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Abstract

Probabilistic Principal Component Analysis (PPCA) based low

dimensional representation of speech utterances is found to

be useful for speaker recognition. Although, performance of

the FA (Factor Analysis)-based total variability space model is

found to be superior, hyperparameter estimation procedure in

PPCA is computationally efficient. In this work, recent insight

on the FA-based approach as a combination of dictionary learn-

ing and encoding is explored to use its encoding procedure in

the PPCA framework. With the use of an alternate encoding

technique on dictionaries learnt using PPCA, performance of

state-of-the-art FA-based i-vector approach is matched by using

the proposed procedure. A speed up of 4x is obtained while es-

timating the hyperparameter at the cost of 0.51% deterioration

in performance in terms of the Equal Error Rate (EER) in the

worst case. Compared to the conventional PPCA model, abso-

lute improvements of 2.1% and 2.8% are observed on two tele-

phone conditions of NIST 2008 SRE database. Using Canonical

Correlational Analysis, it is shown that the i-vectors extracted

from the conventional FA model and the proposed approach are

highly correlated.

1. Introduction

Low dimensional representation of speech utterances based on

factor analysis has become a part of state-of-the-art speaker

recognition systems [1]. A variable-length speech pattern is

projected onto a low-dimensional linear subspace. The basis

vectors of this subspace are estimated from the EM algorithm

given in [2] . This low dimensional representation of a speech

utterance is termed as the i-vector (identity vector). The con-

ventional i-Vector estimates are obtained from the first and sec-

ond order statistics of the feature vectors with respect to a UBM

(Universal Background Model) [3]. Further, for robust speaker

recognition, channel effects are removed from the estimated i-

vectors using techniques such as WCCN (Within Class Covari-

ance Normalization) or LDA (Linear Discriminant Analysis) or

PLDA (Probabilistic Linear Discriminant Analaysis).

A recent insight into factor analysis (FA)-based approaches

for speaker recognition allows us to consider the total variabil-

ity matrix as an overcomplete dictionary [4]. The dictionary

refers to the basis vectors representing the low dimensional

linear subspace. Subsequently, estimating the i-vector from a

speech utterance is considered as encoding. That is, the i-vector

is the code obtained for the speech utterance using the dictio-

nary. Such a perspective suggests possibilities of looking at

better ways to perform both stages of the process - dictionary

building (basis vectors/hyperparameter estimation) and encod-

ing (i-vector estimation). In most subspace estimation algo-

Dictionary 

Learning
Encoding

T
Dev. Data

Enrollment

Data

w

Test

Data

Figure 1: Block diagram of the total variability space model

from the perspective of dictionary building and encoding. T

refers to the matrix whose columns are the dictionary elements.

w is, in conventional terms, the i-vector. Difference in line

spacings are used to illustrate the difference in input/output

pairs for the encoding process.

rithms, the dictionary building and encoding are closely related.

The overall system can be viewed as shown in Figure 1. In [5],

it is argued and shown that the encoding procedure used while

building the codebooks and encoding evaluation data (training

and testing) need not be the same. However, in their case, only

sparse encoding schemes were tested. It is observed that similar

or better performance can be achieved by encoding data using a

different scheme.

In this work, it is shown that while the dictionary build-

ing algorithm may be varied, the encoding procedure is im-

portant. The PPCA framework provides a suitable dictionary

learning procedure. The comparison of PPCA to the total vari-

ability model is given in [6]. While the performance of the con-

ventional PPCA technique ([7]) is not as good as that of the

conventional i-vector technique, it is shown in this paper that

learning dictionaries through the former approach and encod-

ing i-vectors through the latter approach can prove to be benefi-

cial. An important benefit from this is that the hyperparameter

estimation can be expedited without compromising the perfor-

mance of the speaker recognition system. The hyperparmeter

that is referred here is usually the matrix containing the basis

vectors of the total variability space.

