

QANet: Towards Efficient

Human-Level Reading Comprehension on SQuAD

Adams Wei Yu

Deview 2018, Seoul

Collaborators

David Dohan

Thang

Luong

Kai Chen

Mohammad Norouzi

Ouoc Le

Bio

Adams Wei Yu

- Ph.D Candidate @ MLD, CMU
 - Advisor: Jaime Carbonell, Alex Smola
 - Large scale optimization
 - Machine reading comprehension

Question Answering

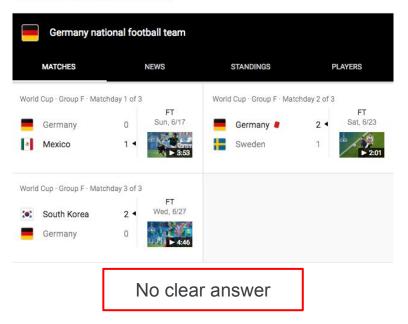
Gotze wonder goal crowns **Germany** champions. Mario Gotze scored a stunning extra-time goal to settle the 2014 FIFA World Cup Final in Germany's favour, crowning the Europeans as champions with a 1-0 victory over Argentina at the Maracana. Jul 13, 2014

2014 FIFA World Cup Brazil[™] - Matches - Germany-Argentina - FIFA ... www.fifa.com/worldcup/matches/round=255959/match=300186501/index.html

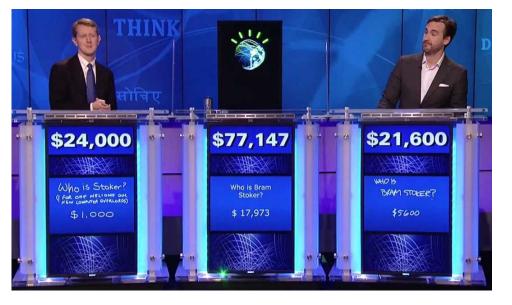
Concrete Answer

is germany still in the world cup?						<mark>୬</mark>	
All	News	Images	Shopping	Videos	More	Settings	Tools

About 1,530,000,000 results (0.50 seconds)



Early Success

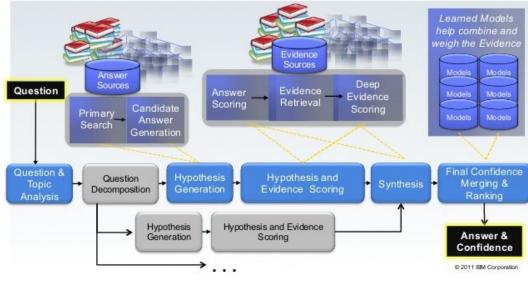


Watson: complex multi-stage system

DeepQA: The Technology Behind Watson

An example of a new software paradigm

DeepQA generates and scores many hypotheses using an extensible collection of **Natural Language Processing**, **Machine Learning** and **Reasoning Algorithms**. These gather and weigh evidence over both unstructured and structured content to determine the answer with the best confidence.



http://www.aaai.org/Magazine/Watson/watson.php

Moving towards end-to-end systems

• Translation

• Question Answering

Lots of Datasets Available

Narrative QA

MS Marco

Stanford Question Answer Dataset (SQuAD)

Data: Crowdsourced 100k question-answer pairs on 500 Wikipedia articles.

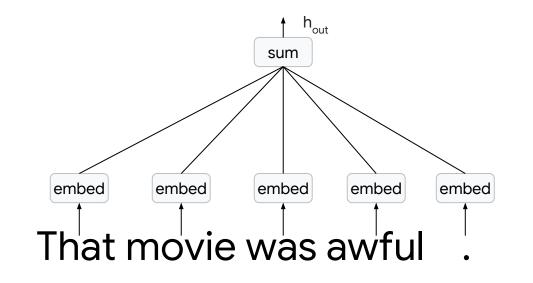
Passage:	In education, teachers facilitate student learning, often in a school or academy or perhaps in another environment such as outdoors. A teacher who teaches on an individual basis may be described as a tutor.				
Question:	What is the role of teachers in education?				
Groundtruth:	facilitate student learning				
Prediction 1:	facilitate student learning	EM = 1, F1 = 1			
Prediction 2:	student learning	EM = 0, F1 = 0.8			
Prediction 3:	teachers facilitate student learning	EM = 0, F1 = 0.86			

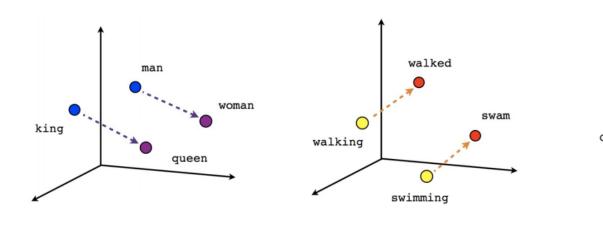
Roadmap

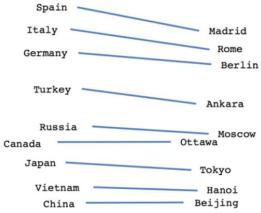
- Models for text
- General neural structures for QA
- Building blocks for QANet
 - Fully parallel (CNN + Self-attention)
 - o data augmentation via back-translation
 - transfer learning from unsupervised tasks

That movie was awful.

