
IEEE COMMUNICATIONS STANDARDS MAGAZINE 1

ApproxBC: Blockchain Design Alternatives for
Approximation-Tolerant Resource-Constrained

Applications
Prasanna Karthik Vairam1, Gargi Mitra1, Chester Rebeiro1, Byrav Ramamurthy2, Kamakoti Veezhinathan1

1Indian Institute of Technology Madras, India
2University of Nebraska - Lincoln, Lincoln, USA

E-mail:{pkarthik, gargim, chester}@cse.iitm.ac.in, byrav@cse.unl.edu, kama@cse.iitm.ac.in

Abstract—Blockchains are known to provide verifiable tamper-
resistant trails of accepted transactions. This guarantee comes
at the considerable cost of storage and computational power,
thereby restricting its application. Current research has focused
on alternatives such as proof-of-reputation, proof-of-stake, and
proof-of-elapsed-time to reduce the computational burden on
the Blockchain participants. Orthogonal to this effort, we focus
on a specific set of applications which cannot commit much
of storage space and computational resources, yet require only
reasonable guarantees on the validity of transactions. To this end,
we introduce Blockchain design alternatives, collectively called
ApproxBC, that can provide proof of transactions with provable
confidence bounds. Consequently, ApproxBC can considerably
reduce the computation and the storage resources required, mak-
ing them suitable for resource-constrained Internet-of-Things
(IoT) environments. We also showcase two approximation-
tolerant applications that can leverage the quicker computation
and smaller storage requirements.1

Index Terms—approximate Blockchain, approximation-
tolerant applications, evidence Bloom Filter

I. INTRODUCTION

Strategic applications such as payment gateways, digital
asset tracking, and supply chain management, are now moving
to a Blockchain-based distributed architecture due to the lack
of security in traditional database-based centralized architec-
tures [5]. The Blockchain consists of a list of blocks, where
each block contains several transactions. For instance, in a
payment system, a transaction could be a request to transfer
money from one electronic account to another. Since the
inception of Bitcoin in 2009, Blockchains have evolved over
what can be classified roughly into three generations [10].
The first two generations have focused on managing assets
and enabling smart-contracts respectively. The third generation
Blockchains try to solve a wide range of problems which
include scalability, interoperability, privacy, and governance.
While a few research works [6] have focused on improving
the scalability of Blockchains, their applicability to devices
with small memories and low computational power is still a
challenge. This article focuses on Blockchain design alterna-
tives that can achieve this.

1Accepted for publication at IEEE Communications Standards Magazine.

We first examine the types of frauds that Blockchains can
protect against. These include (1) expending a resource (e.g.
crypto-currency, digital asset, product) that is not owned by
the submitter of a transaction; (2) expending the same resource
more than once (i.e., double spending) within a short interval
of the time; and, (3) tampering with the ledger logs to change
the ownership of resources or the amount of resources owned
by an entity.

To prevent the aforementioned frauds, Blockchain enforces
various in-built validation checks as a part of its core architec-
ture. While each Blockchain variant (e.g., Bitcoin, Ethereum,
and IBM Hyperledger) implements its own version of these
validation checks, we examine the three checks which are
fundamental to almost all architectures. (1) First, Blockchain
mandates that a transaction submitter (i.e., spender) provide
information which proves ownership of the resource they want
to expend. For example, in the public Bitcoin, the ScriptSig
and the scriptPubKey perform this check based on the ID
of the spender, ID of the receiver, and the amount to be
spent. Thereafter, Blockchain participants validate the spender
(i.e., if they are authorized to expend) and build a potential
block with transactions corresponding to many such spenders.
(2) Second, the Blockchain participants include information
which can be used by other participants to verify that the
transactions included in a potential block and their order of
inclusion are indeed valid. For example, the Merkle-root hash,
included in a block of the Bitcoin’s Blockchain, serves this
purpose. Thereafter, if a majority of the participants agree on
the validity of the potential block, the block is added to the
Blockchain. (3) Third, Blockchains also ensure that the ledger
is effectively tamper-resistant i.e., modification of an accepted
transaction by a disgruntled participant is nearly impossible.
Particularly, when a transaction is validated, the resource being
spent is cross-checked with its parent transaction. Similarly,
when a block is validated, the entire trail of previous blocks
leading to the genesis block is validated implicitly due to hash
chaining.