The rest of the paper is organized as follows: in Section

2, the general framework of total variability space based ap-

proaches is discussed. This is followed by the discussion of

the Factor Analysis-based i-vector approach (Section 2.1) and

PPCA approaches (Section 2.2). Their dictionary building and

encoding stages are detailed. The advantage of varying the en-

coding scheme is hypothesized in Section 2.3. In Section 2.4, a

method to analyse different i-vector representations is reviewed.

Analyses and results of the experiments on NIST 2008 SRE’s

core condition are discussed in Section 3.



2. Dictionary Learning and Encoding
Procedures

In the total variability space model, a speech utterance is repre-

sented using a low dimensional vector. This is modelled as

s = µ+Tw (1)

In Eq. 1, T consists of the basis vectors of the total vari-

ability space, s is the observed feature and w is the i-vector

(identity vector). An observation s is obtained from the feature

vectors of dimension F of a speech utterance by aligning each

utterance with respect to a UBM. The clustered feature vectors

are mean centered and variance normalized with respect to their

corresponding mixtures in the UBMwithC mixtures. This pro-

cess is represented as follows

sc = Σ
−

1

2
c

(

∑

t∈c

ft − ηcµc

)

(2)

where sc is the c
th F ×1 block of the supervector such that

s = [st1s
t
2...s

t
C ]

t

µc is the mean vector of the cth mixture of the UBM, ηc is

the effective number of feature vectors aligned with the mixture

and {ft} are the sequence of feature vectors obtained from the

speech utterance. This definition of supervector in Eq 1 is used

throughout this work because it fits well with the assumption

that the utterance was generated by a GMM (Gaussian Mixture

Model).

To obtain a representation of a speech utterance with re-

spect to the model in Eq 1, estimate of T needs to be obtained.

Estimation ofT can be considered as a dictionary building pro-

cedure as the columns of T are the basis vectors of the sub-

space. Given T and s, estimating w can be considered as en-

coding. Several procedures for subspace estimation have been

established. In the context of speaker recognition, a derivative

of the procedure proposed in [2] is used in [1]. In this paper, this

system will be referred to as the FA system. The state-of-the-

art speaker recognition systems utilize this framework to pro-

vide superior performance in benchmark evaluations. However,

other subspace estimation procedures also fit into this frame-

work. PPCA is one such method. The effectiveness of PPCA in

the context of speaker recognition has already been established

[6]. While PPCA is certainly effective, its performance is not

observed to be as good as that of the conventional i-vector ap-

proach. This is established in our experiments. PPCA’s dictio-

nary building procedure is, however, computationally simple,

as opposed to the i-vector method (analysed in Sections 2.1,

2.2 and 3.3.1). This motivates us to study the combination of

hyperparameter estimation of PPCA with FA-based i-vector ex-

tractor. It must be noted that all entries in a dictionary obtained

from different procedures belong to the same feature space (su-

pervector space in the case of speaker recognition).

In the next subsections, the individual techniques of FA-

based approach and PPCA are briefly explained. The dictionary

building and encoding phases are outlined. Following this, the

combination of the two different phases are explained.

2.1. FA-based i-vector extraction

The EM algorithm provided in [2] is used to estimate T

assuming all training examples come from different speakers

[1]. The E- and M-steps in the algorithm are as follows:

E step:

wi = L
−1
i T

t
si (3)

where

Li = (I+T
t
NiT) (4)

and Ni is the block diagonal matrix containing ηcIF for c = 1
to C (defined in Eq 2). IF is an identity matrix of size F .