Bag of words



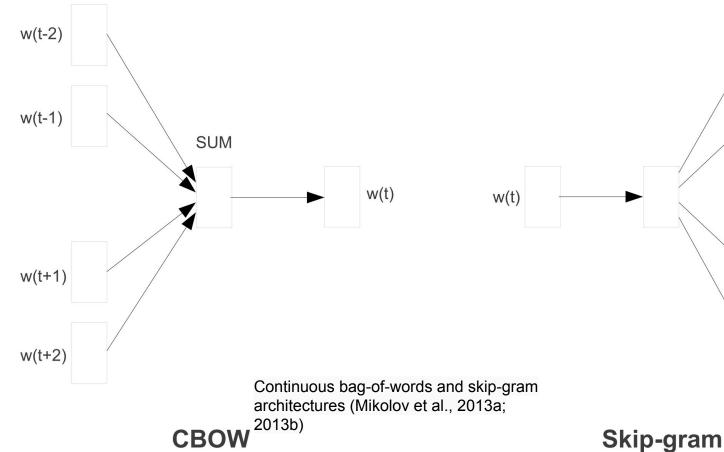


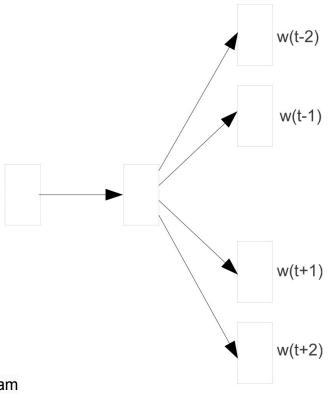


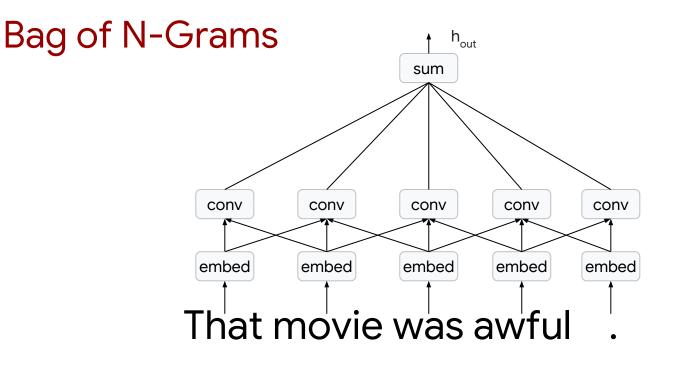
Male-Female

Verb tense

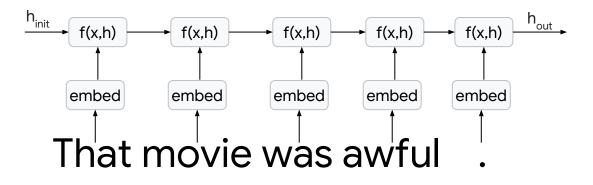
Country-Capital





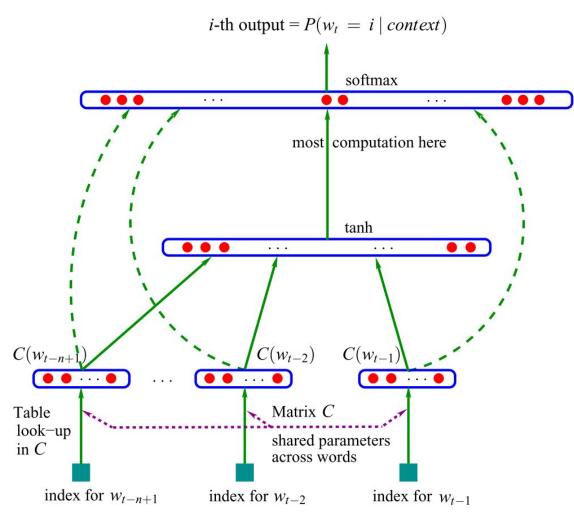


Recurrent Neural Networks



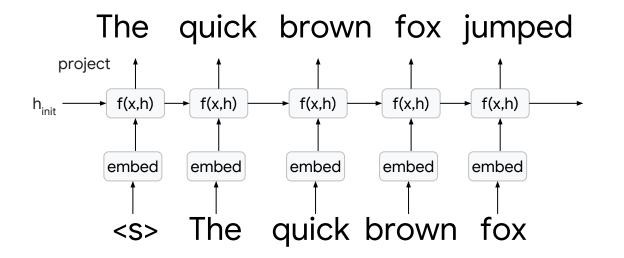
The quick brown fox jumped over the lazy _____

The quick brown fox jumped over the lazy dog

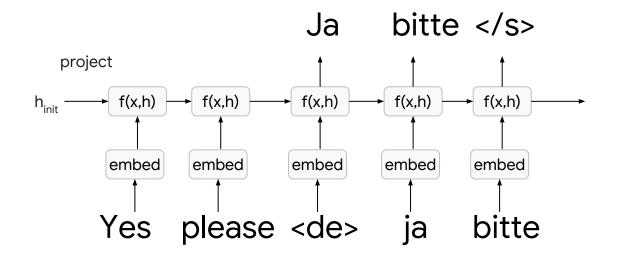


A feed-forward neural network language model (Bengio et al., 2001; 2003)

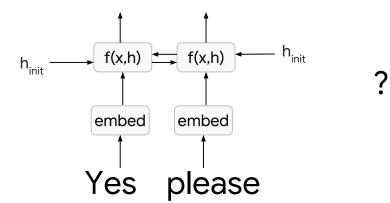
Language Models

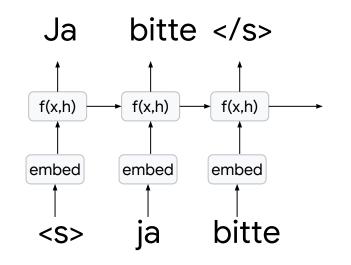


Language Models-Seq2Seq



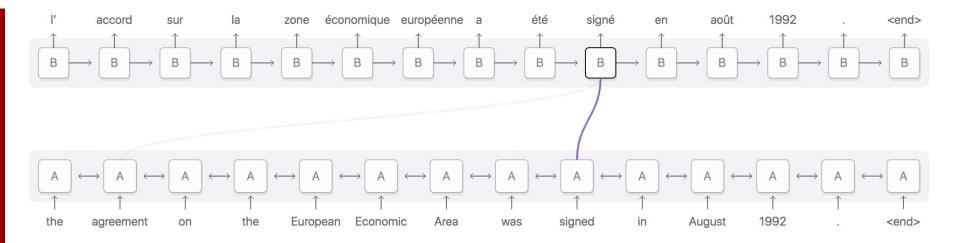
Seq2Seq + Attention





Encoder

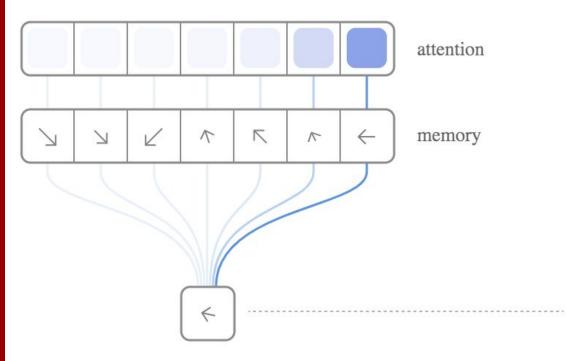
Decoder



A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

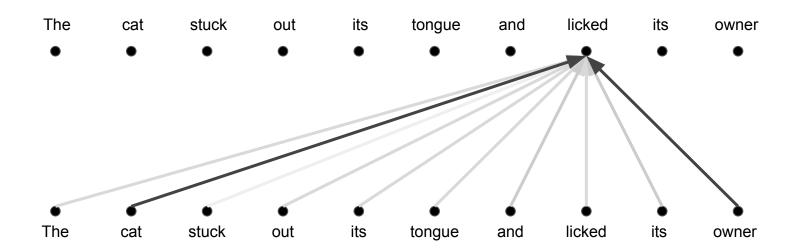


The RNN gives an attention distribution which describe how we spread out the amount we care about different memory positions.