The Blockchain participants have to maintain a copy of the
whole Blockchain in order to validate transactions, the cost
of which is non-trivial. One of the most space consuming
and computationally intensive components of Blockchains is
the Merkle-tree, which is used to enable quicker transaction000-0-0000-0000-0/00/$31.00 c© 2018 IEEE

IEEE COMMUNICATIONS STANDARDS MAGAZINE 2

validation. The size of the Merkle-tree is calculated as twice
the size of transaction the hash × the number of transactions.
This results in 128 KB, 35 KB, and 15.6KB per block for
Bitcoin, Litecoin, and Ethereum respectively [4]. In terms of
CPU, the aggregate number of hashes computed per second
on these platforms are 35.5×1018, 317×1012, and 265×1012
for Bitcoin, Litecoin, and Ethereum respectively [4]. The stor-
age and computational needs of the Merkle-trees are further
exacerbated by the rate of growth of Blockchain over time.
For example, one block gets added every 600s in Bitcoin and
60s in BitcoinPlus [2].

A. Challenges– Devices with limited CPU and Memory

The use of Blockchains in application areas such as IoT,
smart-grids, and vehicular networks, is challenging due to
the inherent limitations of the computing devices they em-
ploy [6]. Typically, these devices have limited memory (about
2KB to 4MB RAM) and possess restrictive computing power
(500MHz or lesser); may even be battery-powered [7]. The
aforementioned constraints severely limit the use of traditional
Blockchains due to the following reasons:

1) Limited Memory: The RAM may not hold the entire
Blockchain, resulting in an excessive delay to access
the internal or external persistent storage. This will
have a serious impact on the time required to perform
transaction validation.

2) Limited CPU: The CPU is time-shared between multiple
applications including the Blockchain application. Fur-
ther, since the CPU used is not powerful, the number of
cryptographic computations that can be performed per
second is limited.

3) Limited Battery: The power consumed by the
Blockchain application would result in considerable
power drain. An inefficient Blockchain design could
drain the battery sooner than expected, forcing
re-deployment.

B. Contributions

The primary objective of this work is to adapt Blockchains
to cater to applications running on resource constrained de-
vices, in which the traditional Blockchain cannot be directly
applied. For this, we introduce alternative Blockchain designs,
called ApproxBC, that have almost all the benefits of regular
Blockchains but with lesser resource requirements. We present
two ApproxBC design variants as a part of this article. (1)
The first uses Hash-tables instead of Merkle-trees to store
the fingerprint of accepted transactions. This data-structure
requires about 4× less space as well as 2× lesser number
of hash computations than the Merkle-trees. (2) The second
design uses a novel data-structure called evidence Bloom Filter
(e-BF [8]) instead of Merkle-trees. This data-structure requires
8× less space and 2× less number of hash computations
compared to a Merkle-tree.

As a side-effect, ApproxBC may not provide high levels
of security guaranteed by the traditional Blockchains, but can
be configured to provide a level of security that is acceptable

for a certain class of applications. Entropy (or randomness)
of the information stored in the validation framework (e.g.,
Merkle-tree) is a measure of its security. An analysis on the
loss of security in the two ApproxBC variants is as follows:
(1) The Hash-table-based ApproxBC is slightly less resilient to
transaction and block forgery attacks. However, under normal
circumstances, a transaction that is actually valid is always
reported as valid, and vice-versa. In comparison to the Merkle-
tree-based Blockchain, the Hash-table-based ApproxBC pro-
vides 14× less entropy. In actual terms, this amounts to an
entropy of 256 bits, which is more than sufficient to ensure
security of many applications. (2) The e-BF-based ApproxBC
uses an approximate transaction validation framework. For
instance, in such a framework, a forged transaction (with a
valid transaction ID) which is not present in a block may
sometimes (less than 4% of the time) get misreported as being
present. However, it strictly ensures that a transaction that
is present in a block is never flagged as not present by the
Blockchain. Note that a successful forgery will require an
attacker to create a forged transaction trail by taking advantage
of the 4% leeway in every Block, which requires significant
effort. Both the ApproxBC designs presented can, however, be
customized to achieve an increased level of security as well
as accuracy if more storage space is made available.