M-step:

T
(c) = C

(c)(A(c))−1
(5)

where T(c) is the cth FxR block of the T matrix, where R

is the dimensionality of w, such that

T = [T(1)t
T

(2)t
... T

(C)t]t (6)

Blocks C(c) and A
(c) of matrices C and A, respectively,

are similarly arranged. C and A are defined as follows

C = (
∑

i

siw
t
i) (7)

and

A
(c) =

(

∑

i

ηc,i

(

(

I+T
t
NiT

)−1
+wiw

t
i

)

)

−1

(8)

In Eq 8, ηc,i refers to ηc for ith utterance. In the E-step,

MAP estimates of w are obtained for the supervector with re-

spect to the current estimate of T. In the M-step, the ML esti-

mate of T is obtained. The value of T after convergence of the

above EM algorithm can be considered as the dictionary. Equa-

tion 3 is used to extract i-vectors and can be considered as the

encoding phase

Eq. 3 has a computational complexity ofO(CFR+CR2+
R3) [8]. Eq 5 is computationally intensive. TheT matrix is es-

timated blockwise in sizes of F ×R. The right hand side is ad-

justed accordingly for blockwise estimation. The complexity of

the entire re-estimation process isO(NCFR+C(NR2+R3)).
N is defined as the number of examples in the training set (size

of development data). CFR refers to the cost of computing the

first term in RHS of Eq 5. For each of the C blocks, the matrix

needs to be computed and inverted.

2.2. PPCA

The PPCA algorithm is similar to a conventional factor analysis

algorithm ([9]) that assumes isotropic covariance on the resid-

ual (unexplained) variabilities. The computation of covariance

matrix in PCA [10] can be avoided using the EM algorithm to

find the principal components. The E- and the M-steps follow:

E step:

wi = (σ2
I+T

t
T)−1

T
t
s (9)

M step:

T =

(

∑

i

siw
t
i

)(

∑

i

wiw
t
i

)

−1

(10)

σ
2 =

1

NF

∑

i

(

|si|
2 − 2wt

iT
t
si + tr(wiw

t
i(T

t
T))
)

(11)

The complexity of computing w in the E-step is O(CFR)
as the supervector independent terms can be precomputed. The

complexity of recomputingT is justO(NCFR+NR2+R3).
This is certainly less compute intensive compared to the hyper-

parameter estimation procedure in Section 2.1.



The encoding procedure after having estimated the T ma-

trix can be simplified from MAP (Maximum a Posteriori) to

ML (Maximum Likelihood) estimates without any changes to

the result. The ML estimate is given as

w = (Tt
T)−1

T
t
s (12)

2.3. Proposed Method

The linear subspace estimation techniques discussed earlier re-

sult in basis vectors that span the subspace in which all super-

vectors lie. Assuming both techniques are effective enough in

estimating the bases, the i-vectors extracted using them should

be related through a linear transformation. This is because, the

bases lie in the same physical space and i-vectors are just factor

loadings (in Factor Analysis parlance). For a given set of basis

vectors it will be interesting to study if a particular encoding

scheme would perform better. In sparse coding schemes for ex-

ample, soft thresholding-based encoding has been observed to

provide consistently better performance regardless of the train-

ing method used for building dictionaries [5]. In such a case, it

would be easier to build systems whose hyperparameter estima-

tion procedures are computationally simpler without significant

deterioration in performance.

Thus, in this work, we aim to use the computationally sim-

ple hyperparameter estimation technique of PPCA and show

that when FA-based encoding scheme is used, the performance

of the conventional i-vector system can be matched. That is,

the hyperparameter TP is randomly initialized and re-estimated

by iterating through Equations 13,15 and 14 until convergence

(presented for completeness)

wi = (σ2
I+T

t
pTp)

−1
T

t
p si (13)

Tp =

(

∑

i

siw
t
i

)(

∑

i

wiw
t
i

)

−1

(14)

σ
2 =

1

CF

∑

i

(

|si|
2 − 2wt

T
t
psi + tr(ww

t(Tt
pTp))

)

(15)

After estimating theTp matrix, the i-vectorwi of a speaker

i with supervector si is obtained using Eq 16.

wi = L
−1
pi

T
t
si (16)

where

Lpi =
(

I+T
t
pNiTp

)

(17)

The continued reference to factor loadings as i-vectors is

because they still aim to represent the speaker class. This sys-

tem is referred to as PPCA-ivec throughout this work. The over-

all system organization is shown in Fig 2.