The read result is a weighted sum.

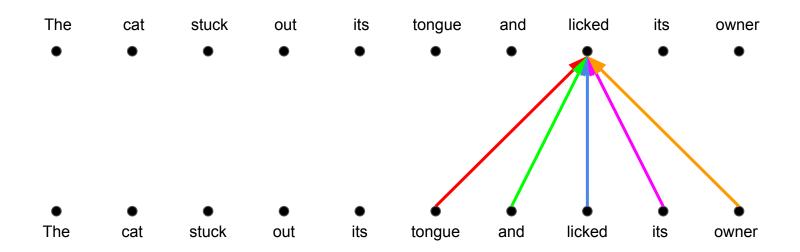
$$r \leftarrow \sum_i a_i M_i$$

Attention: a weighted average

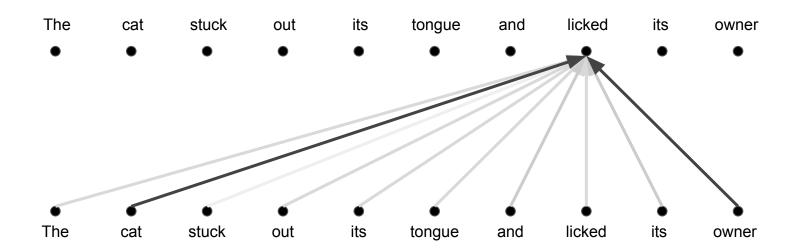


Convolution:

Different linear transformations by relative position.

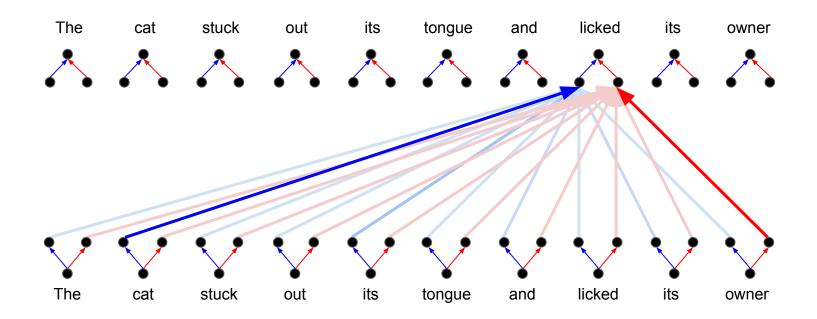


Attention: a weighted average

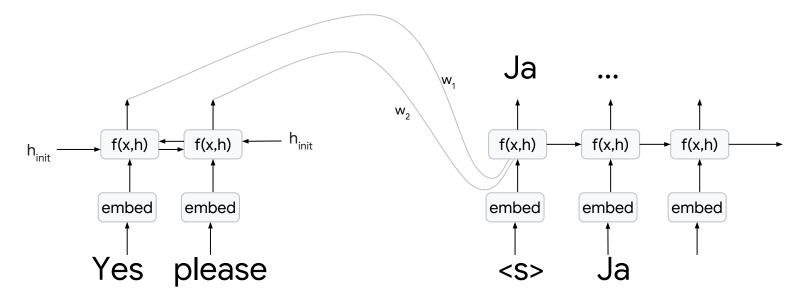


Multi-head Attention

Parallel attention layers with different linear transformations on input and output.



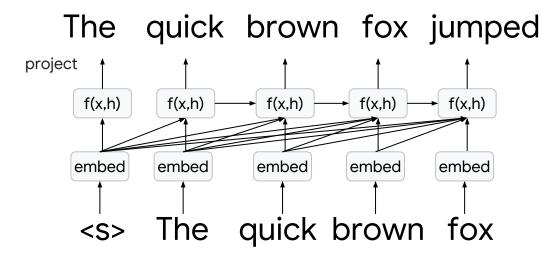
Seq2Seq + Attention



Encoder

Decoder

Language Models with attention



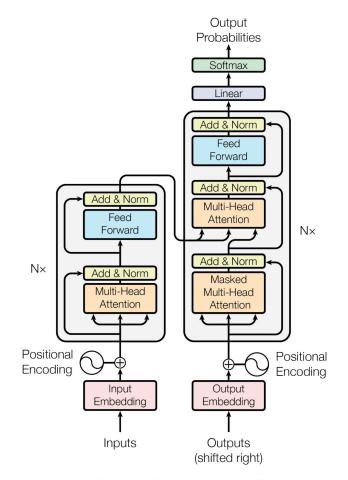


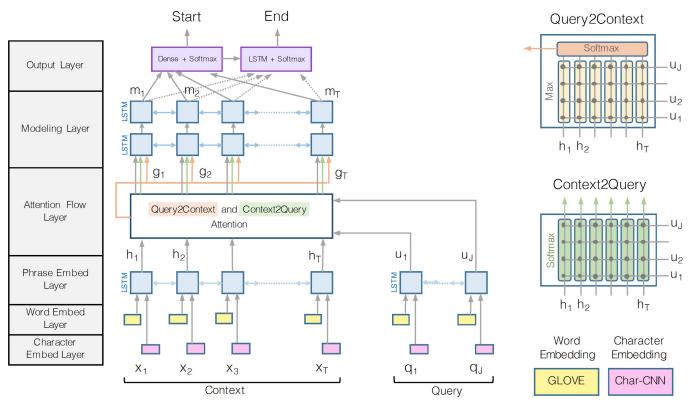
Figure 1: The Transformer - model architecture.