Finally, we show how ApproxBC can benefit existing
Blockchain applications, namely, Vehicle Insurance and Power
Utility Management. We also present an analysis of the
application areas in which we expect ApproxBC to make a
difference.

II. TRADITIONAL BLOCKCHAIN ARCHITECTURES

In this section, we present a high-level overview of the
Blockchain architecture. For illustration, we use the public Bit-
coin Blockchain architecture [1] in Figure 1. Blockchains ac-
cept transactions which move resources (e.g. crypto-currency)
from one electronic address (e.g. Bitcoin wallet) to another.
For a transaction to get accepted by the Blockchain, i) the
transaction must get accepted into a potential block that is
being built by a Blockchain participant (refer steps 1 to 4 in
Figure 1); and ii) a potential block containing the transaction
must get accepted into the Blockchain (refer steps 5a to 8 in
Figure 1). The steps to achieve this are described next.

We first describe the steps involved in adding a transaction
to a block of the Blockchain. Figure 1 shows an example
where Bob wants to expend the resources given to it by
Alice. Alice’s transaction, which transferred the resource to
Bob, is called the parent transaction and Bob’s transaction
is called the spending transaction as shown in steps 1 and
3. Step 2 of Figure 1 shows how the scriptSig script in the
spending transaction (Bob) and the scriptPubKey in the parent
transaction (Alice) are executed one after the other to return
a Boolean value representing the success or failure of the
validity check. Together, the two complementary scripts check
if Bob is authorized to spend the amount of resource which it
spends. In step 4, the spending transaction is broadcast to the
Blockchain participants who may then decide to include it into
a potential block that they create, after verifying its validity
by executing the complementary scripts.

IEEE COMMUNICATIONS STANDARDS MAGAZINE 3

Fig. 1. The steps taken to accept a transaction into the Blockchain. Bob initiates a transaction to spend the resource given by Alice. Carol is an independent
Blockchain participant who builds a Blockchain block containing Bob and many others transactions.

We now describe how a potential block is built by a partic-
ipant and added to the Blockchain. Any interested Blockchain
participant (say, Carol) can build a potential block with the
set of outstanding transactions from spenders (similar to Bob)
as shown in step 5b. A Merkle-tree of the transactions, which
is built by Carol in step 5a, is also included as a part of the
potential block. The importance of the Merkle-tree will be ex-
plained shortly. Similar to Carol, other Blockchain participants
may also attempt to build a potential Block from the set of
outstanding transactions. If two blocks are broadcasted within
a short period of time, each participant may have their own
view of the Blockchain depending on which block arrived first.
It is this inconsistency that an attacker may exploit to double
spend resources. To ensure that all participants see the same
ordering of blocks, a consensus mechanism, which introduces
a delay between the addition of two consecutive blocks is
required. The consensus mechanism lets only one participant
succeed in getting its potential block accepted over a period
of time. For instance, in Bitcoin, this delay is ensured by
requiring the participants to solve a hard puzzle i.e., proof-of-
work. Hence, this consensus mechanism addresses the double
spending problem.

Assuming that Carol wins the consensus, its potential block
is added by other participants to their copy of Blockchain
as shown in step 6. The other participants accept the block
into their Blockchain after validating every transaction in the
block as well as the Merkle-tree embedded within the block.
Eventually, if a majority of the participants accept the block
(shown in step 7 and 8), the block and the transactions in it
are said to have been accepted into the Blockchain.