Canonical Correlational Analysis (CCA) is used to study

the relation between the i-vectors produced using the proposed

and existing methods. The CCA method is briefly described in

the next subsection.

2.4. Canonical Correlational Analysis

CCA is a useful analysis method to study linear relationships

between two different representations of data samples [11, 12].

If for a set of samples there are two different representations,

CCA finds directions in which the correlations of the vectors

projected onto these directions from both representations are

maximized. The correlation value obtained as a result has been
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Figure 2: Block of diagram of system that uses PPCA algorithm

for building dictionaries and mixing i-vector encoding scheme

shown to be a function of mutual information between the two

given representations [13].

If x and y are two different representations, and there are

a set of such pairs of examples, the correlation matrices Sxx

and Syy for each representation and the cross-correlation matrix

Sxy are computed. To find directions ωx and ωy such that one

representation can be transformed to another, it is required to

optimize

ρ = arg max
ωxωy

ωxSxyωy
√

ωt
xSxxωxω

t
ySyyωy

(18)

ωx is the direction that transforms representation x and ωy

is the corresponding transformation for representation y. The

absolute value of the correlation co-efficient ρ shows the extent

of linear relationship between two different representations.

An extension of CCA to analyse non-linear relationships is

kernel CCA (KCCA) ([14],[15]). KCCA applies the kernel trick

to estimate the extent of linearity in higher dimensional spaces,

thereby discovering non-linear relations between the different

representations. Using a similarity measure from a Mercer ker-

nel, the dot product between the inputs is obtained in the kernel-

induced feature space. The input feature vectors are assumed to

have a linear relation in the kernel-induced space. In this paper,

CCA and KCCA are used to analyse the nature of the relation-

ships between different i-vector representations.

2.5. Physical Significance

The relation between the i-vectors obtained from the two differ-

ent encoding schemes is not immediately apparent. IfTp is the

hyperparameter estimated using PPCA and wF and wp are the

i-vectors obtained using PPCA (Eq 3) and PPCA-ivec methods

(Eq 12) , respectively, their relationship is given as

Lwf =
(

T
t
pTp

)

wp (19)

In the conventional PPCA framework, the cosine distance

scores between two i-vectors wp1 andwp2 is given by

kcos(wp1 ,wp1) =
w

t
p1
wp2

||wp1 || ||wp2 ||
(20)

In Equation 20, || . || refers to the L2 norm. Combining

Equations 19 and 20, it can be inferred that the similarity be-

tween two i-vectorswf1 andwf2 estimated using the proposed



method are weighted distance measures between the PPCA i-

vectors wp1 and wp2 :

kcos (wf1 ,wf2) =
w

t
p1

(

T
t
pTp

)

L
−1
p1

L
−1
p2

(

T
t
pTp

)

wp2

||wt
p1

(TtT)L−1
p1 || ||L

−1
p2 (TtT)wp2 ||

(21)

Eq 21 can be considered as a weighted similarity measure

with the weights being class-specific. The weights are related

to the covariance estimate L of the posterior distribution of the

i-vector in FA model. Therefore, a difference in performance

when using the two different coding schemes under considera-

tion would only be due to the application of these weights. It is

shown in Sec 3.5 that it has a positive effect in improving the

discriminability amongst speakers.

Alternately, the term
(

T
t
pTp

)

L
−1
p1

L
−1
p2

(

T
t
pTp

)

can be

considered as a normalization factor used in scoring as it is a

positive semi-definite matrix (psd) by virtue of its constituents

being psd.

3. Experimentation

The experiments are performed on the benchmark NIST 2008

SRE database. The telephone-telephone conditions, namely C6

and C8, are used for evaluation [16]. Conditition C8 refers

to the the subset where only native American English speak-

ers are considered for modelling and evaluation. Condition C6

refers to the entire telephone based evaluation that includes mul-

tiple languages. There are 648 male speakers and 1200 female

speakers. Details of MFCC feature extraction is given in Sec-

tion 3.1. Gender-dependent 1024 mixture UBMs are built using

the NIST 99 and 2003 SRE databases [17]. These databases

are derived from Switchboard Cellular and Switchboard Phase

II corpora.