Roadmap

- Models for text
- General neural structures for QA
- Building blocks for QANet
 - Fully parallel (CNN + Self-attention)
 - o data augmentation via back-translation
 - transfer learning from unsupervised tasks

General (Doc, Question) → Answer Model Answer Stacked Encoder Stacked Encoder Stacked Encoder **Question-Document Attention** Stacked Encoder Stacked Encoder Deep Embedding Deep Embedding Question Document

General framework neural QA Systems



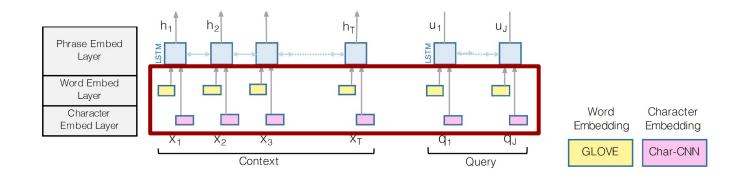
Bi-directional Attention Flow (BiDAF)

[Seo et al., ICLR'17]

Base Model (*BiDAF*)

Similar general architectures:

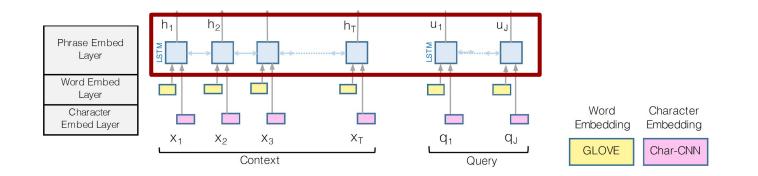
- R-Net [Wang et al, ACL'17]
- DCN [Xiong et al., ICLR'17]



Base Model (BiDAF)

Similar general architectures:

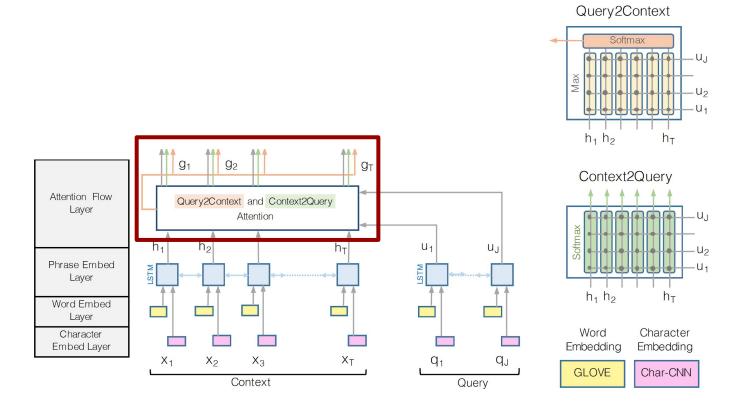
- R-Net [Wang et al, ACL'17]
- DCN [Xiong et al., ICLR'17]



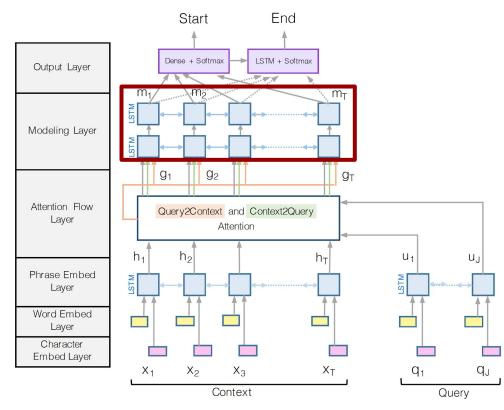
Base Model (BiDAF)

Similar general architectures:

- R-Net [Wang et al, ACL'17]
- DCN [Xiong et al., ICLR'17]



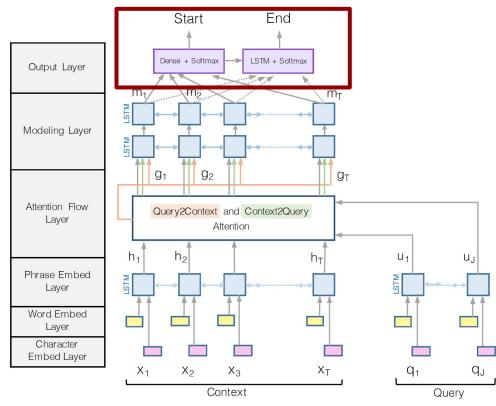
Base Model (BiDAF)



Similar general architectures:

- R-Net [Wang et al, ACL'17]
- DCN [Xiong et al., ICLR'17]

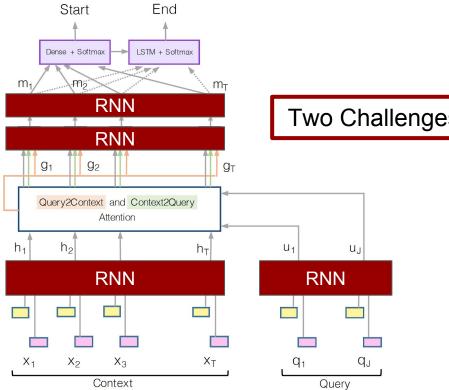
Base Model (BiDAF)



Similar general architectures:

- R-Net [Wang et al, ACL'17]
- DCN [Xiong et al., ICLR'17]

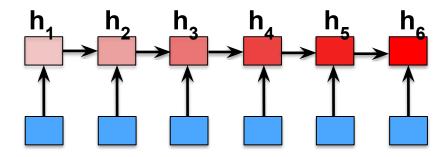
Base Model (BiDAF)



Two Challenges with RNNs Remain...

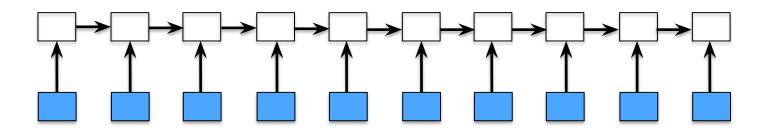
First challenge: hard to capture long dependency

Being a long-time fan of Japanese film, I expected more than this. I can't really be bothered to write too much, as this movie is just so poor. The story might be the cutest romantic little something ever, pity I couldn't stand the awful acting, the mess they called pacing, and the standard "quirky" Japanese story. If you've noticed how many Japanese movies use characters, plots and twists that seem too "different", forcedly so, then steer clear of this movie. Seriously, a 12-year old could have told you how this movie was going to move along, and that's not a good thing in my book. Fans of "Beat" Takeshi: his part in this movie is not really more than a cameo, and unless you're a rabid fan, you don't need to suffer through this waste of film.

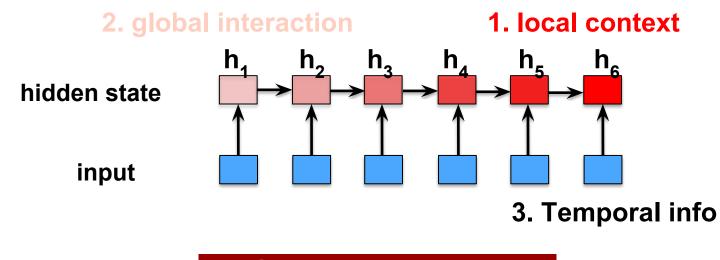


Second challenge: hard to compute in parallel

Strictly Sequential!