III. MERKLE-TREES: SECURITY AND OVERHEADS

Merkle-tree is a data-structure, which is maintained by the
Blockchain participants to facilitate validation of transactions
in logarithmic time. The Blockchain participants build a
Merkle-tree with the list of outstanding transactions to be
included in a block (refer step 5a of Figure 1). Hashes of all
these transactions form the leaves of the Merkle-tree. Higher
level nodes of the Merkle-tree are composed by repeatedly
hashing pairs of nodes from the lower level. For instance,
hashes of transactions T1 and T2 (represented by h(T1) and
h(T2) in step 5a of Figure 1) are appended and rehashed to
form the Merkle-tree vertex I1. The root of the tree, called
the Merkle-root, captures both the contents of each of the
transactions and the order in which they appear at the leaf
of the Merkle-tree.

When a third party (say, Dave) wants to verify if Bob’s
transaction (say, T1) was included as a part of this block,
it performs the following operations. First, it requests from
a Blockchain participant, the minimal set of intermediate
Merkle-tree vertices which are required to reconstruct the
Merkle-root. For example, in step 5a of Figure 1, the two
highlighted Merkle-tree nodes, namely, h(T2) and I2, are pro-
vided to Dave by the Blockchain participant. Using h(T1) and
h(T2), Dave can reconstruct I1. Again, using I1 and I2, Dave
can reconstruct the Merkle Root. Finally, Dave fetches the
reference Merkle Root for the block from a trusted Blockchain
participant and ensures that the reconstructed Merkle-Root
matches it. If this comparison succeeds, the copy of the
transaction T1 that Dave has is indeed the copy that was
accepted in the Blockchain. If not, then either the transaction
T1 that Dave has is forged, or the Blockchain participant who
provided the Merkle-tree is not trustworthy.

IEEE COMMUNICATIONS STANDARDS MAGAZINE 4

Threat Model: We consider the following attack scenar-
ios: (1) Transaction forgery, where Bob gives Dave a fake
transaction which promises transfer of some resources. When
Dave validates the transaction, it rebuilds the Merkle-root and
compares it to the Merkle-root from a trusted participant. The
validation check will pass if and only if Bob managed to find
a hash collision corresponding to at least one transaction in
the given block. (2) Merkle-tree forgery, where Carol and a
small swarm of disgruntled Blockchain participants attempt
to create a fake Merkle-tree. The fake Merkle-tree contains
fake hashes corresponding to forged transactions, subject to
the constraint that the Merkle-root is the same as the one
maintained by the trusted Blockchain participants. During
transaction validation, if Dave consults one of the disgruntled
participants, the intermediate hashes from the fake Merkle-
tree are given to it. The Merkle-root built by Dave will match
the Merkle-root from the trusted source, thereby accepting the
fake transaction.
Security: We now estimate the effort involved in performing
the aforementioned attacks. For a Blockchain implementation
which uses 256 bit hashes, the entropy involved in finding
a hash collision for a transaction is 256 bits, which would
take 13.7 × 109 years [11]. On the other hand, building a
fake Merkle-tree which can allow one fake transaction to
pass involves forging 14 intermediate Merkle-tree hashes, the
entropy for which is 14× 256 bits.
Storage and Computation Overhead: We present an anal-
ysis based on the public Bitcoin, in which the block size is
currently limited to 1MB, which in-turn can contain 5, 000
transactions (each of length 200 Bytes). The proof of exis-
tence of these transactions in a block is maintained at the
Blockchain participants using Merkle-tree [14]. The Merkle-
tree constructed for 5, 000 transactions will have about 10, 000
tree vertices in total. This would consume 320 KB of space and
requires 10, 000 SHA-256 hashes to be computed per block
of the Blockchain. Further, every time a spending transaction
needs to be validated, the Blockchain participants need to
perform log2(10, 000) (≈ 14) memory accesses.

IV. APPROXIMATE BLOCKCHAIN ARCHITECTURE

In this section, we look at alternative Blockchain architec-
tures, which are composed by replacing certain computation
intensive and space consuming components with approximate
data-structures and the corresponding computation methods.
Specifically, we explore alternatives to the Merkle-trees that
are at the heart of the traditional Blockchain architectures.
We can abstract the functionality of Merkle-trees as an oracle
maintained at Blockchain participants, that can be queried
by the transaction verifier. This oracle must be capable of
answering if a given transaction is accepted by the given block,
with sufficient proof. Also, this scheme should not require
information about any other transaction in the block, to ensure
privacy of other spenders that share this block. Any data-
structure that can function as a privacy-preserving oracle can
possibly replace Merkle-trees.