3.1. Feature extraction

MFCC (Mel Frequency Cepstral Co-efficients) feature vectors

[18] with 22 cepstral co-efficients are computed from 40 log fil-
ter bank energies for both male and female speakers from 25
ms window with 15ms overlap. Velocity features are computed

over 7 consecutive frames and appended to the MFCC feature

vectors. On utterances for which ASR transcripts were unavail-

able, a tri-Gausssian-based Voice Activity Detector (VAD) is

used to remove non-speech frames. Short term Gaussianization

(STG) is performed over 300 frames after VAD [19].

3.2. Factor Analysis system

Gender-dependent FA system is developed with i-vector dimen-

sionality being 500. The development data set consists of -

NIST SRE 1999, NIST SRE 2003, NIST SRE 2004, Switch-

board Cellular Part 2, Switchboard II Phase 1, Fisher Database

Part 1 11 2. This amounts to 640 hours of data (after VAD) for

males and 840 hours of data for female subsets.

3.2.1. Length Normalization

In [20], it is observed that length normalized i-vectors after

whitening are extremely useful in Gaussianizing the i-vector

distribution. This is a simpler form of Radial Gaussianization

1The choice of development data has to do with its availability to the
author.

2Transcripts of only Fisher Part 1 and Switchboard II Phase 1
databases were available at the time of experimentation.
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Figure 3: Analysis of time taken to complete an iteration in FA

and PPCA systems. Solid: PPCA, dotted: FA

[21]. It is extremely important in dealing with non-Gaussian na-

ture of the i-vectors, if present [22]. Thus, i-vectors obtained are

length normalized before applying channel compensation tech-

niques. If W is the whitening matrix obtained from the data,

each i-vector w is processed as

w̃ =
W w

||W w||
(22)

3.3. PPCA systems

The development data used to compute the projection matrix

in the PPCA case is the same as that used for the FA system.

The basis vector set’s size is 500. It is important to note that

the supervector (Eq 2) that is projected here is the same as that

projected in the i-vector system. As discussed earlier, two kinds

of encoding schemes are employed to estimate the i-vector - the

conventional PPCA based encoding and the i-vector based en-

coding scheme. Length normalization is applied only on the i-

vectors obtained using the latter scheme. This system is referred

to as PPCA-iVec-LN. Length normalization on the i-vectors ob-

tained from the conventional PPCA technique did not improve

the performance.

3.3.1. Duration analysis on Dictionary Learning

To emphasize further that the hyperparameter estimation pro-

cedure of a PPCA system is much faster than that in the FA

system, the duration of each iteration is analysed. Figure 3 com-

pares the duration of each iteration for the first 5 iterations while

estimating the dictionary for the male data set. The duration

measure is given in minutes. Clearly, there is a 4x difference

in speed. It should be noted that the implementations of PPCA

and FA techniques have been optimized to take advantage of a

heterogeneous distributed computing environment using Map-

Reduce techniques. GNU parallel is used as a tool to facilitate

this [23].

3.4. Channel Compensation and Scoring

After estimating i-vectors and length-normalizing them, chan-

nel compensation is performed using LDA followed byWCCN.

Only speakers with at least 6 examples were considered for

LDA computation. The constraint enhances the performance

of LDA.