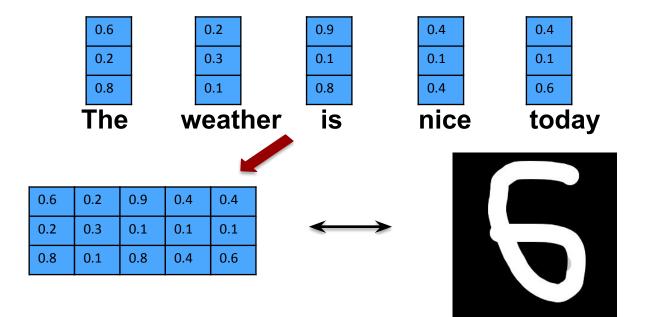


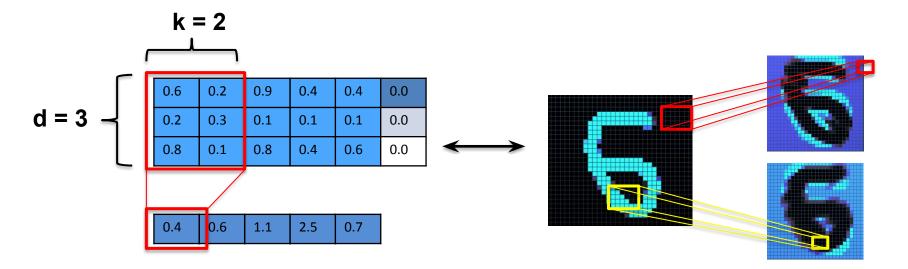
What do RNNs Capture?

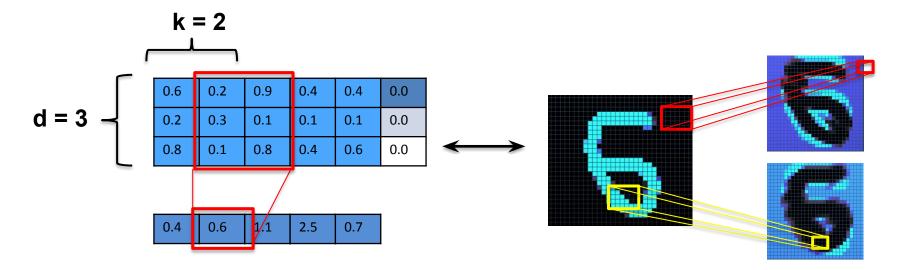


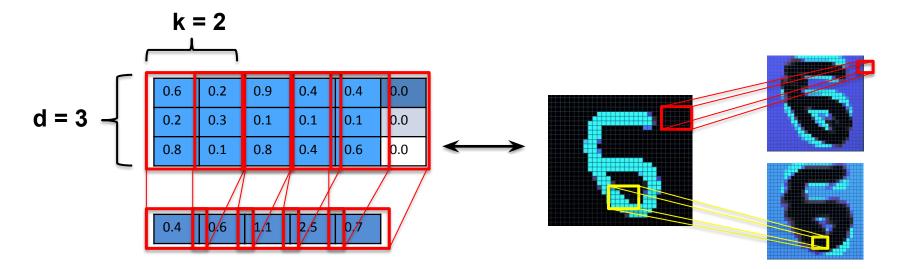
Roadmap

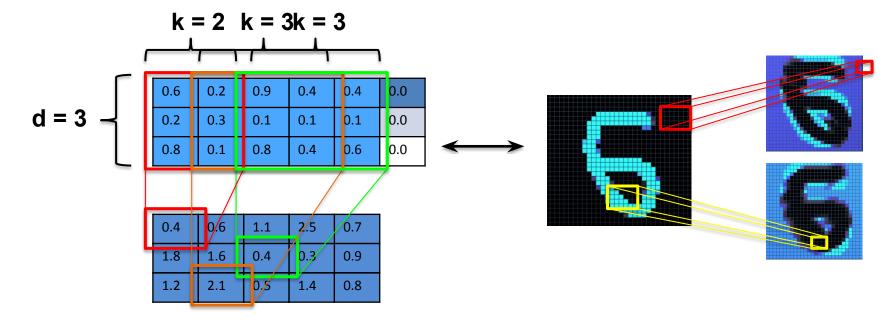
- Models for text
- General neural structures for QA
- Building blocks for QANet
 - Fully parallel (CNN + Self-attention)
 - o data augmentation via back-translation
 - transfer learning from unsupervised tasks







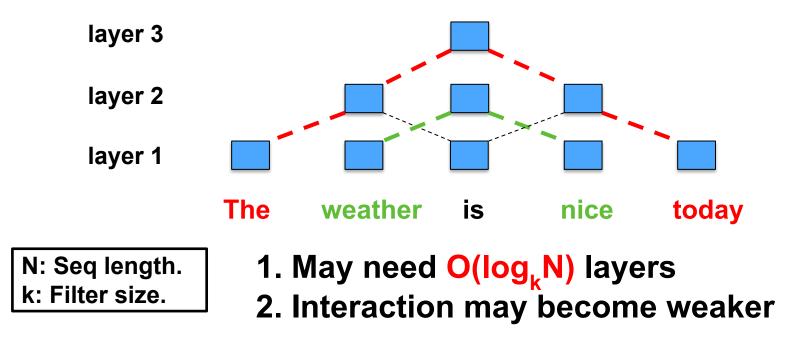


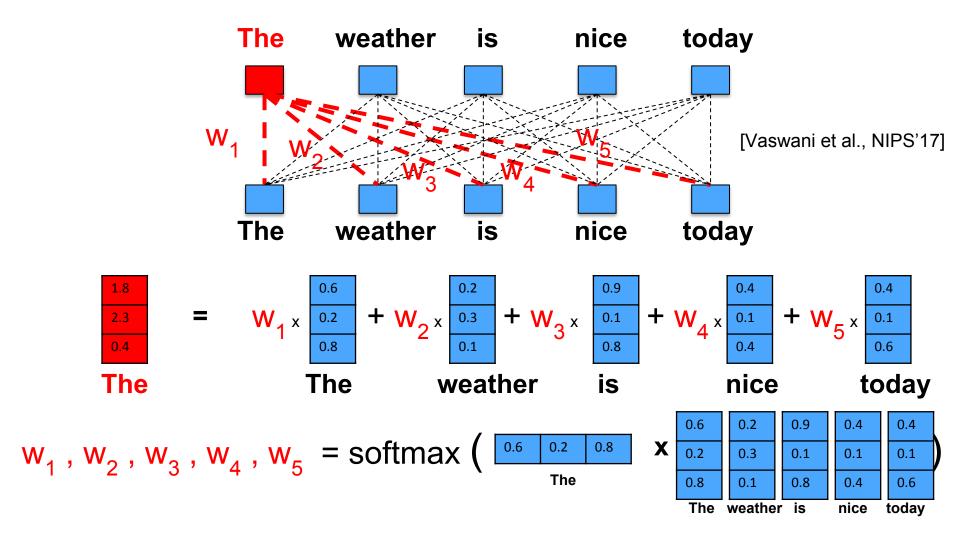


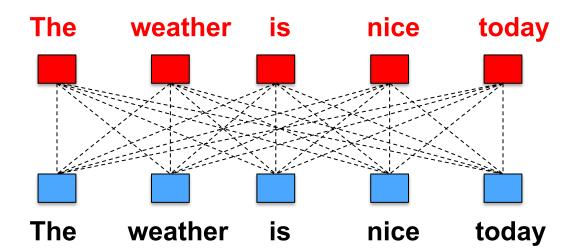
k-gram features

Fully parallel!