In this work, we propose two alternative Blockchain designs
that are based on (1) Hash-tables, and (2) evidence bloom filter

Fig. 2. Figure describing the use of Hash-tables to store and validate
transactions. Carol is the block creator who builds the Hash-table. Steps
followed by the transaction verifier (Dave) is also illustrated.

(e-BF), which is a new data-structure we proposed in a recent
work [8].

A. Hash-table-based Approximate Blockchain

Hash-tables have been used in a variety of applications such
as caches and message digest repositories, that require privacy
as well as a high level of accuracy. The use of Hash-table
as an oracle is promising since it can help the participants
answer if a transaction was accepted or not with sufficient
proof; much like Merkle-trees. However, the working of the
two data-structures are quite different. Figure 2 describes how
transactions are stored in the Hash-table by a participant (say,
Carol) who builds the block. The transaction Ti is first hashed
(to say, 256 bits) and split into the key (represented by 128 bit
h(Ti)[Key]) and value (represented by 128 bit h(Ti)[val]). The
key is used as the index into the Hash-table where the value
is stored. For example, if h(T4)[Key] is 3, then h(T4)[val] is
stored at index 3.

When a Blockchain user (say, Dave) wants to verify if the
copy of transaction T4 that was given to him by someone (say,
Mallory) is valid, he first calculates h(T4) and splits them into
key and value as shown in Figure 2. This value, called the
reference value, is used to cross-check the value retrieved from
the hash-table. To know if T4 is a part of the accepted block,
Dave challenges Carol to produce h(T4)[val] by providing
h(T4)[key]. Finally, Dave considers T4 to be valid if and only
if the h(T4)[val] provided by Carol matches the reference
value from the first step. However, a down-side is that two
transactions that are interdependent cannot be included in the
same block, since their ordering cannot be ensured.
Security: We assume a scenario where Mallory forges a
fake transaction Ti’ and gives it to Dave. We quantify the
effort required to get Ti’ accepted as a valid transaction in a
particular block. This requires creating a Ti’ such that it results
in a key-value pair which is already present in the hash-table.
Since this requires finding a 256 bit hash collision, the entropy

IEEE COMMUNICATIONS STANDARDS MAGAZINE 5

Data-structure Size Transaction Verification Effort Security

Size
(KB)

No.
of

Hashes

Mem.
Lookups

at Participant

Communication
Overhead

(bits)

No. Hashes
at verifier

Entropy
(bits)

Merkle-Tree 320 10K 14 14x256 14 256

Hash Table 80 5K 1 128+128** 1 256

e-BF 38.5 5K K* = 1 or 2 128+128** 1 <256

* K is the e-BF replication factor
**128 bit challenge and 128 bit response
***Values presented are for public Bitcoin Implementation of Blockchains

TABLE I
TABLE COMPARING THE THREE ORACLES, NAMELY, THE MERKLE-TREE,

E-BF, AND HASH-TABLES ON THE BASIS OF STORAGE SPACE,
COMPUTATIONAL EFFICIENCY AND COMMUNICATION OVERHEADS.

of this scheme is 256 bits; quite similar to that of the Merkle-
trees.
Storage and Computational Overheads: For storing 5000
Bitcoin transactions in a hash-table, the number of hash
computations is 5000, as summarized in Table I. Since the
keys are not stored, the storage space required is only 128
bits ×5000 = 80 KB. During transaction validation, one hash
computation has to be performed to generate the key-value pair
at Dave, and exactly one memory look-up to retrieve the value
from Carol’s hash-table. Also, since Dave sends the key to
Carol, and Carol responds with the value, the communication
overhead is 256 bits per validation.