Given a set of i-vectors {wi}
I
i=1 containing J classes with

each class containing nj examples, the LDA projection matrix

Alda is estimated by optimizing the Fisher Discriminant func-

tion [10] where the inter-class distance is maximized while min-

imizing the intra-class distance. If Sw is the intraclass scatter

matrix and Sb is the interclass scatter matrix, the projection ma-

trix is the solution to the generalized eigenvalue problem given

below

Sbe = λSwe (23)

where

Sw =
J
∑

j=1

1

nj

nj
∑

i=1

(wj,i − w̄j)
t (wj,i − w̄j) (24)

and

Sb =
J
∑

j=1

1

nj

nj
∑

i=1

wi,jw
t
i,j (25)

where w̄j is the class-specific mean. In Equation 25, it is

assumed that the mean of all i-vectors is 0. The estimation pro-

cedure of WCCN matrix is related to Eq 24 through a normal-

ization factor J . The projection matrix after WCCN is given

as

B = chol(J S
−1
w ) (26)

where chol refers to Cholesky decomposition.

The LDA matrix was used to remove 150 dimensions ac-

cording to the eigenvalues obtained after discriminant analysis.

To test a claim attached to an utterance during evaluation, co-

sine distance scoring is used. 200 T-Norm speakers were used

for score normalization [24]. If Alda is the projection matrix

obtained from LDA and B is obtained on LDA projected data ,

cosine distance score is given by

kcos(wtrn,wtst) =

(

B
t
A

t
ldawtrain

)t (

B
t
A

t
ldawtst

)

||BtAt
ldawtrain||||BtAt

ldawtst||
(27)

3.5. Discriminability Analysis

Before evaluating the system, a study on the discriminability of

the i-vectors is performed to observe if the proposed schemes

may provide any benefit. The interspeaker and intraspeaker

variabilities of i-vectors obtained for different systems are com-

pared. All analyses are performed on i-vectors obtained without

channel compensation. To study interspeaker and intraspeaker

variabilities cosine similarity measure is used (Eq 27). i-vectors

extracted from the FA system, PPCA system, PPCA-iVec sys-

tem, and PPCA-iVec-LN system are analysed.

The means and variances of interspeaker and intraspeaker

variabilities are summarised in Table 1. The measures are ob-

tained from the speakers in core condition of NIST 2004 SRE

data set. It can be observed that the FA system provides better

separability than PPCA. Moreover, the variances of the mea-

sures in the PPCA system are too high. This accounts for the

confusability in recognition. The separability in PPCA-iVec is

similar to that of the conventional i-vector system. Notably,

confusability has been reduced compared to PPCA system. In

particular, the difference with respect to PPCA emphasizes the

role of class-specific information used (as hypothesized in Sec-

tion 2.5) to improve discriminability.

Table 1: Interspeaker and Intraspeaker variabilities of speakers

in NIST 2004 SRE when using different approaches discussed.

Means and Variances of Cosine distance scores without normal-

ization are used for comparison.

System Interspeaker Intraspeaker

Mean Var Mean Var

FA 2.1E-5 6.27E-5 0.01 1.6E-3

PPCA 2 2.71 3.1 2.6

PPCA-iVec 6E-4 1E-4 8.6E-3 2.4E-3

PPCA-iVec-LN 2.71E-2 4E-3 0.4164 0.05

Table 2: CCA and KCCA-based analyses of nature of rela-

tionships between i-vectors obtained through different extrac-

tion procedures. All non-linear relationships are observed in

the space induced by a polynomial kernel of degree 4

Comparison Linear(l)/ Correlation

Non-linear (n) Co-efficient

Relation

FA vs PPCA l 0.9819

FA vs PPCA-ivec n 1.0

PPCA vs PPCA-ivec n 1.0

PPCA vs PPCA-ivec-LN n 0.99

FA vs PPCA-ivec-LN n 1.0

3.6. Relationship between i-vectors

The relationship between various i-vectors extracted through

different methods discussed is interesting to study. CCA and

KCCA are used for this purpose. The former is used to detect

the presence of linear relationships while the latter is used for

non-linear relationships. In this study, a polynomial kernel is

used [25, 11]. A polynomial kernel of degree d is defined as

kpoly(xa,xb) = (xt
axb + c)d (28)