How about Global Interaction?

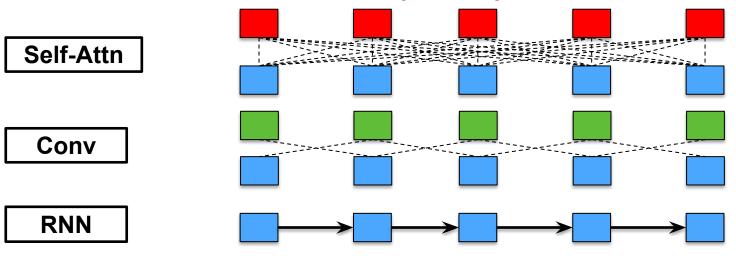






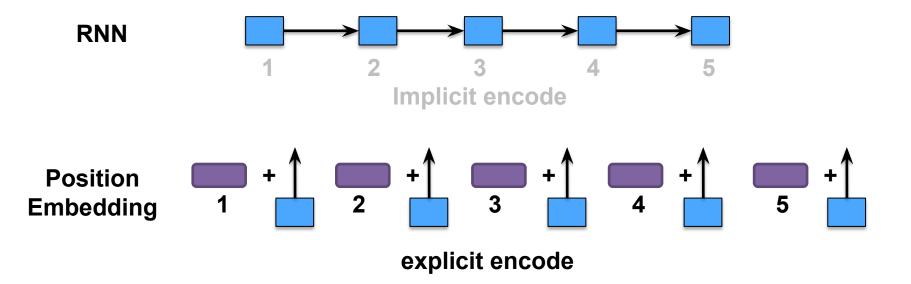
Self-attention is fully parallel & all-to-all!

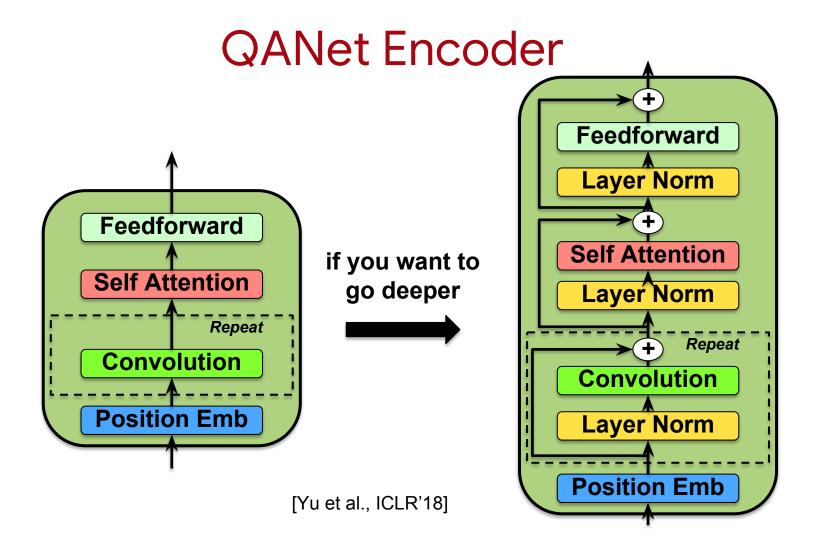
Complexity



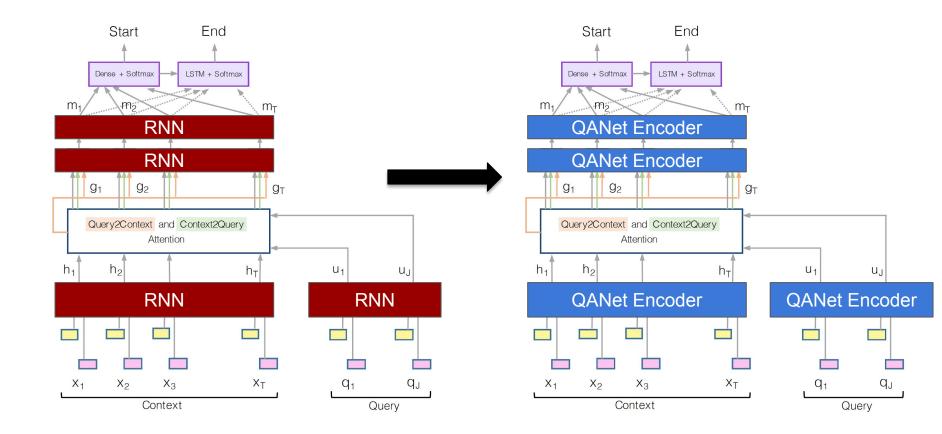
N: Seq length. d: Dim. (N > d) k: Filter size.		Per Unit	Total Per Layer	Sequential Op (Path Memory)
	Self-Attn	O(Nd)	O(N ² d)	O(1)
	Conv	O(kd²)	O(kNd²)	O(1)
	RNN	O(d ²)	O(Nd ²)	O(N)