B. e-BF-based Approximate Blockchain

In this section, we present an oracle which is more efficient
than hash-tables. e-BF [8] is a data-structure that combines
the space and computational efficiency of Bloom filters [13]
and the usability of hash-tables (i.e., the ability to retrieve
values). The e-BF is a key-value store which is represented
as an array of cells, where each cell is of a fixed length.
Figure 3 shows an e-BF which has 8 cells and stores the 128
bit values corresponding to transactions T1, T2, T3, and T4.
Each transaction is hashed and split into a key-value pair, as
in case of hash-table-based ApproxBC. The key is used to
index into the cell, where the value is stored. Similarly, the
value corresponding to a key can be retrieved by indexing
into the appropriate cell. In order to save storage space, each
cell acts as an accumulator, where the values corresponding
to multiple transactions are stored. Accumulation of multiple
transactions hashes in a cell may result in certain bits of
the previously stored transaction hash getting over-written.
This is the root-cause of the approximation. However, the
usefulness of the values stored are improved with the help
of a novel encoding scheme that minimizes the probability of
overwriting, and a novel cell-layout that allows overlapping of
adjacent cells in the e-BF. Further, the e-BF design allows a
value to be stored in multiple cells (k in number), based on
indices derived from key, to ensure redundancy. Additionally,
e-BF can also quantify the level of approximation on the
retrieved values. These features make e-BF suitable for a
wide range of applications that are approximation-tolerant,
provided there exists a mechanism to quantify the extent of this

Fig. 3. Figure describing the use of e-BF with 8 cells to store and validate
transactions is shown. e-BF is built by Carol who builds the Blockchain block.
The transaction validator (Dave) queries Carol to provide proof of validity of
a transaction.

1 2 3 4 5
Redundancy factor (K)

0.00

0.05

0.10

0.15

0.20

0.25
Er

ro
r R

at
e

Error Rate: Design-1
Error Rate: Design-2
Error Rate: Design-3

28.3

42.2

64.2

100

Si
ze

 o
f e

-B
F

lo
g

sc
al

e
(K

B
)

e-BF Size: Design-1
e-BF Size: Design-2
e-BF Size: Design-3

Fig. 4. Figure describing the error rate and size of e-BF corresponding to
different values of redundancy (K). Three e-BF designs are shown.

approximation. A detailed description of e-BF can be found
in the full paper [8].

Figure 3 describes the scheme used to store and validate
transactions when using e-BF. Similar to hash-tables, the
scheme requires the verifying party (Dave) to first generate a
key-value pair from the transaction given to it by Mallory, then
querying the Blockchain participant (Carol) with the key, and
finally matching the response from Carol with the reference
response. However, contrary to hash-tables wherein the key
points to the hash-table entry, the key in e-BF points to the
bit-offset from which the value can be stored/retrieved. It
must be noted that the value provided by the e-BF may not
match the reference value exactly due to the approximations.
However, the e-BF can quantify the extent of approximation
of the retrieved evidence by computing its hamming distance
from the reference value. This can, in turn, be used to quantify
Dave’s confidence in the validity of the transaction.
Security: We assume a scenario where Mallory forges a fake
transaction such that the e-BF flags it as valid with a high
degree of confidence. Such an attack is slightly easier (about
4% easier) to perform, when compared to the hash-table-based

IEEE COMMUNICATIONS STANDARDS MAGAZINE 6

ApproxBC. In absolute terms, the entropy of e-BF, which is
a measure of the randomness measured in bits, is 256 bits
(minus the entropy loss due to approximation).
Storage and Computational Overhead: For storing 5000
Bitcoin transactions, the number of hash computations is
5000, but requires only 38.5 KB of e-BF2 storage (determined
using empirical analysis), as summarized in Table I. During
validation, the communication overhead and the no. of hashes
computed are the same as the hash-table-based ApproxBC.
However, e-BF may require more memory accesses depending
on the value of k, which dictates how many copies of value
need to be retrieved.
Accuracy vs Storage Space Trade-off: The e-BF is capable
of offering better transaction validation accuracy if more space
is allocated. Figure 4 showcases the trade-off between the error
rate and the size of three e-BF variants (Design-1, Design-2,
and Design-3) obtained by varying the overlap between the
e-BF cells. We can observe that for higher redundancy (K)
values, the space required by e-BF is high, and consequently
the error rate is low. There exists an optimal point (K = 2) at
which the storage required is not too high, and the error rate
is reasonable.