where xa and xb are two data points whose similarity is

being measured, and c is a parameter of the kernel. c value is

set to 0 in the experiments. Absolute values of correlation are

reported. The i-vectors from the male subset of development

set are compared before channel compensation. The following

observations are made: the relationship between FA and PPCA

is linear with a co-efficient of 0.9819. However, the relationship

between FA and PPCA-ivec is non-linear. A polynomial kernel

of degree 4 detected a non-linear relationship with a co-efficient
of exactly 1.0. This result provides interesting scope for using

other similarity measures for scoring. In this work, however, we

use only the cosine distance measure for scoring. All relevant

comparisons are given in Table 2.

An important inference from these results is that even

though the i-vectors across different representations are related,

the orientation of the subspace and/or the projection method are

important for better discriminability. The discriminability pro-

vided by these methods have already been quantified in Section

3.5.

3.7. Results

The FA system with length-normalized i-vectors obtained from

the conventional i-vector estimation procedure followed by

channel compensation constitutes the i-vector baseline. Simi-



Table 3: Performance of the baseline systems and PPCA sys-

tems using i-vector encoding scheme (PPCA-iVec). LN: Length

Normalization

System C8 C6

Baseline

FA + LN + LDA + WCCN 5.37% 8.75%

PPCA + LDA + WCCN 8.11% 12.08%

Proposed

PPCA-iVec 9.5% 12.5%

PPCA-iVec + LDA + WCCN 7.12% 10.06%

PPCA-iVec-LN + LDA + WCCN 5.76% 9.26%
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Figure 4: DET curve comparing the baseline and the PPCA-

ivec-LN systems on condition C8

larly, the PPCA-baseline is built using the conventional proce-

dure (discussed in Sec 2.2) along with channel compensation.

The Equal Error Rates of the FA and PPCA systems are re-

ported in Table 3. Even though the development data set used to

estimate hyperparameters is the same, the FA system performs

better than the PPCA system.

The results of the proposed scheme with and without chan-

nel compensation and length normalization are also given in

Table 3. All results are superior to the PPCA baseline. The

results on C8 condition of the PPCA-ivec-LN system closely

matches that of the FA system. This clearly shows the positive

effect of the encoding scheme used. A similar inference can be

made from the result on C6. An absolute difference of 1.6%
with respect to the FA system is present. This, however, is still

better than PPCA system by approximately 2.8%. The advan-

tage is clearly introduced by the efficient FA-based encoding.

Thus, computational efficiency of the PPCA system is utilized

to obtain the basis vectors while still matching the performance

of FA system through the use of its efficient encoding scheme.

Also, the efficiency of extracting i-vectors using this encoding

scheme is realized. The DET curves [26] corresponding to the

C8 and C6 systems are given in Fig 4 and Fig 5. Only the best

performing, namely PPCA-iVec-LN, system is compared with

baseline. The DET curves illustrate that PPCA-iVec-LN is bet-

ter than the PPCA system and closer to the FA system in terms

of performance.
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Figure 5: DET curve comparing the baseline and the PPCA-

ivec-LN systems on condition C6

4. Summary and Future Work

PPCA framework for subspace modelling is used to build dic-

tionaries that could be used to extract i-vectors. To provide per-

formance efficiency similar to that of FA-based i-vectors, the

i-vector extraction algorithm in the FA framework for speaker

recognition is used. A 4× speed up in time is obtained while

building the system for speaker recognition. The performance

of the system matches that of the FA system with just an abso-

lute difference of 0.39% on C8 condition and 0.51% on C6 con-

dition. The performance compared to that of the PPCA baseline

is relatively superior by 2.8% in terms of EER.

The relationship between the i-vectors obtained in FA sys-

tem and PPCA system is non-linear and related by a polyno-

mial kernel of 4th degree. The i-vectors have a correlation co-

efficient of 1.0 in the higher dimensional space. This definitely

suggests a scope for new scoring techniques that take advantage

of this relationship to further the performance of the current sys-

tem.
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