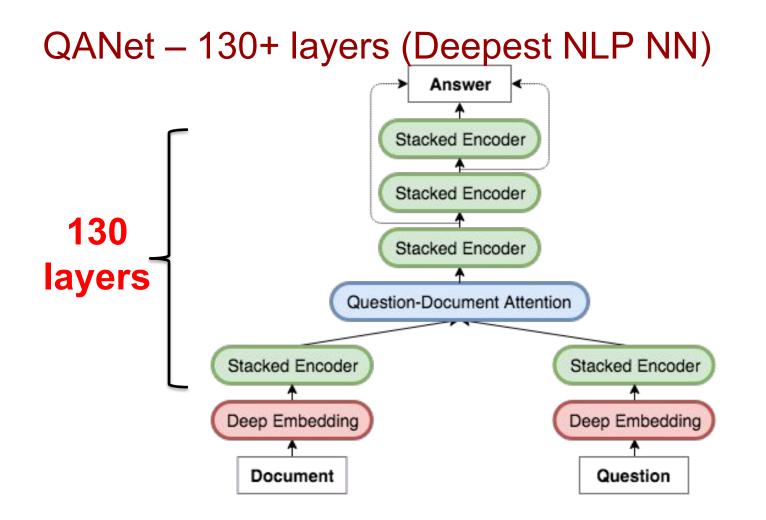
Explicitly Encode Temporal Info



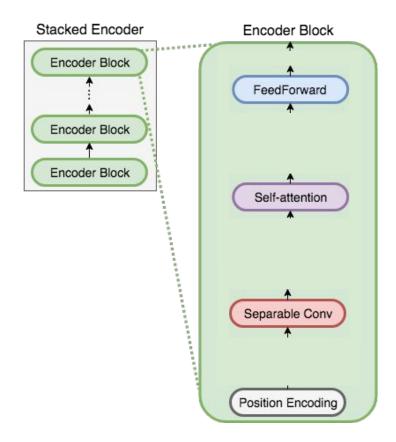


Base Model (*BiDAF*) \rightarrow QANet





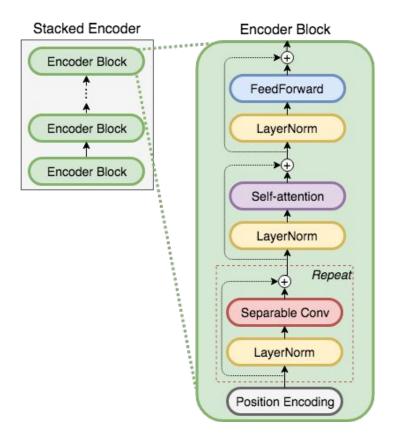
QANet – First QA system with No Recurrence



• Very fast!

- Training: 3x 13x
- Inference: 4x 9x

QANet – 130+ layers (Deepest NLP NN)



- Layer normalization
- Residual connections
- L₂ regularization
- Stochastic Depth

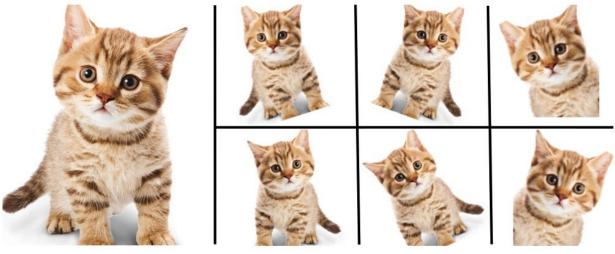
. . .

• Squeeze and Excitation

Roadmap

- Models for text
- General neural structures for QA
- Building blocks for QANet
 - Fully parallel (CNN + Self-attention)
 - o data augmentation via back-translation
 - transfer learning from unsupervised tasks

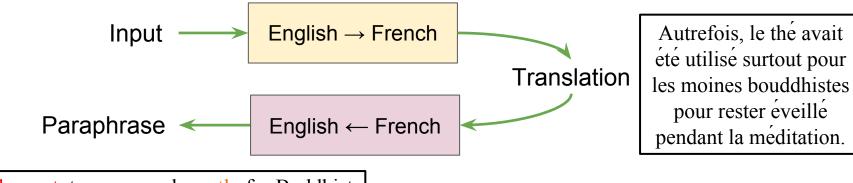
Data augmentation: popular in vision & speech



Enlarge your Dataset

More data with NMT back-translation

Previously, tea had been used primarily for Buddhist monks to stay awake during meditation.



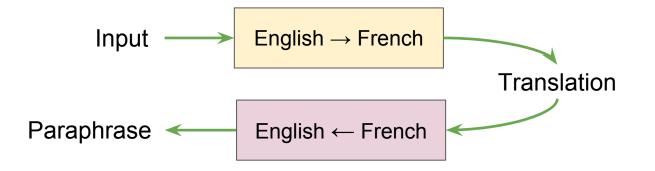
In the past, tea was used mostly for Buddhist monks to stay awake during the meditation.

More data with NMT back-translation

Previously, tea had been used primarily for Buddhist monks to stay awake during meditation. Input English \rightarrow French Translation Paraphrase < English \leftarrow French More data In the past, tea was used mostly for Buddhist (Input, *label*) Ο monks to stay awake during the meditation. (Paraphrase, *label*) \bigcirc

Applicable to virtually any NLP tasks!

QANet augmentation

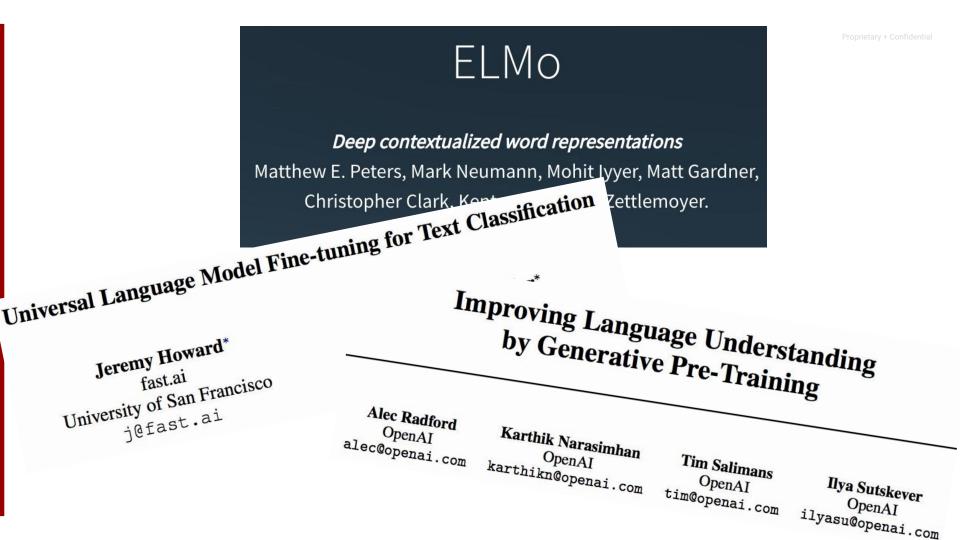


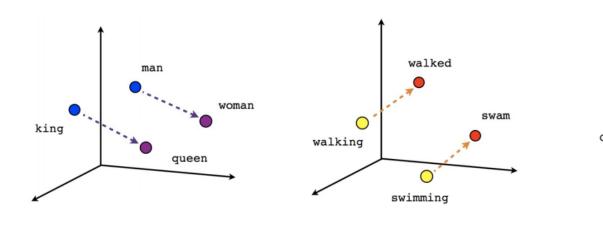
Use 2 language pairs: English-French, English-German. 3x data.