V. APPROXIMATION-TOLERANT APPLICATIONS

In this section, we showcase two different applications that
use the approxBC architecture to record critical events. The
need for Blockchains and the effect of approximation on each
application is analyzed.

A. Vehicle Insurance

Vehicle insurance is an insurance for motorized vehicles
that offers financial cover against accidental collisions, theft,
keying, and natural disasters. The organizations that provide
Vehicle insurance, called the insurance providers, are prone
to attempts by disgruntled policy holders who may mis-
construe the circumstances involving an accident, or falsify
documentation in order to claim insurance. Such attempts
to defraud the insurance providers are significant in number,
and cost them billions of dollars. Conventionally, insurance
providers have resorted to extensive forensic audit of a few
high profile claims. However, most of the other claims do
not undergo forensic audits due to the prohibitively high
cost involved. Currently, researchers are focusing on using
IoT in conjunction with Blockchain to record critical events
into the Blockchain [9]. For instance, critical events such as
application of brakes, crossing the speed limit of 60 Kmph,
and the status of the car’s headlight can be captured by an
IoT device, which can then be recorded in a Blockchain.
Figure 5 describes one such scenario where a car driver who
does not stop at the red signal, and ends up colliding with a
van. ApproxBC records all the critical events, thereby catching
the eliminating attempts to misconstrue events. The tamper-
resistance of Blockchains could help the insurance providers
determine the circumstances surrounding the accident, based
on which insurance payouts can be made.

2e-BF [8] with parameters k = 2, g = 0.25,m = 128, p = 5000 was
used

Fig. 5. Figure describing a disgruntled insurance claimant who claims
insurance despite violating traffic rules. ApproxBC is able to identify this
using the critical event generated by the stop traffic signal.

While this solution works on paper, most IoT devices cannot
support the storage and computational demands of traditional
Blockchains. While prior works [6] have used a cloud-based
storage for recording IoT events, such a solution may not
work when connectivity is an issue. In this context, we explore
the possibility of using ApproxBC in place of the traditional
Blockchains. ApproxBC records all the critical events in the
Blockchain. When queried for the occurrence of a particular
event, ApproxBC responds with an answer and additionally
quantifies its confidence in the response. If the response has a
high level of confidence, the insurance payouts can be made.
However, if the response has a low confidence, further forensic
audit has to be performed, in order to get a definitive answer.
Therefore, ApproxBC-based Blockchain can be helpful in
performing preliminary analysis to eliminate most cases of
insurance frauds. Based on our analysis, ApproxBC cannot
answer conclusively for a meager 3% − 4% of the claims,
which we believe is a significant result.

B. Power Utility Management

The developing regions of the world and even some de-
veloped countries suffer from the problem of power-theft,
which involves illegally tapping power from a power-line. For
instance, the revenue loss due to power-theft in the world is
estimated at US $89.3 billion annually [12]. To solve this,
many countries have installed smart-meters at the end-users
as well as the power distribution grids. Since the smart-meters
are hosted at the premises of the end-users, trust is still an
issue. For this reason, recent research works [3] have focused
on employing Blockchains to record critical events related to
power consumption. However, the storage and computational
requirements to maintain such a Blockchain is still huge,
restricting its application.

We propose ApproxBC as an alternative to address this
problem. ApproxBC is capable of recording all the critical
events. However, sometimes, due to its approximate nature,
ApproxBC may not have a high confidence in a critical power
event which happened in reality. In such cases, the end-user
may claim that the power event did not happen in the first
place, resulting in non-payment of bills corresponding to that

IEEE COMMUNICATIONS STANDARDS MAGAZINE 7

particular event. By design, the ApproxBC ensures that such
discrepancies do not occur more than 3% − 4% of the time.
If the power event happens to be a critical one (in terms of
revenue), a forensic audit may reveal the facts, based on which
payouts can be made. However, if the power utility company
were to commit more storage and computation, ApproxBC
can achieve better guarantees, thereby reducing the need for
forensic audits.

C. High Impact Areas

ApproxBC has some desirable properties that the traditional
Blockchain platforms lack, which make it suitable for a certain
class of applications. The following are the conditions under
which ApproxBC may be useful.

