Google Brain & CMU
. . 6 MARS (single model) 83.185 89.547
o with back-translation
7 QANet (single) 82471 89.306
Google Brain & CMU

#1 on SQ uAD (M ar-Au g 201 8) 7 MARS (single model) 82.587  88.880

YUANFUDAQO research NLP




QA is not Solved!!



QA is not Solved!!

Thank you!