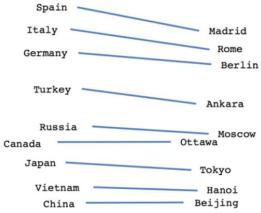
Improvement: +1.1 F1

Roadmap

- Models for text
- General neural structures for QA
- Building blocks for QANet
 - Fully parallel (CNN + Self-attention)
 - o data augmentation via back-translation
 - transfer learning from unsupervised tasks





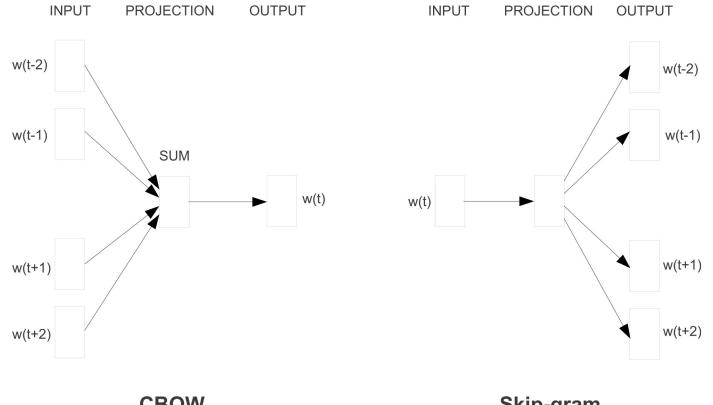


Male-Female

Verb tense

Country-Capital

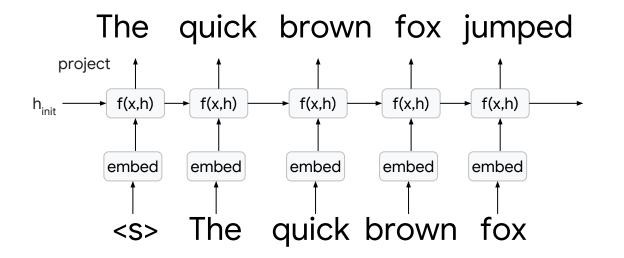
Transfer learning for richer presentation

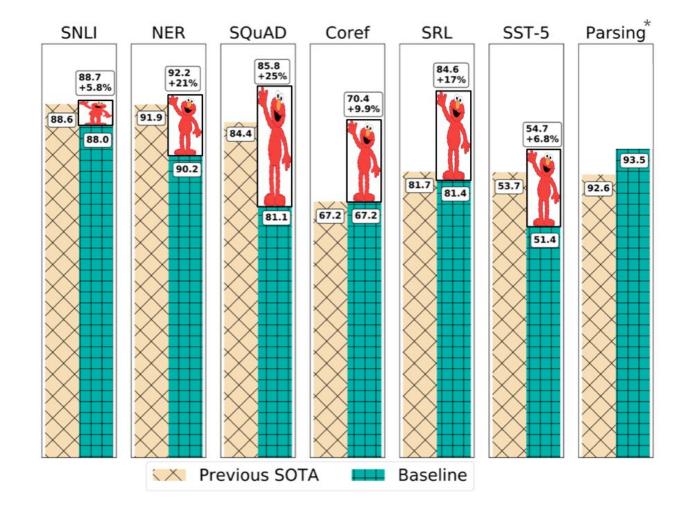


CBOW

Skip-gram

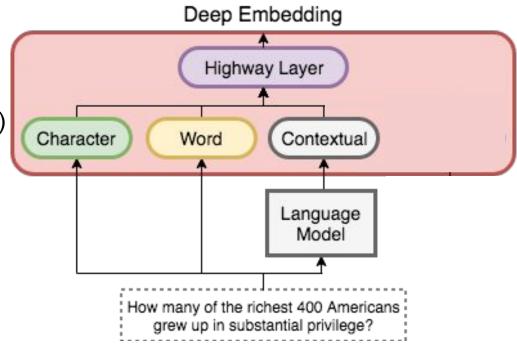
Language Models





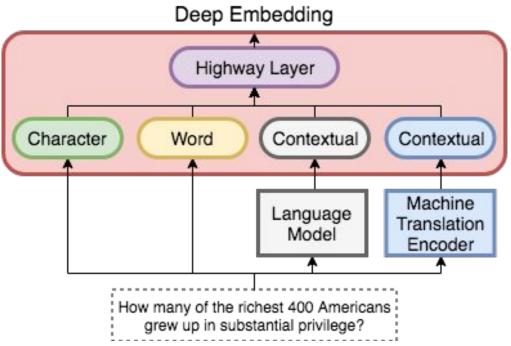
Transfer learning for richer presentation

 Pretrained language model (ELMo, [Peters et al., NAACL'18])
+ 4.0 F1



Transfer learning for richer presentation

- Pretrained language model (ELMo, [Peters et al., NAACL'18])
 + 4.0 F1
- Pretrained machine translation model (CoVe [McCann, NIPS'17])
 + 0.3 F1



QANet – 3 key ideas

- Deep Architecture without RNN
 - 130-layer (Deepest in NLP)
- Transfer Learning
 - leverage unlabeled data
- Data Augmentation
 - with back-translation

#1 on SQuAD (Mar-Aug 2018)

SQuAD1.1 Leaderboard

Since the release of SQuAD1.0, the community has made rapid progress, with the best models now rivaling human performance on the task. Here are the ExactMatch (EM) and F1 scores evaluated on the test set of v1.1.

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Sep 26, 2018	nlnet (ensemble) Microsoft Research Asia	85.954	91.677
2 Jul 11, 2018	QANet (ensemble) Google Brain & CMU	84.454	90.490
3 Jul 08, 2018	r-net (ensemble) Microsoft Research Asia	84.003	90.147
4 Sep 09, 2018	nlnet (single model) Microsoft Research Asia	83.468	90.133
4 Jun 20, 2018	MARS (ensemble) YUANFUDAO research NLP	83.982	89.796
5 Mar 19, 2018	QANet (ensemble) Google Brain & CMU	83.877	89.737
6 Sep 01, 2018	MARS (single model) YUANFUDAO research NLP	83.185	89.547
7 Jun 20, 2018	QANet (single) Google Brain & CMU	82.471	89.306
7 May 09, 2018	MARS (single model) YUANFUDAO research NLP	82.587	88.880

QA is not Solved!!

QA is not Solved!!

Thank you!