• Is there a critical event that needs to be recorded persis-
tently?

• Is this critical event available digitally?
• Do you want to capture the trail of prior events which

caused the critical event to happen?
• Are the participants untrusted? Can they tamper with the

recorded critical events?
• Is there a fall-back technique such as forensic audit to

verify the occurrence of a critical event?
• Is the fall-back technique costly to perform?

If the answers to most of the aforementioned questions are
yes, then ApproxBC could be a good fit. While ApproxBC
may not offer the high levels of security guarantees offered
by the traditional Blockchain, it can help many organizations
reduce the operational costs involved in conducting extensive
audits.

VI. CONCLUSION

In this article, we proposed ApproxBC, an alternative
Blockchain architecture, that can be supported by devices
that have limited space and computational resources. This
architecture can be leveraged by applications that can accom-
modate a certain level of approximation in their transaction
validation framework, but still require good-enough provable
security guarantees. To meet these requirements, we replace
the storage and computation-heavy Merkle-tree-based in tra-
ditional Blockchains with two approximate data-structures:
Hash-tables and e-BF. The approximate data-structures can
also be configured to provide a given level of accuracy required
by the application. We have observed that the approximate
Blockchain has the potential to reduce the storage and compu-
tational power required to store transaction logs by 8× and 2×
respectively. Finally, we also demonstrate the usability of the
approximate Blockchain by building two sample applications
and analyze the impact of approximation on their correctness.
We believe that there is scope for exploring other alternative
Blockchain design choices which can provide approximate
guarantees, and a broad class of applications that run on
devices with constrained resources which can benefit from
them.

REFERENCES

[1] “Bitcoin Blockchain Architecture.” [Online]. Available: https://bitcoin.
org

[2] “Block Size And Transactions Per Second .” [Online]. Available:
https://www.bitcoinplus.org/blog/block-size-and-transactions-second

[3] “Blockchain for Power Utilities: A View on Capabilities and
Adoption.” [Online]. Available: https://www.cognizant.com/whitepapers/
blockchain-for-power-utilities-a-view-on-capabilities-and-adoption-codex3372.
pdf

[4] “Cryptocurrency statistics.” [Online]. Available: https://bitinfocharts.
com/

[5] “Explained: Punjab National Banks 1.8 Billion
Fraud, howpublished = https://thewire.in/224314/
explained-punjab-national-banks-1-8-billion-fraud/, note = Accessed:
2018-02-28.”

[6] “IBM HyperLedger for IoT.” [Online]. Available: https://www.ibm.
com/internet-of-things/spotlight/blockchain

[7] “Memory Options for the IoT.” [Online]. Available: https://www.
synopsys.com/designware-ip/technical-bulletin/memory-options.html

[8] “Promises, Lies and Measuring Tape: Assessing Service Quality in an
Untrusted Network Service Function Chain,” http://www.cse.iitm.ac.in/
∼pkarthik/e-BF.pdf, accessed: 2018-02-28.

[9] “The Blockchain Imperative: The Next Challenge for P&C
Carriers.” [Online]. Available: {https://www.cognizant.com/whitepapers/
the-blockchain-imperative-the-next-challenge-for-p-and-c-carriers-codex2360.
pdf},date={2018-02-28},

[10] “Top Five Blockchain 3.0 To Watch Out For In 2018 .” [Online].
Available: https://coinsutra.com/3rd-generation-blockchain/

[11] “Why haven’t any SHA-256 collisions been found yet?”
[Online]. Available: https://crypto.stackexchange.com/questions/47809/
why-havent-any-sha-256-collisions-been-found-yet

[12] “World Loses $89.3 Billion to Electricity Theft
Annually, $58.7 Billion in Emerging Markets.”
[Online]. Available: https://www.prnewswire.com/news-releases/
world-loses-893-billion-to-electricity-theft-annually-587-billion-in-emerging-markets-300006515.
html

[13] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[14] R. C. Merkle, “Method of providing digital signatures,” 1979. [Online].
Available: https://patents.google.com/patent/US4309569

